/* mpfr_log1p -- Compute log(1+x) Copyright 2001-2023 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* Put in y an approximation of log(1+x) for x small. We assume |x| < 1/2, in which case: |x/2| <= |log(1+x)| <= |2x|. Return k such that the error is bounded by 2^k*ulp(y). */ static int mpfr_log1p_small (mpfr_ptr y, mpfr_srcptr x) { mpfr_prec_t p = MPFR_PREC(y), err; mpfr_t t, u; unsigned long i; int k; MPFR_ASSERTD(MPFR_GET_EXP (x) <= -1); /* ensures |x| < 1/2 */ /* in the following, theta represents a value with |theta| <= 2^(1-p) (might be a different value each time) */ mpfr_init2 (t, p); mpfr_init2 (u, p); mpfr_set (t, x, MPFR_RNDF); /* t = x * (1 + theta) */ mpfr_set (y, t, MPFR_RNDF); /* exact */ for (i = 2; ; i++) { mpfr_mul (t, t, x, MPFR_RNDF); /* t = x^i * (1 + theta)^i */ mpfr_div_ui (u, t, i, MPFR_RNDF); /* u = x^i/i * (1 + theta)^(i+1) */ if (MPFR_GET_EXP (u) <= MPFR_GET_EXP (y) - p) /* |u| < ulp(y) */ break; if (i & 1) mpfr_add (y, y, u, MPFR_RNDF); /* error <= ulp(y) */ else mpfr_sub (y, y, u, MPFR_RNDF); /* error <= ulp(y) */ } /* We assume |(1 + theta)^(i+1)| <= 2. The neglected part is at most |u| + |u|/2 + ... <= 2|u| < 2 ulp(y) which has to be multiplied by |(1 + theta)^(i+1)| <= 2, thus at most 4 ulp(y). The rounding error on y is bounded by: * for the (i-2) add/sub, each error is bounded by ulp(y), and since |y| <= |x|, this yields (i-2)*ulp(x) * from Lemma 3.1 from [Higham02] (see algorithms.tex), the relative error on u at step i is bounded by: (i+1)*epsilon/(1-(i+1)*epsilon) where epsilon = 2^(1-p). If (i+1)*epsilon <= 1/2, then the relative error on u at step i is bounded by 2*(i+1)*epsilon, and since |u| <= 1/2^(i+1) at step i, this gives an absolute error bound of; 2*epsilon*x*(3/2^3 + 4/2^4 + 5/2^5 + ...) <= 2*2^(1-p)*x = 4*2^(-p)*x <= 4*ulp(x). If (i+1)*epsilon <= 1/2, then the relative error on u at step i is bounded by (i+1)*epsilon/(1-(i+1)*epsilon) <= 1, thus it follows |(1 + theta)^(i+1)| <= 2. Finally the total error is bounded by 4*ulp(y) + (i-2)*ulp(x) + 4*ulp(x) = 4*ulp(y) + (i+2)*ulp(x). Since x/2 <= y, we have ulp(x) <= 2*ulp(y), thus the error is bounded by: (2*i+8)*ulp(y). */ err = 2 * i + 8; k = __gmpfr_int_ceil_log2 (err); MPFR_ASSERTN(k < p); /* if k < p, since k = ceil(log2(err)), we have err <= 2^k <= 2^(p-1), thus i+4 = err/2 <= 2^(p-2), thus (i+4)*epsilon <= 1/2, which implies our assumption (i+1)*epsilon <= 1/2. */ mpfr_clear (t); mpfr_clear (u); return k; } /* The computation of log1p is done by log1p(x) = log(1+x) except when x is very small, in which case log1p(x) = x + tiny error, or when x is small, where we use directly the Taylor expansion. */ int mpfr_log1p (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { int comp, inexact; mpfr_exp_t ex; MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC (("x[%Pd]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode), ("y[%Pd]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } /* check for inf or -inf (result is not defined) */ else if (MPFR_IS_INF (x)) { if (MPFR_IS_POS (x)) { MPFR_SET_INF (y); MPFR_SET_POS (y); MPFR_RET (0); } else { MPFR_SET_NAN (y); MPFR_RET_NAN; } } else /* x is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (y); /* log1p(+/- 0) = +/- 0 */ MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); } } ex = MPFR_GET_EXP (x); if (ex < 0) /* -0.5 < x < 0.5 */ { /* For x > 0, abs(log(1+x)-x) < x^2/2. For x > -0.5, abs(log(1+x)-x) < x^2. */ if (MPFR_IS_POS (x)) MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, - ex - 1, 0, 0, rnd_mode, {}); else MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, - ex, 0, 1, rnd_mode, {}); } comp = mpfr_cmp_si (x, -1); /* log1p(x) is undefined for x < -1 */ if (MPFR_UNLIKELY(comp <= 0)) { if (comp == 0) /* x=0: log1p(-1)=-inf (divide-by-zero exception) */ { MPFR_SET_INF (y); MPFR_SET_NEG (y); MPFR_SET_DIVBY0 (); MPFR_RET (0); } MPFR_SET_NAN (y); MPFR_RET_NAN; } MPFR_SAVE_EXPO_MARK (expo); /* General case */ { /* Declaration of the intermediary variable */ mpfr_t t; /* Declaration of the size variable */ mpfr_prec_t Ny = MPFR_PREC(y); /* target precision */ mpfr_prec_t Nt; /* working precision */ mpfr_exp_t err; /* error */ MPFR_ZIV_DECL (loop); /* compute the precision of intermediary variable */ /* the optimal number of bits : see algorithms.tex */ Nt = Ny + MPFR_INT_CEIL_LOG2 (Ny) + 6; /* if |x| is smaller than 2^(-e), we will loose about e bits in log(1+x) */ if (MPFR_EXP(x) < 0) Nt += -MPFR_EXP(x); /* initialize of intermediary variable */ mpfr_init2 (t, Nt); /* First computation of log1p */ MPFR_ZIV_INIT (loop, Nt); for (;;) { int k; /* small case: assuming the AGM algorithm used by mpfr_log uses log2(p) steps for a precision of p bits, we try the special variant whenever EXP(x) <= -p/log2(p). */ k = 1 + __gmpfr_int_ceil_log2 (Ny); /* the +1 avoids a division by 0 when Ny=1 */ if (MPFR_GET_EXP (x) + 1 <= - (mpfr_exp_t) (Ny / k)) /* this implies EXP(x) <= -1 thus x < 1/2 */ err = Nt - mpfr_log1p_small (t, x); else { /* compute log1p */ inexact = mpfr_add_ui (t, x, 1, MPFR_RNDN); /* 1+x */ /* if inexact = 0, then t = x+1, and the result is simply log(t) */ if (inexact == 0) { inexact = mpfr_log (y, t, rnd_mode); goto end; } mpfr_log (t, t, MPFR_RNDN); /* log(1+x) */ /* the error is bounded by (1/2+2^(1-EXP(t))*ulp(t) (cf algorithms.tex) if EXP(t)>=2, then error <= ulp(t) if EXP(t)<=1, then error <= 2^(2-EXP(t))*ulp(t) */ err = Nt - MAX (0, 2 - MPFR_GET_EXP (t)); } if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) break; /* increase the precision */ MPFR_ZIV_NEXT (loop, Nt); mpfr_set_prec (t, Nt); } inexact = mpfr_set (y, t, rnd_mode); end: MPFR_ZIV_FREE (loop); mpfr_clear (t); } MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }