/* $OpenBSD: bn.h,v 1.57 2022/12/17 15:56:25 jsing Exp $ */ /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the Eric Young open source * license provided above. * * The binary polynomial arithmetic software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories. * */ #ifndef HEADER_BN_H #define HEADER_BN_H #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif #ifndef OPENSSL_SMALL_FOOTPRINT #define BN_MUL_COMBA #define BN_SQR_COMBA #define BN_RECURSION #endif /* This next option uses the C libraries (2 word)/(1 word) function. * If it is not defined, I use my C version (which is slower). * The reason for this flag is that when the particular C compiler * library routine is used, and the library is linked with a different * compiler, the library is missing. This mostly happens when the * library is built with gcc and then linked using normal cc. This would * be a common occurrence because gcc normally produces code that is * 2 times faster than system compilers for the big number stuff. * For machines with only one compiler (or shared libraries), this should * be on. Again this in only really a problem on machines * using "long long's", are 32bit, and are not using my assembler code. */ /* #define BN_DIV2W */ #ifdef _LP64 #undef BN_LLONG #define BN_ULONG unsigned long #define BN_LONG long #define BN_BITS 128 #define BN_BYTES 8 #define BN_BITS2 64 #define BN_BITS4 32 #define BN_MASK2 (0xffffffffffffffffL) #define BN_MASK2l (0xffffffffL) #define BN_MASK2h (0xffffffff00000000L) #define BN_MASK2h1 (0xffffffff80000000L) #define BN_TBIT (0x8000000000000000L) #define BN_DEC_CONV (10000000000000000000UL) #define BN_DEC_FMT1 "%lu" #define BN_DEC_FMT2 "%019lu" #define BN_DEC_NUM 19 #define BN_HEX_FMT1 "%lX" #define BN_HEX_FMT2 "%016lX" #else #define BN_ULLONG unsigned long long #define BN_LLONG #define BN_ULONG unsigned int #define BN_LONG int #define BN_BITS 64 #define BN_BYTES 4 #define BN_BITS2 32 #define BN_BITS4 16 #define BN_MASK (0xffffffffffffffffLL) #define BN_MASK2 (0xffffffffL) #define BN_MASK2l (0xffff) #define BN_MASK2h1 (0xffff8000L) #define BN_MASK2h (0xffff0000L) #define BN_TBIT (0x80000000L) #define BN_DEC_CONV (1000000000L) #define BN_DEC_FMT1 "%u" #define BN_DEC_FMT2 "%09u" #define BN_DEC_NUM 9 #define BN_HEX_FMT1 "%X" #define BN_HEX_FMT2 "%08X" #endif #define BN_FLG_MALLOCED 0x01 #define BN_FLG_STATIC_DATA 0x02 #define BN_FLG_CONSTTIME 0x04 /* avoid leaking exponent information through timing, * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime, * BN_div() will call BN_div_no_branch, * BN_mod_inverse() will call BN_mod_inverse_no_branch. */ #ifndef OPENSSL_NO_DEPRECATED #define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME /* deprecated name for the flag */ /* avoid leaking exponent information through timings * (BN_mod_exp_mont() will call BN_mod_exp_mont_consttime) */ #endif #ifndef OPENSSL_NO_DEPRECATED #define BN_FLG_FREE 0x8000 /* used for debugging */ #endif void BN_set_flags(BIGNUM *b, int n); int BN_get_flags(const BIGNUM *b, int n); void BN_with_flags(BIGNUM *dest, const BIGNUM *src, int flags); /* Values for |top| in BN_rand() */ #define BN_RAND_TOP_ANY -1 #define BN_RAND_TOP_ONE 0 #define BN_RAND_TOP_TWO 1 /* Values for |bottom| in BN_rand() */ #define BN_RAND_BOTTOM_ANY 0 #define BN_RAND_BOTTOM_ODD 1 BN_GENCB *BN_GENCB_new(void); void BN_GENCB_free(BN_GENCB *cb); /* Wrapper function to make using BN_GENCB easier, */ int BN_GENCB_call(BN_GENCB *cb, int a, int b); /* Populate a BN_GENCB structure with an "old"-style callback */ void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback)(int, int, void *), void *cb_arg); /* Populate a BN_GENCB structure with a "new"-style callback */ void BN_GENCB_set(BN_GENCB *gencb, int (*callback)(int, int, BN_GENCB *), void *cb_arg); void *BN_GENCB_get_arg(BN_GENCB *cb); #define BN_prime_checks 0 /* default: select number of iterations based on the size of the number */ /* * BN_prime_checks_for_size() returns the number of Miller-Rabin * iterations that will be done for checking that a random number * is probably prime. The error rate for accepting a composite * number as prime depends on the size of the prime |b|. The error * rates used are for calculating an RSA key with 2 primes, and so * the level is what you would expect for a key of double the size * of the prime. * * This table is generated using the algorithm of FIPS PUB 186-4 * Digital Signature Standard (DSS), section F.1, page 117. * (https://dx.doi.org/10.6028/NIST.FIPS.186-4) * * The following magma script was used to generate the output: * securitybits:=125; * k:=1024; * for t:=1 to 65 do * for M:=3 to Floor(2*Sqrt(k-1)-1) do * S:=0; * // Sum over m * for m:=3 to M do * s:=0; * // Sum over j * for j:=2 to m do * s+:=(RealField(32)!2)^-(j+(k-1)/j); * end for; * S+:=2^(m-(m-1)*t)*s; * end for; * A:=2^(k-2-M*t); * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S; * pkt:=2.00743*Log(2)*k*2^-k*(A+B); * seclevel:=Floor(-Log(2,pkt)); * if seclevel ge securitybits then * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M; * break; * end if; * end for; * if seclevel ge securitybits then break; end if; * end for; * * It can be run online at: * http://magma.maths.usyd.edu.au/calc * * And will output: * k: 1024, security: 129 bits (t: 6, M: 23) * * k is the number of bits of the prime, securitybits is the level * we want to reach. * * prime length | RSA key size | # MR tests | security level * -------------+--------------|------------+--------------- * (b) >= 6394 | >= 12788 | 3 | 256 bit * (b) >= 3747 | >= 7494 | 3 | 192 bit * (b) >= 1345 | >= 2690 | 4 | 128 bit * (b) >= 1080 | >= 2160 | 5 | 128 bit * (b) >= 852 | >= 1704 | 5 | 112 bit * (b) >= 476 | >= 952 | 5 | 80 bit * (b) >= 400 | >= 800 | 6 | 80 bit * (b) >= 347 | >= 694 | 7 | 80 bit * (b) >= 308 | >= 616 | 8 | 80 bit * (b) >= 55 | >= 110 | 27 | 64 bit * (b) >= 6 | >= 12 | 34 | 64 bit */ #define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \ (b) >= 1345 ? 4 : \ (b) >= 476 ? 5 : \ (b) >= 400 ? 6 : \ (b) >= 347 ? 7 : \ (b) >= 308 ? 8 : \ (b) >= 55 ? 27 : \ /* b >= 6 */ 34) #define BN_num_bytes(a) ((BN_num_bits(a)+7)/8) int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w); int BN_is_zero(const BIGNUM *a); int BN_is_one(const BIGNUM *a); int BN_is_word(const BIGNUM *a, const BN_ULONG w); int BN_is_odd(const BIGNUM *a); #if defined(LIBRESSL_INTERNAL) || defined(LIBRESSL_NEXT_API) void BN_zero(BIGNUM *a); int BN_one(BIGNUM *a); #else #define BN_one(a) BN_set_word((a), 1) void BN_zero_ex(BIGNUM *a); #ifdef OPENSSL_NO_DEPRECATED #define BN_zero(a) BN_zero_ex(a) #else #define BN_zero(a) (BN_set_word((a),0)) #endif #endif const BIGNUM *BN_value_one(void); char * BN_options(void); BN_CTX *BN_CTX_new(void); #ifndef OPENSSL_NO_DEPRECATED void BN_CTX_init(BN_CTX *c); #endif void BN_CTX_free(BN_CTX *c); void BN_CTX_start(BN_CTX *ctx); BIGNUM *BN_CTX_get(BN_CTX *ctx); void BN_CTX_end(BN_CTX *ctx); int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); int BN_num_bits(const BIGNUM *a); int BN_num_bits_word(BN_ULONG); BIGNUM *BN_new(void); void BN_init(BIGNUM *); void BN_clear_free(BIGNUM *a); BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b); void BN_swap(BIGNUM *a, BIGNUM *b); BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret); int BN_bn2bin(const BIGNUM *a, unsigned char *to); int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen); BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret); int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen); BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret); int BN_bn2mpi(const BIGNUM *a, unsigned char *to); int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); /** BN_set_negative sets sign of a BIGNUM * \param b pointer to the BIGNUM object * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise */ void BN_set_negative(BIGNUM *b, int n); int BN_is_negative(const BIGNUM *b); #ifndef LIBRESSL_INTERNAL int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); #define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx)) #endif int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m); int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m); int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m); int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx); int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m); BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w); int BN_mul_word(BIGNUM *a, BN_ULONG w); int BN_add_word(BIGNUM *a, BN_ULONG w); int BN_sub_word(BIGNUM *a, BN_ULONG w); int BN_set_word(BIGNUM *a, BN_ULONG w); BN_ULONG BN_get_word(const BIGNUM *a); int BN_cmp(const BIGNUM *a, const BIGNUM *b); void BN_free(BIGNUM *a); int BN_is_bit_set(const BIGNUM *a, int n); int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); int BN_lshift1(BIGNUM *r, const BIGNUM *a); int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); #ifndef LIBRESSL_INTERNAL int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx); int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); #endif int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont); int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1, const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx); int BN_mask_bits(BIGNUM *a, int n); int BN_print_fp(FILE *fp, const BIGNUM *a); int BN_print(BIO *fp, const BIGNUM *a); int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx); int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); int BN_rshift1(BIGNUM *r, const BIGNUM *a); void BN_clear(BIGNUM *a); BIGNUM *BN_dup(const BIGNUM *a); int BN_ucmp(const BIGNUM *a, const BIGNUM *b); int BN_set_bit(BIGNUM *a, int n); int BN_clear_bit(BIGNUM *a, int n); char * BN_bn2hex(const BIGNUM *a); char * BN_bn2dec(const BIGNUM *a); int BN_hex2bn(BIGNUM **a, const char *str); int BN_dec2bn(BIGNUM **a, const char *str); int BN_asc2bn(BIGNUM **a, const char *str); #ifndef LIBRESSL_INTERNAL int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); #endif int BN_kronecker(const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx); /* returns -2 for error */ #ifndef LIBRESSL_INTERNAL BIGNUM *BN_mod_inverse(BIGNUM *ret, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); #endif BIGNUM *BN_mod_sqrt(BIGNUM *ret, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords); int BN_security_bits(int L, int N); /* Deprecated versions */ #ifndef OPENSSL_NO_DEPRECATED BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, const BIGNUM *add, const BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg); int BN_is_prime(const BIGNUM *p, int nchecks, void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg); int BN_is_prime_fasttest(const BIGNUM *p, int nchecks, void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg, int do_trial_division); #endif /* !defined(OPENSSL_NO_DEPRECATED) */ /* Newer versions */ int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb); int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb); int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, int do_trial_division, BN_GENCB *cb); int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx); int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb); int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1, BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb); BN_MONT_CTX *BN_MONT_CTX_new(void ); void BN_MONT_CTX_init(BN_MONT_CTX *ctx); int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_MONT_CTX *mont, BN_CTX *ctx); int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, BN_CTX *ctx); int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, BN_CTX *ctx); void BN_MONT_CTX_free(BN_MONT_CTX *mont); int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx); BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from); BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, int lock, const BIGNUM *mod, BN_CTX *ctx); /* BN_BLINDING flags */ #define BN_BLINDING_NO_UPDATE 0x00000001 #define BN_BLINDING_NO_RECREATE 0x00000002 BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod); void BN_BLINDING_free(BN_BLINDING *b); int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx); int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *); int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, BN_CTX *); #ifndef OPENSSL_NO_DEPRECATED unsigned long BN_BLINDING_get_thread_id(const BN_BLINDING *); void BN_BLINDING_set_thread_id(BN_BLINDING *, unsigned long); #endif CRYPTO_THREADID *BN_BLINDING_thread_id(BN_BLINDING *); unsigned long BN_BLINDING_get_flags(const BN_BLINDING *); void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long); BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b, const BIGNUM *e, BIGNUM *m, BN_CTX *ctx, int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx), BN_MONT_CTX *m_ctx); #ifndef OPENSSL_NO_DEPRECATED void BN_set_params(int mul, int high, int low, int mont); int BN_get_params(int which); /* 0, mul, 1 high, 2 low, 3 mont */ #endif void BN_RECP_CTX_init(BN_RECP_CTX *recp); BN_RECP_CTX *BN_RECP_CTX_new(void); void BN_RECP_CTX_free(BN_RECP_CTX *recp); int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx); int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_RECP_CTX *recp, BN_CTX *ctx); int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx); int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, BN_RECP_CTX *recp, BN_CTX *ctx); #ifndef OPENSSL_NO_EC2M /* Functions for arithmetic over binary polynomials represented by BIGNUMs. * * The BIGNUM::neg property of BIGNUMs representing binary polynomials is * ignored. * * Note that input arguments are not const so that their bit arrays can * be expanded to the appropriate size if needed. */ int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); /*r = a + b*/ #define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b) int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); /*r=a mod p*/ int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); /* r = (a * b) mod p */ int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); /* r = (a * a) mod p */ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); /* r = (1 / b) mod p */ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); /* r = (a / b) mod p */ int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); /* r = (a ^ b) mod p */ int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); /* r = sqrt(a) mod p */ int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); /* r^2 + r = a mod p */ #define BN_GF2m_cmp(a, b) BN_ucmp((a), (b)) /* Some functions allow for representation of the irreducible polynomials * as an unsigned int[], say p. The irreducible f(t) is then of the form: * t^p[0] + t^p[1] + ... + t^p[k] * where m = p[0] > p[1] > ... > p[k] = 0. */ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]); /* r = a mod p */ int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx); /* r = (a * b) mod p */ int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx); /* r = (a * a) mod p */ int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[], BN_CTX *ctx); /* r = (1 / b) mod p */ int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx); /* r = (a / b) mod p */ int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx); /* r = (a ^ b) mod p */ int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx); /* r = sqrt(a) mod p */ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx); /* r^2 + r = a mod p */ int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max); int BN_GF2m_arr2poly(const int p[], BIGNUM *a); #endif /* faster mod functions for the 'NIST primes' * 0 <= a < p^2 */ int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); const BIGNUM *BN_get0_nist_prime_192(void); const BIGNUM *BN_get0_nist_prime_224(void); const BIGNUM *BN_get0_nist_prime_256(void); const BIGNUM *BN_get0_nist_prime_384(void); const BIGNUM *BN_get0_nist_prime_521(void); /* Primes from RFC 2409 */ BIGNUM *get_rfc2409_prime_768(BIGNUM *bn); BIGNUM *get_rfc2409_prime_1024(BIGNUM *bn); BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn); BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn); /* Primes from RFC 3526 */ BIGNUM *get_rfc3526_prime_1536(BIGNUM *bn); BIGNUM *get_rfc3526_prime_2048(BIGNUM *bn); BIGNUM *get_rfc3526_prime_3072(BIGNUM *bn); BIGNUM *get_rfc3526_prime_4096(BIGNUM *bn); BIGNUM *get_rfc3526_prime_6144(BIGNUM *bn); BIGNUM *get_rfc3526_prime_8192(BIGNUM *bn); BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn); BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn); BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn); BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn); BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn); BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn); void ERR_load_BN_strings(void); /* Error codes for the BN functions. */ /* Function codes. */ #define BN_F_BNRAND 127 #define BN_F_BN_BLINDING_CONVERT_EX 100 #define BN_F_BN_BLINDING_CREATE_PARAM 128 #define BN_F_BN_BLINDING_INVERT_EX 101 #define BN_F_BN_BLINDING_NEW 102 #define BN_F_BN_BLINDING_UPDATE 103 #define BN_F_BN_BN2DEC 104 #define BN_F_BN_BN2HEX 105 #define BN_F_BN_CTX_GET 116 #define BN_F_BN_CTX_NEW 106 #define BN_F_BN_CTX_START 129 #define BN_F_BN_DIV 107 #define BN_F_BN_DIV_NO_BRANCH 138 #define BN_F_BN_DIV_RECP 130 #define BN_F_BN_EXP 123 #define BN_F_BN_EXPAND2 108 #define BN_F_BN_GENERATE_PRIME_EX 140 #define BN_F_BN_EXPAND_INTERNAL 120 #define BN_F_BN_GF2M_MOD 131 #define BN_F_BN_GF2M_MOD_EXP 132 #define BN_F_BN_GF2M_MOD_MUL 133 #define BN_F_BN_GF2M_MOD_SOLVE_QUAD 134 #define BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR 135 #define BN_F_BN_GF2M_MOD_SQR 136 #define BN_F_BN_GF2M_MOD_SQRT 137 #define BN_F_BN_MOD_EXP2_MONT 118 #define BN_F_BN_MOD_EXP_MONT 109 #define BN_F_BN_MOD_EXP_MONT_CONSTTIME 124 #define BN_F_BN_MOD_EXP_MONT_WORD 117 #define BN_F_BN_MOD_EXP_RECP 125 #define BN_F_BN_MOD_EXP_SIMPLE 126 #define BN_F_BN_MOD_INVERSE 110 #define BN_F_BN_MOD_INVERSE_NO_BRANCH 139 #define BN_F_BN_MOD_LSHIFT_QUICK 119 #define BN_F_BN_MOD_MUL_RECIPROCAL 111 #define BN_F_BN_MOD_SQRT 121 #define BN_F_BN_MPI2BN 112 #define BN_F_BN_NEW 113 #define BN_F_BN_RAND 114 #define BN_F_BN_RAND_RANGE 122 #define BN_F_BN_USUB 115 /* Reason codes. */ #define BN_R_ARG2_LT_ARG3 100 #define BN_R_BAD_RECIPROCAL 101 #define BN_R_BIGNUM_TOO_LONG 114 #define BN_R_BITS_TOO_SMALL 117 #define BN_R_CALLED_WITH_EVEN_MODULUS 102 #define BN_R_DIV_BY_ZERO 103 #define BN_R_ENCODING_ERROR 104 #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 105 #define BN_R_INPUT_NOT_REDUCED 110 #define BN_R_INVALID_LENGTH 106 #define BN_R_INVALID_RANGE 115 #define BN_R_NOT_A_SQUARE 111 #define BN_R_NOT_INITIALIZED 107 #define BN_R_NO_INVERSE 108 #define BN_R_NO_SOLUTION 116 #define BN_R_P_IS_NOT_PRIME 112 #define BN_R_TOO_MANY_ITERATIONS 113 #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 109 #ifdef __cplusplus } #endif #endif