/* mpfr_pow_ui-- compute the power of a floating-point by a machine integer Copyright 1999-2019 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* sets y to x^n, and return 0 if exact, non-zero otherwise */ int mpfr_pow_ui (mpfr_ptr y, mpfr_srcptr x, unsigned long int n, mpfr_rnd_t rnd) { unsigned long m; mpfr_t res; mpfr_prec_t prec, err; int inexact; mpfr_rnd_t rnd1; MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); MPFR_BLOCK_DECL (flags); MPFR_LOG_FUNC (("x[%Pu]=%.*Rg n=%lu rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, n, rnd), ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact)); /* x^0 = 1 for any x, even a NaN */ if (MPFR_UNLIKELY (n == 0)) return mpfr_set_ui (y, 1, rnd); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) { /* Inf^n = Inf, (-Inf)^n = Inf for n even, -Inf for n odd */ if (MPFR_IS_NEG (x) && (n & 1) == 1) MPFR_SET_NEG (y); else MPFR_SET_POS (y); MPFR_SET_INF (y); MPFR_RET (0); } else /* x is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); /* 0^n = 0 for any n */ MPFR_SET_ZERO (y); if (MPFR_IS_POS (x) || (n & 1) == 0) MPFR_SET_POS (y); else MPFR_SET_NEG (y); MPFR_RET (0); } } else if (MPFR_UNLIKELY (n <= 2)) { if (n < 2) /* x^1 = x */ return mpfr_set (y, x, rnd); else /* x^2 = sqr(x) */ return mpfr_sqr (y, x, rnd); } /* Augment exponent range */ MPFR_SAVE_EXPO_MARK (expo); /* setup initial precision */ prec = MPFR_PREC (y) + 3 + GMP_NUMB_BITS + MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)); mpfr_init2 (res, prec); rnd1 = MPFR_IS_POS (x) ? MPFR_RNDU : MPFR_RNDD; /* away */ MPFR_ZIV_INIT (loop, prec); for (;;) { int i; for (m = n, i = 0; m; i++, m >>= 1) ; /* now 2^(i-1) <= n < 2^i */ MPFR_ASSERTD (prec > (mpfr_prec_t) i); err = prec - 1 - (mpfr_prec_t) i; /* First step: compute square from x */ MPFR_BLOCK (flags, inexact = mpfr_mul (res, x, x, MPFR_RNDU); MPFR_ASSERTD (i >= 2); if (n & (1UL << (i-2))) inexact |= mpfr_mul (res, res, x, rnd1); for (i -= 3; i >= 0 && !MPFR_BLOCK_EXCEP; i--) { inexact |= mpfr_mul (res, res, res, MPFR_RNDU); if (n & (1UL << i)) inexact |= mpfr_mul (res, res, x, rnd1); }); /* let r(n) be the number of roundings: we have r(2)=1, r(3)=2, and r(2n)=2r(n)+1, r(2n+1)=2r(n)+2, thus r(n)=n-1. Using Higham's method, to each rounding corresponds a factor (1-theta) with 0 <= theta <= 2^(1-p), thus at the end the absolute error is bounded by (n-1)*2^(1-p)*res <= 2*(n-1)*ulp(res) since 2^(-p)*x <= ulp(x). Since n < 2^i, this gives a maximal error of 2^(1+i)*ulp(res). */ if (MPFR_LIKELY (inexact == 0 || MPFR_OVERFLOW (flags) || MPFR_UNDERFLOW (flags) || MPFR_CAN_ROUND (res, err, MPFR_PREC (y), rnd))) break; /* Actualisation of the precision */ MPFR_ZIV_NEXT (loop, prec); mpfr_set_prec (res, prec); } MPFR_ZIV_FREE (loop); if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags) || MPFR_UNDERFLOW (flags))) { mpz_t z; /* Internal overflow or underflow. However the approximation error has * not been taken into account. So, let's solve this problem by using * mpfr_pow_z, which can handle it. This case could be improved in the * future, without having to use mpfr_pow_z. */ MPFR_LOG_MSG (("Internal overflow or underflow," " let's use mpfr_pow_z.\n", 0)); mpfr_clear (res); MPFR_SAVE_EXPO_FREE (expo); mpz_init (z); mpz_set_ui (z, n); inexact = mpfr_pow_z (y, x, z, rnd); mpz_clear (z); return inexact; } inexact = mpfr_set (y, res, rnd); mpfr_clear (res); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd); }