/* mpfr_atan -- arc-tangent of a floating-point number Copyright 2001-2019 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" #if GMP_NUMB_BITS == 64 /* for each pair (r,p), we store a 192-bit approximation of atan(x)/x for x=p/2^r, with lowest limb first. Sage code: for p in range(1,2^ceil(r/2)): x=p/2^r l=floor(2^192*n(atan(x)/x, 300)).digits(2^64) print ("{0x%x, 0x%x, 0x%x}, /"+"* (%d,%d) *"+"/") % (l[0],l[1],l[2],r,p) */ static const mp_limb_t atan_table[][3] = { {0x6e141587261cdf00, 0x6fe445ecbc3a8d03, 0xed63382b0dda7b45}, /* (1,1) */ {0xaa7fa90388b3836b, 0x6dc79ef5f7a217e5, 0xfadbafc96406eb15}, /* (2,1) */ {0x319c12cf59d4b2dc, 0xcb2792dc0e2e0d51, 0xffaaddb967ef4e36}, /* (4,1) */ {0x8b3957d95d9ad922, 0xc897989f3e888ef7, 0xfeadd4d5617b6e32}, /* (4,2) */ {0xc4e6abc8af62e439, 0x4eb9bf602625f0b4, 0xfd0fcdd343cac19b}, /* (4,3) */ {0x7c18baeb9bc95789, 0xb12afb6b6d4f7e16, 0xffffaaaaddddb94b}, /* (8,1) */ {0x6856a0171a2f001a, 0x62351fbbe60af47, 0xfffeaaadddd4b968}, /* (8,2) */ {0x69164c094f49da06, 0xd517294f7373d07a, 0xfffd001032cb1179}, /* (8,3) */ {0x20ef65c10deef460, 0xe78c564015f76048, 0xfffaaadddb94d5bb}, /* (8,4) */ {0x3ce233aa002f0344, 0x9dd8ea342a65d4cc, 0xfff7ab27a1f32f95}, /* (8,5) */ {0xa37f403c7279c5cb, 0x13ab53a1c8db8497, 0xfff40103192ce74d}, /* (8,6) */ {0xe5a85657103c1aa8, 0xb8409e6c914191d3, 0xffefac8a9c40a26b}, /* (8,7) */ {0x806d0294c0db8816, 0x779d776dda8c6213, 0xffeaaddd4bb12542}, /* (8,8) */ {0x5545d1914ef21478, 0x3aea58d6660f5a12, 0xffe5051f0aebf73a}, /* (8,9) */ {0x6e47a91d015f4133, 0xc085ab6b490b7f02, 0xffdeb2787d4adac1}, /* (8,10) */ {0x4efc1f931f7ec9b3, 0xb7f43cd16195ef4b, 0xffd7b61702b09aad}, /* (8,11) */ {0xd27d1dbf55fed60d, 0xd812c11d7d473e5e, 0xffd0102cb3c1bfbe}, /* (8,12) */ {0xca629e927383fe97, 0x8c61aedf58e42206, 0xffc7c0f05db9d1b6}, /* (8,13) */ {0x4eff0b53d4e905b7, 0x28ac1e800ca31e9d, 0xffbec89d7dddd7e9}, /* (8,14) */ {0xb0a7931deec6fe60, 0xb46feea78588554b, 0xffb527743c8cdd8f} /* (8,15) */ }; static void set_table (mpfr_t y, const mp_limb_t x[3]) { mpfr_prec_t p = MPFR_PREC(y); mp_size_t n = MPFR_PREC2LIMBS(p); mpfr_prec_t sh; mp_limb_t *yp = MPFR_MANT(y); MPFR_UNSIGNED_MINUS_MODULO (sh, p); mpn_copyi (yp, x + 3 - n, n); yp[0] &= ~MPFR_LIMB_MASK(sh); MPFR_SET_EXP(y, 0); } #endif /* If x = p/2^r, put in y an approximation of atan(x)/x using 2^m terms for the series expansion, with an error of at most 1 ulp. Assumes 0 < x < 1, thus 1 <= p < 2^r. More precisely, p consists of the floor(r/2) bits of the binary expansion of a number 0 < s < 1: * the bit of weight 2^-1 is for r=1, thus p <= 1 * the bit of weight 2^-2 is for r=2, thus p <= 1 * the two bits of weight 2^-3 and 2^-4 are for r=4, thus p <= 3 * more generally p < 2^(r/2). If X=x^2, we want 1 - X/3 + X^2/5 - ... + (-1)^k*X^k/(2k+1) + ... When we sum terms up to x^k/(2k+1), the denominator Q[0] is 3*5*7*...*(2k+1) ~ (2k/e)^k. The tab[] array should have at least 3*(m+1) entries. */ static void mpfr_atan_aux (mpfr_ptr y, mpz_ptr p, unsigned long r, int m, mpz_t *tab) { mpz_t *S, *Q, *ptoj; mp_bitcnt_t n, h, j; /* unsigned type, which is >= unsigned long */ mpfr_exp_t diff, expo; int im, i, k, l, done; mpfr_prec_t mult; mpfr_prec_t accu[MPFR_PREC_BITS], log2_nb_terms[MPFR_PREC_BITS]; mpfr_prec_t precy = MPFR_PREC(y); MPFR_ASSERTD(mpz_cmp_ui (p, 0) != 0); MPFR_ASSERTD (m+1 <= MPFR_PREC_BITS); #if GMP_NUMB_BITS == 64 /* tabulate values for small precision and small value of r (which are the most expensive to compute) */ if (precy <= 192) { switch (r) { case 1: /* p has 1 bit: necessarily p=1 */ MPFR_ASSERTD(mpz_cmp_ui (p, 1) == 0); set_table (y, atan_table[0]); return; case 2: /* p has 1 bit: necessarily p=1 too */ MPFR_ASSERTD(mpz_cmp_ui (p, 1) == 0); set_table (y, atan_table[1]); return; case 4: /* p has at most 2 bits: 1 <= p <= 3 */ MPFR_ASSERTD(1 <= mpz_get_ui (p) && mpz_get_ui (p) <= 3); set_table (y, atan_table[1 + mpz_get_ui (p)]); return; case 8: /* p has at most 4 bits: 1 <= p <= 15 */ MPFR_ASSERTD(1 <= mpz_get_ui (p) && mpz_get_ui (p) <= 15); set_table (y, atan_table[4 + mpz_get_ui (p)]); return; } } #endif /* Set Tables */ S = tab; /* S */ ptoj = S + 1*(m+1); /* p^2^j Precomputed table */ Q = S + 2*(m+1); /* Product of Odd integer table */ /* From p to p^2, and r to 2r */ mpz_mul (p, p, p); MPFR_ASSERTD (2 * r > r); r = 2 * r; /* Normalize p */ n = mpz_scan1 (p, 0); if (n > 0) { mpz_tdiv_q_2exp (p, p, n); /* exact */ MPFR_ASSERTD (r > n); r -= n; } /* since |p/2^r| < 1, and p is a non-zero integer, necessarily r > 0 */ MPFR_ASSERTD (mpz_sgn (p) > 0); MPFR_ASSERTD (m > 0); /* check if p=1 (special case) */ l = 0; /* We compute by binary splitting, with X = x^2 = p/2^r: P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise Q(a,b) = (2a+1)*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise S(a,b) = p*(2a+1) if a+1=b, Q(c,b)*S(a,c)+Q(a,c)*P(a,c)*S(c,b) otherwise Then atan(x)/x ~ S(0,i)/Q(0,i) for i so that (p/2^r)^i/i is small enough. The factor 2^(r*(b-a)) in Q(a,b) is implicit, thus we have to take it into account when we compute with Q. */ accu[0] = 0; /* accu[k] = Mult[0] + ... + Mult[k], where Mult[j] is the number of bits of the corresponding term S[j]/Q[j] */ if (mpz_cmp_ui (p, 1) != 0) { /* p <> 1: precompute ptoj table */ mpz_set (ptoj[0], p); for (im = 1 ; im <= m ; im ++) mpz_mul (ptoj[im], ptoj[im - 1], ptoj[im - 1]); /* main loop */ n = 1UL << m; MPFR_ASSERTN (n != 0); /* no overflow */ /* the i-th term being X^i/(2i+1) with X=p/2^r, we can stop when p^i/2^(r*i) < 2^(-precy), i.e. r*i > precy + log2(p^i) */ for (i = k = done = 0; (i < n) && (done == 0); i += 2, k ++) { /* initialize both S[k],Q[k] and S[k+1],Q[k+1] */ mpz_set_ui (Q[k+1], 2 * i + 3); /* Q(i+1,i+2) */ mpz_mul_ui (S[k+1], p, 2 * i + 1); /* S(i+1,i+2) */ mpz_mul_2exp (S[k], Q[k+1], r); mpz_sub (S[k], S[k], S[k+1]); /* S(i,i+2) */ mpz_mul_ui (Q[k], Q[k+1], 2 * i + 1); /* Q(i,i+2) */ log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */ for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l ++, j >>= 1, k --) { /* invariant: S[k-1]/Q[k-1] and S[k]/Q[k] correspond to 2^l terms each. We combine them into S[k-1]/Q[k-1] */ MPFR_ASSERTD (k > 0); mpz_mul (S[k], S[k], Q[k-1]); mpz_mul (S[k], S[k], ptoj[l]); mpz_mul (S[k-1], S[k-1], Q[k]); mpz_mul_2exp (S[k-1], S[k-1], r << l); mpz_add (S[k-1], S[k-1], S[k]); mpz_mul (Q[k-1], Q[k-1], Q[k]); log2_nb_terms[k-1] = l + 1; /* now S[k-1]/Q[k-1] corresponds to 2^(l+1) terms */ MPFR_MPZ_SIZEINBASE2(mult, ptoj[l+1]); mult = (r << (l + 1)) - mult - 1; accu[k-1] = (k == 1) ? mult : accu[k-2] + mult; if (accu[k-1] > precy) done = 1; } } } else /* special case p=1: the i-th term being X^i/(2i+1) with X=1/2^r, we can stop when r*i > precy i.e. i > precy/r */ { n = 1UL << m; if (precy / r <= n) n = (precy / r) + 1; MPFR_ASSERTN (n != 0); /* no overflow */ for (i = k = 0; i < n; i += 2, k ++) { mpz_set_ui (Q[k + 1], 2 * i + 3); mpz_mul_2exp (S[k], Q[k+1], r); mpz_sub_ui (S[k], S[k], 1 + 2 * i); mpz_mul_ui (Q[k], Q[k + 1], 1 + 2 * i); log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */ for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l++, j >>= 1, k --) { MPFR_ASSERTD (k > 0); mpz_mul (S[k], S[k], Q[k-1]); mpz_mul (S[k-1], S[k-1], Q[k]); mpz_mul_2exp (S[k-1], S[k-1], r << l); mpz_add (S[k-1], S[k-1], S[k]); mpz_mul (Q[k-1], Q[k-1], Q[k]); log2_nb_terms[k-1] = l + 1; } } } /* we need to combine S[0]/Q[0]...S[k-1]/Q[k-1] */ h = 0; /* number of terms accumulated in S[k]/Q[k] */ while (k > 1) { k --; /* combine S[k-1]/Q[k-1] and S[k]/Q[k] */ mpz_mul (S[k], S[k], Q[k-1]); if (mpz_cmp_ui (p, 1) != 0) mpz_mul (S[k], S[k], ptoj[log2_nb_terms[k-1]]); mpz_mul (S[k-1], S[k-1], Q[k]); h += (mp_bitcnt_t) 1 << log2_nb_terms[k]; mpz_mul_2exp (S[k-1], S[k-1], r * h); mpz_add (S[k-1], S[k-1], S[k]); mpz_mul (Q[k-1], Q[k-1], Q[k]); } MPFR_MPZ_SIZEINBASE2 (diff, S[0]); diff -= 2 * precy; expo = diff; if (diff >= 0) mpz_tdiv_q_2exp (S[0], S[0], diff); else mpz_mul_2exp (S[0], S[0], -diff); MPFR_MPZ_SIZEINBASE2 (diff, Q[0]); diff -= precy; expo -= diff; if (diff >= 0) mpz_tdiv_q_2exp (Q[0], Q[0], diff); else mpz_mul_2exp (Q[0], Q[0], -diff); mpz_tdiv_q (S[0], S[0], Q[0]); mpfr_set_z (y, S[0], MPFR_RNDD); /* TODO: Check/prove that the following expression doesn't overflow. */ expo = MPFR_GET_EXP (y) + expo - r * (i - 1); MPFR_SET_EXP (y, expo); } int mpfr_atan (mpfr_ptr atan, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_t xp, arctgt, sk, tmp, tmp2; mpz_t ukz; mpz_t tabz[3*(MPFR_PREC_BITS+1)]; mpfr_exp_t exptol; mpfr_prec_t prec, realprec, est_lost, lost; unsigned long twopoweri, log2p, red; int comparison, inexact; int i, n0, oldn0; MPFR_GROUP_DECL (group); MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode), ("atan[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (atan), mpfr_log_prec, atan, inexact)); /* Singular cases */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (atan); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) { MPFR_SAVE_EXPO_MARK (expo); if (MPFR_IS_POS (x)) /* arctan(+inf) = Pi/2 */ inexact = mpfr_const_pi (atan, rnd_mode); else /* arctan(-inf) = -Pi/2 */ { inexact = -mpfr_const_pi (atan, MPFR_INVERT_RND (rnd_mode)); MPFR_CHANGE_SIGN (atan); } mpfr_div_2ui (atan, atan, 1, rnd_mode); /* exact (no exceptions) */ MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (atan, inexact, rnd_mode); } else /* x is necessarily 0 */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (atan); MPFR_SET_SAME_SIGN (atan, x); MPFR_RET (0); } } /* atan(x) = x - x^3/3 + x^5/5... so the error is < 2^(3*EXP(x)-1) so `EXP(x)-(3*EXP(x)-1)` = -2*EXP(x)+1 */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (atan, x, -2 * MPFR_GET_EXP (x), 1, 0, rnd_mode, {}); /* Set x_p=|x| */ MPFR_TMP_INIT_ABS (xp, x); MPFR_SAVE_EXPO_MARK (expo); /* Other simple case arctan(-+1)=-+pi/4 */ comparison = mpfr_cmp_ui (xp, 1); if (MPFR_UNLIKELY (comparison == 0)) { int neg = MPFR_IS_NEG (x); inexact = mpfr_const_pi (atan, MPFR_IS_POS (x) ? rnd_mode : MPFR_INVERT_RND (rnd_mode)); if (neg) { inexact = -inexact; MPFR_CHANGE_SIGN (atan); } mpfr_div_2ui (atan, atan, 2, rnd_mode); /* exact (no exceptions) */ MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (atan, inexact, rnd_mode); } realprec = MPFR_PREC (atan) + MPFR_INT_CEIL_LOG2 (MPFR_PREC (atan)) + 4; prec = realprec + GMP_NUMB_BITS; /* Initialisation */ mpz_init2 (ukz, prec); /* ukz will need 'prec' bits below */ MPFR_GROUP_INIT_4 (group, prec, sk, tmp, tmp2, arctgt); oldn0 = 0; MPFR_ZIV_INIT (loop, prec); for (;;) { /* First, if |x| < 1, we need to have more prec to be able to round (sup) n0 = ceil(log(prec_requested + 2 + 1+ln(2.4)/ln(2))/log(2)) */ mpfr_prec_t sup; sup = MPFR_GET_EXP (xp) < 0 ? 2 - MPFR_GET_EXP (xp) : 1; /* sup >= 1 */ n0 = MPFR_INT_CEIL_LOG2 ((realprec + sup) + 3); /* since realprec >= 4, n0 >= ceil(log2(8)) >= 3, thus 3*n0 > 2 */ prec = (realprec + sup) + 1 + MPFR_INT_CEIL_LOG2 (3*n0-2); /* the number of lost bits due to argument reduction is 9 - 2 * EXP(sk), which we estimate by 9 + 2*ceil(log2(p)) since we manage that sk < 1/p */ if (MPFR_PREC (atan) > 100) { log2p = MPFR_INT_CEIL_LOG2(prec) / 2 - 3; est_lost = 9 + 2 * log2p; prec += est_lost; } else log2p = est_lost = 0; /* don't reduce the argument */ /* Initialisation */ MPFR_GROUP_REPREC_4 (group, prec, sk, tmp, tmp2, arctgt); MPFR_ASSERTD (n0 <= MPFR_PREC_BITS); /* Note: the tabz[] entries are used to get a rational approximation of atan(x) to precision 'prec', thus allocating them to 'prec' bits should be good enough. */ for (i = oldn0; i < 3 * (n0 + 1); i++) mpz_init2 (tabz[i], prec); oldn0 = 3 * (n0 + 1); /* The mpfr_ui_div below mustn't underflow. This is guaranteed by MPFR_SAVE_EXPO_MARK, but let's check that for maintainability. */ MPFR_ASSERTD (__gmpfr_emax <= 1 - __gmpfr_emin); if (comparison > 0) /* use atan(xp) = Pi/2 - atan(1/xp) */ mpfr_ui_div (sk, 1, xp, MPFR_RNDN); else mpfr_set (sk, xp, MPFR_RNDN); /* now 0 < sk <= 1 */ /* Argument reduction: atan(x) = 2 atan((sqrt(1+x^2)-1)/x). We want |sk| < k/sqrt(p) where p is the target precision. */ lost = 0; for (red = 0; MPFR_GET_EXP(sk) > - (mpfr_exp_t) log2p; red ++) { lost = 9 - 2 * MPFR_EXP(sk); mpfr_sqr (tmp, sk, MPFR_RNDN); mpfr_add_ui (tmp, tmp, 1, MPFR_RNDN); mpfr_sqrt (tmp, tmp, MPFR_RNDN); mpfr_sub_ui (tmp, tmp, 1, MPFR_RNDN); if (red == 0 && comparison > 0) /* use xp = 1/sk */ mpfr_mul (sk, tmp, xp, MPFR_RNDN); else mpfr_div (sk, tmp, sk, MPFR_RNDN); } /* We started from x0 = 1/|x| if |x| > 1, and |x| otherwise, thus we had x0 = min(|x|, 1/|x|) <= 1, and applied 'red' times the argument reduction x -> (sqrt(1+x^2)-1)/x, which keeps 0 < x <= 1 */ /* We first show that if the for-loop is executed at least once, then sk < 1 after the loop. Indeed for 1/2 <= x <= 1, interval arithmetic with precision 5 shows that (sqrt(1+x^2)-1)/x, when evaluated with rounding to nearest, gives a value <= 0.875. Now assume 2^(-k-1) <= x <= 2^(-k) for k >= 1. Then o(x^2) <= 2^(-2k), o(1+x^2) <= 1+2^(-2k), o(sqrt(1+x^2)) <= 1+2^(-2k-1), o(sqrt(1+x^2)-1) <= 2^(-2k-1), and o((sqrt(1+x^2)-1)/x) <= 2^(-k) <= 1/2. Now if sk=1 before the loop, then EXP(sk)=1 and since log2p >= 0, the loop is performed at least once, thus the case sk=1 cannot happen below. */ MPFR_ASSERTD(mpfr_cmp_ui (sk, 1) < 0); /* Assignation */ MPFR_SET_ZERO (arctgt); twopoweri = 1 << 0; MPFR_ASSERTD (n0 >= 4); for (i = 0 ; i < n0; i++) { if (MPFR_UNLIKELY (MPFR_IS_ZERO (sk))) break; /* Calculation of trunc(tmp) --> mpz */ mpfr_mul_2ui (tmp, sk, twopoweri, MPFR_RNDN); mpfr_trunc (tmp, tmp); if (!MPFR_IS_ZERO (tmp)) { /* tmp = ukz*2^exptol */ exptol = mpfr_get_z_2exp (ukz, tmp); /* since the s_k are decreasing (see algorithms.tex), and s_0 = min(|x|, 1/|x|) < 1, we have sk < 1, thus exptol < 0 */ MPFR_ASSERTD (exptol < 0); mpz_tdiv_q_2exp (ukz, ukz, (unsigned long int) (-exptol)); /* since tmp is a non-zero integer, and tmp = ukzold*2^exptol, we now have ukz = tmp, thus ukz is non-zero */ /* Calculation of arctan(Ak) */ mpfr_set_z (tmp, ukz, MPFR_RNDN); mpfr_div_2ui (tmp, tmp, twopoweri, MPFR_RNDN); mpfr_atan_aux (tmp2, ukz, twopoweri, n0 - i, tabz); mpfr_mul (tmp2, tmp2, tmp, MPFR_RNDN); /* Addition */ mpfr_add (arctgt, arctgt, tmp2, MPFR_RNDN); /* Next iteration */ mpfr_sub (tmp2, sk, tmp, MPFR_RNDN); mpfr_mul (sk, sk, tmp, MPFR_RNDN); mpfr_add_ui (sk, sk, 1, MPFR_RNDN); mpfr_div (sk, tmp2, sk, MPFR_RNDN); } twopoweri <<= 1; } /* Add last step (Arctan(sk) ~= sk */ mpfr_add (arctgt, arctgt, sk, MPFR_RNDN); /* argument reduction */ mpfr_mul_2exp (arctgt, arctgt, red, MPFR_RNDN); if (comparison > 0) { /* atan(x) = Pi/2-atan(1/x) for x > 0 */ mpfr_const_pi (tmp, MPFR_RNDN); mpfr_div_2ui (tmp, tmp, 1, MPFR_RNDN); mpfr_sub (arctgt, tmp, arctgt, MPFR_RNDN); } MPFR_SET_POS (arctgt); if (MPFR_LIKELY (MPFR_CAN_ROUND (arctgt, realprec + est_lost - lost, MPFR_PREC (atan), rnd_mode))) break; MPFR_ZIV_NEXT (loop, realprec); } MPFR_ZIV_FREE (loop); inexact = mpfr_set4 (atan, arctgt, rnd_mode, MPFR_SIGN (x)); for (i = 0 ; i < oldn0 ; i++) mpz_clear (tabz[i]); mpz_clear (ukz); MPFR_GROUP_CLEAR (group); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (atan, inexact, rnd_mode); }