// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define FIX_PTR(x) __asm__ __volatile__(";" : "+r"(x)) unsigned int intr_to_DE_cnt; /* Part of U-boot ABI: see head.S */ int __initdata uboot_tag; int __initdata uboot_magic; char __initdata *uboot_arg; const struct machine_desc *machine_desc; struct task_struct *_current_task[NR_CPUS]; /* For stack switching */ struct cpuinfo_arc { int arcver; unsigned int t0:1, t1:1; struct { unsigned long base; unsigned int sz; } iccm, dccm; }; #ifdef CONFIG_ISA_ARCV2 static const struct id_to_str arc_hs_rel[] = { /* ID.ARCVER, Release */ { 0x51, "R2.0" }, { 0x52, "R2.1" }, { 0x53, "R3.0" }, }; static const struct id_to_str arc_hs_ver54_rel[] = { /* UARCH.MAJOR, Release */ { 0, "R3.10a"}, { 1, "R3.50a"}, { 2, "R3.60a"}, { 3, "R4.00a"}, { 0xFF, NULL } }; #endif static int arcompact_mumbojumbo(int c, struct cpuinfo_arc *info, char *buf, int len) { int n = 0; #ifdef CONFIG_ISA_ARCOMPACT char *cpu_nm, *isa_nm = "ARCompact"; struct bcr_fp_arcompact fpu_sp, fpu_dp; int atomic = 0, be, present; int bpu_full, bpu_cache, bpu_pred; struct bcr_bpu_arcompact bpu; struct bcr_iccm_arcompact iccm; struct bcr_dccm_arcompact dccm; struct bcr_generic isa; READ_BCR(ARC_REG_ISA_CFG_BCR, isa); if (!isa.ver) /* ISA BCR absent, use Kconfig info */ atomic = IS_ENABLED(CONFIG_ARC_HAS_LLSC); else { /* ARC700_BUILD only has 2 bits of isa info */ atomic = isa.info & 1; } be = IS_ENABLED(CONFIG_CPU_BIG_ENDIAN); if (info->arcver < 0x34) cpu_nm = "ARC750"; else cpu_nm = "ARC770"; n += scnprintf(buf + n, len - n, "processor [%d]\t: %s (%s ISA) %s%s%s\n", c, cpu_nm, isa_nm, IS_AVAIL2(atomic, "atomic ", CONFIG_ARC_HAS_LLSC), IS_AVAIL1(be, "[Big-Endian]")); READ_BCR(ARC_REG_FP_BCR, fpu_sp); READ_BCR(ARC_REG_DPFP_BCR, fpu_dp); if (fpu_sp.ver | fpu_dp.ver) n += scnprintf(buf + n, len - n, "FPU\t\t: %s%s\n", IS_AVAIL1(fpu_sp.ver, "SP "), IS_AVAIL1(fpu_dp.ver, "DP ")); READ_BCR(ARC_REG_BPU_BCR, bpu); bpu_full = bpu.fam ? 1 : 0; bpu_cache = 256 << (bpu.ent - 1); bpu_pred = 256 << (bpu.ent - 1); n += scnprintf(buf + n, len - n, "BPU\t\t: %s%s match, cache:%d, Predict Table:%d\n", IS_AVAIL1(bpu_full, "full"), IS_AVAIL1(!bpu_full, "partial"), bpu_cache, bpu_pred); READ_BCR(ARC_REG_ICCM_BUILD, iccm); if (iccm.ver) { info->iccm.sz = 4096 << iccm.sz; /* 8K to 512K */ info->iccm.base = iccm.base << 16; } READ_BCR(ARC_REG_DCCM_BUILD, dccm); if (dccm.ver) { unsigned long base; info->dccm.sz = 2048 << dccm.sz; /* 2K to 256K */ base = read_aux_reg(ARC_REG_DCCM_BASE_BUILD); info->dccm.base = base & ~0xF; } /* ARCompact ISA specific sanity checks */ present = fpu_dp.ver; /* SP has no arch visible regs */ CHK_OPT_STRICT(CONFIG_ARC_FPU_SAVE_RESTORE, present); #endif return n; } static int arcv2_mumbojumbo(int c, struct cpuinfo_arc *info, char *buf, int len) { int n = 0; #ifdef CONFIG_ISA_ARCV2 const char *release = "", *cpu_nm = "HS38", *isa_nm = "ARCv2"; int dual_issue = 0, dual_enb = 0, mpy_opt, present; int bpu_full, bpu_cache, bpu_pred, bpu_ret_stk; char mpy_nm[16], lpb_nm[32]; struct bcr_isa_arcv2 isa; struct bcr_mpy mpy; struct bcr_fp_arcv2 fpu; struct bcr_bpu_arcv2 bpu; struct bcr_lpb lpb; struct bcr_iccm_arcv2 iccm; struct bcr_dccm_arcv2 dccm; struct bcr_erp erp; /* * Initial HS cores bumped AUX IDENTITY.ARCVER for each release until * ARCVER 0x54 which introduced AUX MICRO_ARCH_BUILD and subsequent * releases only update it. */ if (info->arcver > 0x50 && info->arcver <= 0x53) { release = arc_hs_rel[info->arcver - 0x51].str; } else { const struct id_to_str *tbl; struct bcr_uarch_build uarch; READ_BCR(ARC_REG_MICRO_ARCH_BCR, uarch); for (tbl = &arc_hs_ver54_rel[0]; tbl->id != 0xFF; tbl++) { if (uarch.maj == tbl->id) { release = tbl->str; break; } } if (uarch.prod == 4) { unsigned int exec_ctrl; cpu_nm = "HS48"; dual_issue = 1; /* if dual issue hardware, is it enabled ? */ READ_BCR(AUX_EXEC_CTRL, exec_ctrl); dual_enb = !(exec_ctrl & 1); } } READ_BCR(ARC_REG_ISA_CFG_BCR, isa); n += scnprintf(buf + n, len - n, "processor [%d]\t: %s %s (%s ISA) %s%s%s\n", c, cpu_nm, release, isa_nm, IS_AVAIL1(isa.be, "[Big-Endian]"), IS_AVAIL3(dual_issue, dual_enb, " Dual-Issue ")); READ_BCR(ARC_REG_MPY_BCR, mpy); mpy_opt = 2; /* stock MPY/MPYH */ if (mpy.dsp) /* OPT 7-9 */ mpy_opt = mpy.dsp + 6; scnprintf(mpy_nm, 16, "mpy[opt %d] ", mpy_opt); READ_BCR(ARC_REG_FP_V2_BCR, fpu); n += scnprintf(buf + n, len - n, "ISA Extn\t: %s%s%s%s%s%s%s%s%s%s%s\n", IS_AVAIL2(isa.atomic, "atomic ", CONFIG_ARC_HAS_LLSC), IS_AVAIL2(isa.ldd, "ll64 ", CONFIG_ARC_HAS_LL64), IS_AVAIL2(isa.unalign, "unalign ", CONFIG_ARC_USE_UNALIGNED_MEM_ACCESS), IS_AVAIL1(mpy.ver, mpy_nm), IS_AVAIL1(isa.div_rem, "div_rem "), IS_AVAIL1((fpu.sp | fpu.dp), " FPU:"), IS_AVAIL1(fpu.sp, " sp"), IS_AVAIL1(fpu.dp, " dp")); READ_BCR(ARC_REG_BPU_BCR, bpu); bpu_full = bpu.ft; bpu_cache = 256 << bpu.bce; bpu_pred = 2048 << bpu.pte; bpu_ret_stk = 4 << bpu.rse; READ_BCR(ARC_REG_LPB_BUILD, lpb); if (lpb.ver) { unsigned int ctl; ctl = read_aux_reg(ARC_REG_LPB_CTRL); scnprintf(lpb_nm, sizeof(lpb_nm), " Loop Buffer:%d %s", lpb.entries, IS_DISABLED_RUN(!ctl)); } n += scnprintf(buf + n, len - n, "BPU\t\t: %s%s match, cache:%d, Predict Table:%d Return stk: %d%s\n", IS_AVAIL1(bpu_full, "full"), IS_AVAIL1(!bpu_full, "partial"), bpu_cache, bpu_pred, bpu_ret_stk, lpb_nm); READ_BCR(ARC_REG_ICCM_BUILD, iccm); if (iccm.ver) { unsigned long base; info->iccm.sz = 256 << iccm.sz00; /* 512B to 16M */ if (iccm.sz00 == 0xF && iccm.sz01 > 0) info->iccm.sz <<= iccm.sz01; base = read_aux_reg(ARC_REG_AUX_ICCM); info->iccm.base = base & 0xF0000000; } READ_BCR(ARC_REG_DCCM_BUILD, dccm); if (dccm.ver) { unsigned long base; info->dccm.sz = 256 << dccm.sz0; if (dccm.sz0 == 0xF && dccm.sz1 > 0) info->dccm.sz <<= dccm.sz1; base = read_aux_reg(ARC_REG_AUX_DCCM); info->dccm.base = base & 0xF0000000; } /* Error Protection: ECC/Parity */ READ_BCR(ARC_REG_ERP_BUILD, erp); if (erp.ver) { struct ctl_erp ctl; READ_BCR(ARC_REG_ERP_CTRL, ctl); /* inverted bits: 0 means enabled */ n += scnprintf(buf + n, len - n, "Extn [ECC]\t: %s%s%s%s%s%s\n", IS_AVAIL3(erp.ic, !ctl.dpi, "IC "), IS_AVAIL3(erp.dc, !ctl.dpd, "DC "), IS_AVAIL3(erp.mmu, !ctl.mpd, "MMU ")); } /* ARCv2 ISA specific sanity checks */ present = fpu.sp | fpu.dp | mpy.dsp; /* DSP and/or FPU */ CHK_OPT_STRICT(CONFIG_ARC_HAS_ACCL_REGS, present); dsp_config_check(); #endif return n; } static char *arc_cpu_mumbojumbo(int c, struct cpuinfo_arc *info, char *buf, int len) { struct bcr_identity ident; struct bcr_timer timer; struct bcr_generic bcr; struct mcip_bcr mp; struct bcr_actionpoint ap; unsigned long vec_base; int ap_num, ap_full, smart, rtt, n; memset(info, 0, sizeof(struct cpuinfo_arc)); READ_BCR(AUX_IDENTITY, ident); info->arcver = ident.family; n = scnprintf(buf, len, "\nIDENTITY\t: ARCVER [%#02x] ARCNUM [%#02x] CHIPID [%#4x]\n", ident.family, ident.cpu_id, ident.chip_id); if (is_isa_arcompact()) { n += arcompact_mumbojumbo(c, info, buf + n, len - n); } else if (is_isa_arcv2()){ n += arcv2_mumbojumbo(c, info, buf + n, len - n); } n += arc_mmu_mumbojumbo(c, buf + n, len - n); n += arc_cache_mumbojumbo(c, buf + n, len - n); READ_BCR(ARC_REG_TIMERS_BCR, timer); info->t0 = timer.t0; info->t1 = timer.t1; READ_BCR(ARC_REG_MCIP_BCR, mp); vec_base = read_aux_reg(AUX_INTR_VEC_BASE); n += scnprintf(buf + n, len - n, "Timers\t\t: %s%s%s%s%s%s\nVector Table\t: %#lx\n", IS_AVAIL1(timer.t0, "Timer0 "), IS_AVAIL1(timer.t1, "Timer1 "), IS_AVAIL2(timer.rtc, "RTC [UP 64-bit] ", CONFIG_ARC_TIMERS_64BIT), IS_AVAIL2(mp.gfrc, "GFRC [SMP 64-bit] ", CONFIG_ARC_TIMERS_64BIT), vec_base); READ_BCR(ARC_REG_AP_BCR, ap); if (ap.ver) { ap_num = 2 << ap.num; ap_full = !ap.min; } READ_BCR(ARC_REG_SMART_BCR, bcr); smart = bcr.ver ? 1 : 0; READ_BCR(ARC_REG_RTT_BCR, bcr); rtt = bcr.ver ? 1 : 0; if (ap.ver | smart | rtt) { n += scnprintf(buf + n, len - n, "DEBUG\t\t: %s%s", IS_AVAIL1(smart, "smaRT "), IS_AVAIL1(rtt, "RTT ")); if (ap.ver) { n += scnprintf(buf + n, len - n, "ActionPoint %d/%s", ap_num, ap_full ? "full":"min"); } n += scnprintf(buf + n, len - n, "\n"); } if (info->dccm.sz || info->iccm.sz) n += scnprintf(buf + n, len - n, "Extn [CCM]\t: DCCM @ %lx, %d KB / ICCM: @ %lx, %d KB\n", info->dccm.base, TO_KB(info->dccm.sz), info->iccm.base, TO_KB(info->iccm.sz)); return buf; } void chk_opt_strict(char *opt_name, bool hw_exists, bool opt_ena) { if (hw_exists && !opt_ena) pr_warn(" ! Enable %s for working apps\n", opt_name); else if (!hw_exists && opt_ena) panic("Disable %s, hardware NOT present\n", opt_name); } void chk_opt_weak(char *opt_name, bool hw_exists, bool opt_ena) { if (!hw_exists && opt_ena) panic("Disable %s, hardware NOT present\n", opt_name); } /* * ISA agnostic sanity checks */ static void arc_chk_core_config(struct cpuinfo_arc *info) { if (!info->t0) panic("Timer0 is not present!\n"); if (!info->t1) panic("Timer1 is not present!\n"); #ifdef CONFIG_ARC_HAS_DCCM /* * DCCM can be arbit placed in hardware. * Make sure it's placement/sz matches what Linux is built with */ if ((unsigned int)__arc_dccm_base != info->dccm.base) panic("Linux built with incorrect DCCM Base address\n"); if (CONFIG_ARC_DCCM_SZ * SZ_1K != info->dccm.sz) panic("Linux built with incorrect DCCM Size\n"); #endif #ifdef CONFIG_ARC_HAS_ICCM if (CONFIG_ARC_ICCM_SZ * SZ_1K != info->iccm.sz) panic("Linux built with incorrect ICCM Size\n"); #endif } /* * Initialize and setup the processor core * This is called by all the CPUs thus should not do special case stuff * such as only for boot CPU etc */ void setup_processor(void) { struct cpuinfo_arc info; int c = smp_processor_id(); char str[512]; pr_info("%s", arc_cpu_mumbojumbo(c, &info, str, sizeof(str))); pr_info("%s", arc_platform_smp_cpuinfo()); arc_chk_core_config(&info); arc_init_IRQ(); arc_mmu_init(); arc_cache_init(); } static inline bool uboot_arg_invalid(unsigned long addr) { /* * Check that it is a untranslated address (although MMU is not enabled * yet, it being a high address ensures this is not by fluke) */ if (addr < PAGE_OFFSET) return true; /* Check that address doesn't clobber resident kernel image */ return addr >= (unsigned long)_stext && addr <= (unsigned long)_end; } #define IGNORE_ARGS "Ignore U-boot args: " /* uboot_tag values for U-boot - kernel ABI revision 0; see head.S */ #define UBOOT_TAG_NONE 0 #define UBOOT_TAG_CMDLINE 1 #define UBOOT_TAG_DTB 2 /* We always pass 0 as magic from U-boot */ #define UBOOT_MAGIC_VALUE 0 extern struct boot_param_header __image_dtb; void __init handle_uboot_args(void) { bool use_embedded_dtb = true; bool append_cmdline = false; /* check that we know this tag */ if (uboot_tag != UBOOT_TAG_NONE && uboot_tag != UBOOT_TAG_CMDLINE && uboot_tag != UBOOT_TAG_DTB) { pr_warn(IGNORE_ARGS "invalid uboot tag: '%08x'\n", uboot_tag); goto ignore_uboot_args; } if (uboot_magic != UBOOT_MAGIC_VALUE) { pr_warn(IGNORE_ARGS "non zero uboot magic\n"); goto ignore_uboot_args; } if (uboot_tag != UBOOT_TAG_NONE && uboot_arg_invalid((unsigned long)uboot_arg)) { pr_warn(IGNORE_ARGS "invalid uboot arg: '%px'\n", uboot_arg); goto ignore_uboot_args; } /* see if U-boot passed an external Device Tree blob */ if (uboot_tag == UBOOT_TAG_DTB) { machine_desc = setup_machine_fdt((void *)uboot_arg); /* external Device Tree blob is invalid - use embedded one */ use_embedded_dtb = !machine_desc; } if (uboot_tag == UBOOT_TAG_CMDLINE) append_cmdline = true; ignore_uboot_args: if (use_embedded_dtb) { machine_desc = setup_machine_fdt(&__image_dtb); if (!machine_desc) panic("Embedded DT invalid\n"); } /* * NOTE: @boot_command_line is populated by setup_machine_fdt() so this * append processing can only happen after. */ if (append_cmdline) { /* Ensure a whitespace between the 2 cmdlines */ strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); strlcat(boot_command_line, uboot_arg, COMMAND_LINE_SIZE); } } void __init setup_arch(char **cmdline_p) { handle_uboot_args(); /* Save unparsed command line copy for /proc/cmdline */ *cmdline_p = boot_command_line; /* To force early parsing of things like mem=xxx */ parse_early_param(); /* Platform/board specific: e.g. early console registration */ if (machine_desc->init_early) machine_desc->init_early(); smp_init_cpus(); setup_processor(); setup_arch_memory(); /* copy flat DT out of .init and then unflatten it */ unflatten_and_copy_device_tree(); /* Can be issue if someone passes cmd line arg "ro" * But that is unlikely so keeping it as it is */ root_mountflags &= ~MS_RDONLY; arc_unwind_init(); } /* * Called from start_kernel() - boot CPU only */ void __init time_init(void) { of_clk_init(NULL); timer_probe(); } static int __init customize_machine(void) { if (machine_desc->init_machine) machine_desc->init_machine(); return 0; } arch_initcall(customize_machine); static int __init init_late_machine(void) { if (machine_desc->init_late) machine_desc->init_late(); return 0; } late_initcall(init_late_machine); /* * Get CPU information for use by the procfs. */ #define cpu_to_ptr(c) ((void *)(0xFFFF0000 | (unsigned int)(c))) #define ptr_to_cpu(p) (~0xFFFF0000UL & (unsigned int)(p)) static int show_cpuinfo(struct seq_file *m, void *v) { char *str; int cpu_id = ptr_to_cpu(v); struct device *cpu_dev = get_cpu_device(cpu_id); struct cpuinfo_arc info; struct clk *cpu_clk; unsigned long freq = 0; if (!cpu_online(cpu_id)) { seq_printf(m, "processor [%d]\t: Offline\n", cpu_id); goto done; } str = (char *)__get_free_page(GFP_KERNEL); if (!str) goto done; seq_printf(m, arc_cpu_mumbojumbo(cpu_id, &info, str, PAGE_SIZE)); cpu_clk = clk_get(cpu_dev, NULL); if (IS_ERR(cpu_clk)) { seq_printf(m, "CPU speed \t: Cannot get clock for processor [%d]\n", cpu_id); } else { freq = clk_get_rate(cpu_clk); } if (freq) seq_printf(m, "CPU speed\t: %lu.%02lu Mhz\n", freq / 1000000, (freq / 10000) % 100); seq_printf(m, "Bogo MIPS\t: %lu.%02lu\n", loops_per_jiffy / (500000 / HZ), (loops_per_jiffy / (5000 / HZ)) % 100); seq_printf(m, arc_platform_smp_cpuinfo()); free_page((unsigned long)str); done: seq_printf(m, "\n"); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { /* * Callback returns cpu-id to iterator for show routine, NULL to stop. * However since NULL is also a valid cpu-id (0), we use a round-about * way to pass it w/o having to kmalloc/free a 2 byte string. * Encode cpu-id as 0xFFcccc, which is decoded by show routine. */ return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return c_start(m, pos); } static void c_stop(struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo }; static DEFINE_PER_CPU(struct cpu, cpu_topology); static int __init topology_init(void) { int cpu; for_each_present_cpu(cpu) register_cpu(&per_cpu(cpu_topology, cpu), cpu); return 0; } subsys_initcall(topology_init);