// SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) 2001 Rusty Russell. * Copyright (C) 2003, 2004 Ralf Baechle (ralf@linux-mips.org) * Copyright (C) 2005 Thiemo Seufer */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include extern void jump_label_apply_nops(struct module *mod); struct mips_hi16 { struct mips_hi16 *next; Elf_Addr *addr; Elf_Addr value; }; static LIST_HEAD(dbe_list); static DEFINE_SPINLOCK(dbe_lock); /* * Get the potential max trampolines size required of the init and * non-init sections. Only used if we cannot find enough contiguous * physically mapped memory to put the module into. */ static unsigned int get_plt_size(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, const char *secstrings, unsigned int symindex, bool is_init) { unsigned long ret = 0; unsigned int i, j; Elf_Sym *syms; /* Everything marked ALLOC (this includes the exported symbols) */ for (i = 1; i < hdr->e_shnum; ++i) { unsigned int info = sechdrs[i].sh_info; if (sechdrs[i].sh_type != SHT_REL && sechdrs[i].sh_type != SHT_RELA) continue; /* Not a valid relocation section? */ if (info >= hdr->e_shnum) continue; /* Don't bother with non-allocated sections */ if (!(sechdrs[info].sh_flags & SHF_ALLOC)) continue; /* If it's called *.init*, and we're not init, we're not interested */ if ((strstr(secstrings + sechdrs[i].sh_name, ".init") != 0) != is_init) continue; syms = (Elf_Sym *) sechdrs[symindex].sh_addr; if (sechdrs[i].sh_type == SHT_REL) { Elf_Mips_Rel *rel = (void *) sechdrs[i].sh_addr; unsigned int size = sechdrs[i].sh_size / sizeof(*rel); for (j = 0; j < size; ++j) { Elf_Sym *sym; if (ELF_MIPS_R_TYPE(rel[j]) != R_MIPS_26) continue; sym = syms + ELF_MIPS_R_SYM(rel[j]); if (!is_init && sym->st_shndx != SHN_UNDEF) continue; ret += 4 * sizeof(int); } } else { Elf_Mips_Rela *rela = (void *) sechdrs[i].sh_addr; unsigned int size = sechdrs[i].sh_size / sizeof(*rela); for (j = 0; j < size; ++j) { Elf_Sym *sym; if (ELF_MIPS_R_TYPE(rela[j]) != R_MIPS_26) continue; sym = syms + ELF_MIPS_R_SYM(rela[j]); if (!is_init && sym->st_shndx != SHN_UNDEF) continue; ret += 4 * sizeof(int); } } } return ret; } #ifndef MODULE_START static void *alloc_phys(unsigned long size) { unsigned order; struct page *page; struct page *p; size = PAGE_ALIGN(size); order = get_order(size); page = alloc_pages(GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN | __GFP_THISNODE, order); if (!page) return NULL; split_page(page, order); /* mark all pages except for the last one */ for (p = page; p + 1 < page + (size >> PAGE_SHIFT); ++p) set_bit(PG_owner_priv_1, &p->flags); for (p = page + (size >> PAGE_SHIFT); p < page + (1 << order); ++p) __free_page(p); return page_address(page); } #endif static void free_phys(void *ptr) { struct page *page; bool free; page = virt_to_page(ptr); do { free = test_and_clear_bit(PG_owner_priv_1, &page->flags); __free_page(page); page++; } while (free); } void *module_alloc(unsigned long size) { #ifdef MODULE_START return __vmalloc_node_range(size, 1, MODULE_START, MODULE_END, GFP_KERNEL, PAGE_KERNEL, 0, NUMA_NO_NODE, __builtin_return_address(0)); #else void *ptr; if (size == 0) return NULL; ptr = alloc_phys(size); /* If we failed to allocate physically contiguous memory, * fall back to regular vmalloc. The module loader code will * create jump tables to handle long jumps */ if (!ptr) return vmalloc(size); return ptr; #endif } static inline bool is_phys_addr(void *ptr) { #ifdef CONFIG_64BIT return (KSEGX((unsigned long)ptr) == CKSEG0); #else return (KSEGX(ptr) == KSEG0); #endif } /* Free memory returned from module_alloc */ void module_memfree(void *module_region) { if (is_phys_addr(module_region)) free_phys(module_region); else vfree(module_region); } static void *__module_alloc(int size, bool phys) { void *ptr; if (phys) ptr = kmalloc(size, GFP_KERNEL); else ptr = vmalloc(size); return ptr; } static void __module_free(void *ptr) { if (is_phys_addr(ptr)) kfree(ptr); else vfree(ptr); } int module_frob_arch_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs, char *secstrings, struct module *mod) { unsigned int symindex = 0; unsigned int core_size, init_size; int i; mod->arch.phys_plt_offset = 0; mod->arch.virt_plt_offset = 0; mod->arch.phys_plt_tbl = NULL; mod->arch.virt_plt_tbl = NULL; if (IS_ENABLED(CONFIG_64BIT)) return 0; for (i = 1; i < hdr->e_shnum; i++) if (sechdrs[i].sh_type == SHT_SYMTAB) symindex = i; core_size = get_plt_size(hdr, sechdrs, secstrings, symindex, false); init_size = get_plt_size(hdr, sechdrs, secstrings, symindex, true); if ((core_size + init_size) == 0) return 0; mod->arch.phys_plt_tbl = __module_alloc(core_size + init_size, 1); if (!mod->arch.phys_plt_tbl) return -ENOMEM; mod->arch.virt_plt_tbl = __module_alloc(core_size + init_size, 0); if (!mod->arch.virt_plt_tbl) { __module_free(mod->arch.phys_plt_tbl); mod->arch.phys_plt_tbl = NULL; return -ENOMEM; } return 0; } static void apply_r_mips_32(u32 *location, u32 base, Elf_Addr v) { *location = base + v; } static Elf_Addr add_plt_entry_to(unsigned *plt_offset, void *start, Elf_Addr v) { unsigned *tramp = start + *plt_offset; *plt_offset += 4 * sizeof(int); /* adjust carry for addiu */ if (v & 0x00008000) v += 0x10000; tramp[0] = 0x3c190000 | (v >> 16); /* lui t9, hi16 */ tramp[1] = 0x27390000 | (v & 0xffff); /* addiu t9, t9, lo16 */ tramp[2] = 0x03200008; /* jr t9 */ tramp[3] = 0x00000000; /* nop */ return (Elf_Addr) tramp; } static Elf_Addr add_plt_entry(struct module *me, void *location, Elf_Addr v) { if (is_phys_addr(location)) return add_plt_entry_to(&me->arch.phys_plt_offset, me->arch.phys_plt_tbl, v); else return add_plt_entry_to(&me->arch.virt_plt_offset, me->arch.virt_plt_tbl, v); } static int apply_r_mips_26(struct module *me, u32 *location, u32 base, Elf_Addr v) { u32 ofs = base & 0x03ffffff; if (v % 4) { pr_err("module %s: dangerous R_MIPS_26 relocation\n", me->name); return -ENOEXEC; } if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) { v = add_plt_entry(me, location, v + (ofs << 2)); if (!v) { pr_err("module %s: relocation overflow\n", me->name); return -ENOEXEC; } ofs = 0; } *location = (*location & ~0x03ffffff) | ((ofs + (v >> 2)) & 0x03ffffff); return 0; } static int apply_r_mips_hi16(struct module *me, u32 *location, Elf_Addr v, bool rela) { struct mips_hi16 *n; if (rela) { *location = (*location & 0xffff0000) | ((((long long) v + 0x8000LL) >> 16) & 0xffff); return 0; } /* * We cannot relocate this one now because we don't know the value of * the carry we need to add. Save the information, and let LO16 do the * actual relocation. */ n = kmalloc(sizeof *n, GFP_KERNEL); if (!n) return -ENOMEM; n->addr = (Elf_Addr *)location; n->value = v; n->next = me->arch.r_mips_hi16_list; me->arch.r_mips_hi16_list = n; return 0; } static void free_relocation_chain(struct mips_hi16 *l) { struct mips_hi16 *next; while (l) { next = l->next; kfree(l); l = next; } } static int apply_r_mips_lo16(struct module *me, u32 *location, u32 base, Elf_Addr v, bool rela) { unsigned long insnlo = base; struct mips_hi16 *l; Elf_Addr val, vallo; if (rela) { *location = (*location & 0xffff0000) | (v & 0xffff); return 0; } /* Sign extend the addend we extract from the lo insn. */ vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000; if (me->arch.r_mips_hi16_list != NULL) { l = me->arch.r_mips_hi16_list; while (l != NULL) { struct mips_hi16 *next; unsigned long insn; /* * The value for the HI16 had best be the same. */ if (v != l->value) goto out_danger; /* * Do the HI16 relocation. Note that we actually don't * need to know anything about the LO16 itself, except * where to find the low 16 bits of the addend needed * by the LO16. */ insn = *l->addr; val = ((insn & 0xffff) << 16) + vallo; val += v; /* * Account for the sign extension that will happen in * the low bits. */ val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff; insn = (insn & ~0xffff) | val; *l->addr = insn; next = l->next; kfree(l); l = next; } me->arch.r_mips_hi16_list = NULL; } /* * Ok, we're done with the HI16 relocs. Now deal with the LO16. */ val = v + vallo; insnlo = (insnlo & ~0xffff) | (val & 0xffff); *location = insnlo; return 0; out_danger: free_relocation_chain(l); me->arch.r_mips_hi16_list = NULL; pr_err("module %s: dangerous R_MIPS_LO16 relocation\n", me->name); return -ENOEXEC; } static int apply_r_mips_pc(struct module *me, u32 *location, u32 base, Elf_Addr v, unsigned int bits) { unsigned long mask = GENMASK(bits - 1, 0); unsigned long se_bits; long offset; if (v % 4) { pr_err("module %s: dangerous R_MIPS_PC%u relocation\n", me->name, bits); return -ENOEXEC; } /* retrieve & sign extend implicit addend if any */ offset = base & mask; offset |= (offset & BIT(bits - 1)) ? ~mask : 0; offset += ((long)v - (long)location) >> 2; /* check the sign bit onwards are identical - ie. we didn't overflow */ se_bits = (offset & BIT(bits - 1)) ? ~0ul : 0; if ((offset & ~mask) != (se_bits & ~mask)) { pr_err("module %s: relocation overflow\n", me->name); return -ENOEXEC; } *location = (*location & ~mask) | (offset & mask); return 0; } static int apply_r_mips_pc16(struct module *me, u32 *location, u32 base, Elf_Addr v) { return apply_r_mips_pc(me, location, base, v, 16); } static int apply_r_mips_pc21(struct module *me, u32 *location, u32 base, Elf_Addr v) { return apply_r_mips_pc(me, location, base, v, 21); } static int apply_r_mips_pc26(struct module *me, u32 *location, u32 base, Elf_Addr v) { return apply_r_mips_pc(me, location, base, v, 26); } static int apply_r_mips_64(u32 *location, Elf_Addr v, bool rela) { if (WARN_ON(!rela)) return -EINVAL; *(Elf_Addr *)location = v; return 0; } static int apply_r_mips_higher(u32 *location, Elf_Addr v, bool rela) { if (WARN_ON(!rela)) return -EINVAL; *location = (*location & 0xffff0000) | ((((long long)v + 0x80008000LL) >> 32) & 0xffff); return 0; } static int apply_r_mips_highest(u32 *location, Elf_Addr v, bool rela) { if (WARN_ON(!rela)) return -EINVAL; *location = (*location & 0xffff0000) | ((((long long)v + 0x800080008000LL) >> 48) & 0xffff); return 0; } /** * reloc_handler() - Apply a particular relocation to a module * @type: type of the relocation to apply * @me: the module to apply the reloc to * @location: the address at which the reloc is to be applied * @base: the existing value at location for REL-style; 0 for RELA-style * @v: the value of the reloc, with addend for RELA-style * @rela: indication of is this a RELA (true) or REL (false) relocation * * Each implemented relocation function applies a particular type of * relocation to the module @me. Relocs that may be found in either REL or RELA * variants can be handled by making use of the @base & @v parameters which are * set to values which abstract the difference away from the particular reloc * implementations. * * Return: 0 upon success, else -ERRNO */ static int reloc_handler(u32 type, struct module *me, u32 *location, u32 base, Elf_Addr v, bool rela) { switch (type) { case R_MIPS_NONE: break; case R_MIPS_32: apply_r_mips_32(location, base, v); break; case R_MIPS_26: return apply_r_mips_26(me, location, base, v); case R_MIPS_HI16: return apply_r_mips_hi16(me, location, v, rela); case R_MIPS_LO16: return apply_r_mips_lo16(me, location, base, v, rela); case R_MIPS_PC16: return apply_r_mips_pc16(me, location, base, v); case R_MIPS_PC21_S2: return apply_r_mips_pc21(me, location, base, v); case R_MIPS_PC26_S2: return apply_r_mips_pc26(me, location, base, v); case R_MIPS_64: return apply_r_mips_64(location, v, rela); case R_MIPS_HIGHER: return apply_r_mips_higher(location, v, rela); case R_MIPS_HIGHEST: return apply_r_mips_highest(location, v, rela); default: pr_err("%s: Unknown relocation type %u\n", me->name, type); return -EINVAL; } return 0; } static int __apply_relocate(Elf_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me, bool rela) { union { Elf_Mips_Rel *rel; Elf_Mips_Rela *rela; } r; Elf_Sym *sym; u32 *location, base; unsigned int i, type; Elf_Addr v; int err = 0; size_t reloc_sz; pr_debug("Applying relocate section %u to %u\n", relsec, sechdrs[relsec].sh_info); r.rel = (void *)sechdrs[relsec].sh_addr; reloc_sz = rela ? sizeof(*r.rela) : sizeof(*r.rel); me->arch.r_mips_hi16_list = NULL; for (i = 0; i < sechdrs[relsec].sh_size / reloc_sz; i++) { /* This is where to make the change */ location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr + r.rel->r_offset; /* This is the symbol it is referring to */ sym = (Elf_Sym *)sechdrs[symindex].sh_addr + ELF_MIPS_R_SYM(*r.rel); if (sym->st_value >= -MAX_ERRNO) { /* Ignore unresolved weak symbol */ if (ELF_ST_BIND(sym->st_info) == STB_WEAK) continue; pr_warn("%s: Unknown symbol %s\n", me->name, strtab + sym->st_name); err = -ENOENT; goto out; } type = ELF_MIPS_R_TYPE(*r.rel); if (rela) { v = sym->st_value + r.rela->r_addend; base = 0; r.rela = &r.rela[1]; } else { v = sym->st_value; base = *location; r.rel = &r.rel[1]; } err = reloc_handler(type, me, location, base, v, rela); if (err) goto out; } out: /* * Normally the hi16 list should be deallocated at this point. A * malformed binary however could contain a series of R_MIPS_HI16 * relocations not followed by a R_MIPS_LO16 relocation, or if we hit * an error processing a reloc we might have gotten here before * reaching the R_MIPS_LO16. In either case, free up the list and * return an error. */ if (me->arch.r_mips_hi16_list) { free_relocation_chain(me->arch.r_mips_hi16_list); me->arch.r_mips_hi16_list = NULL; err = err ?: -ENOEXEC; } return err; } int apply_relocate(Elf_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me) { return __apply_relocate(sechdrs, strtab, symindex, relsec, me, false); } #ifdef CONFIG_MODULES_USE_ELF_RELA int apply_relocate_add(Elf_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me) { return __apply_relocate(sechdrs, strtab, symindex, relsec, me, true); } #endif /* CONFIG_MODULES_USE_ELF_RELA */ /* Given an address, look for it in the module exception tables. */ const struct exception_table_entry *search_module_dbetables(unsigned long addr) { unsigned long flags; const struct exception_table_entry *e = NULL; struct mod_arch_specific *dbe; spin_lock_irqsave(&dbe_lock, flags); list_for_each_entry(dbe, &dbe_list, dbe_list) { e = search_extable(dbe->dbe_start, dbe->dbe_end - dbe->dbe_start, addr); if (e) break; } spin_unlock_irqrestore(&dbe_lock, flags); /* Now, if we found one, we are running inside it now, hence we cannot unload the module, hence no refcnt needed. */ return e; } /* Put in dbe list if necessary. */ int module_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, struct module *me) { const Elf_Shdr *s; char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; if (IS_ENABLED(CONFIG_JUMP_LABEL)) jump_label_apply_nops(me); INIT_LIST_HEAD(&me->arch.dbe_list); for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) { if (strcmp("__dbe_table", secstrings + s->sh_name) != 0) continue; me->arch.dbe_start = (void *)s->sh_addr; me->arch.dbe_end = (void *)s->sh_addr + s->sh_size; spin_lock_irq(&dbe_lock); list_add(&me->arch.dbe_list, &dbe_list); spin_unlock_irq(&dbe_lock); } /* Get rid of the fixup trampoline if we're running the module * from physically mapped address space */ if (me->arch.phys_plt_offset == 0) { __module_free(me->arch.phys_plt_tbl); me->arch.phys_plt_tbl = NULL; } if (me->arch.virt_plt_offset == 0) { __module_free(me->arch.virt_plt_tbl); me->arch.virt_plt_tbl = NULL; } return 0; } void module_arch_freeing_init(struct module *mod) { if (mod->state == MODULE_STATE_LIVE) return; if (mod->arch.phys_plt_tbl) { __module_free(mod->arch.phys_plt_tbl); mod->arch.phys_plt_tbl = NULL; } if (mod->arch.virt_plt_tbl) { __module_free(mod->arch.virt_plt_tbl); mod->arch.virt_plt_tbl = NULL; } } void module_arch_cleanup(struct module *mod) { spin_lock_irq(&dbe_lock); list_del(&mod->arch.dbe_list); spin_unlock_irq(&dbe_lock); }