// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" #include "bio.h" #include "print-tree.h" #include "locking.h" #include "tree-log.h" #include "free-space-cache.h" #include "free-space-tree.h" #include "check-integrity.h" #include "rcu-string.h" #include "dev-replace.h" #include "raid56.h" #include "sysfs.h" #include "qgroup.h" #include "compression.h" #include "tree-checker.h" #include "ref-verify.h" #include "block-group.h" #include "discard.h" #include "space-info.h" #include "zoned.h" #include "subpage.h" #include "fs.h" #include "accessors.h" #include "extent-tree.h" #include "root-tree.h" #include "defrag.h" #include "uuid-tree.h" #include "relocation.h" #include "scrub.h" #include "super.h" #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ BTRFS_HEADER_FLAG_RELOC |\ BTRFS_SUPER_FLAG_ERROR |\ BTRFS_SUPER_FLAG_SEEDING |\ BTRFS_SUPER_FLAG_METADUMP |\ BTRFS_SUPER_FLAG_METADUMP_V2) static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) { if (fs_info->csum_shash) crypto_free_shash(fs_info->csum_shash); } /* * Compute the csum of a btree block and store the result to provided buffer. */ static void csum_tree_block(struct extent_buffer *buf, u8 *result) { struct btrfs_fs_info *fs_info = buf->fs_info; const int num_pages = num_extent_pages(buf); const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); char *kaddr; int i; shash->tfm = fs_info->csum_shash; crypto_shash_init(shash); kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, first_page_part - BTRFS_CSUM_SIZE); for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { kaddr = page_address(buf->pages[i]); crypto_shash_update(shash, kaddr, PAGE_SIZE); } memset(result, 0, BTRFS_CSUM_SIZE); crypto_shash_final(shash, result); } /* * we can't consider a given block up to date unless the transid of the * block matches the transid in the parent node's pointer. This is how we * detect blocks that either didn't get written at all or got written * in the wrong place. */ int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) { if (!extent_buffer_uptodate(eb)) return 0; if (!parent_transid || btrfs_header_generation(eb) == parent_transid) return 1; if (atomic) return -EAGAIN; if (!extent_buffer_uptodate(eb) || btrfs_header_generation(eb) != parent_transid) { btrfs_err_rl(eb->fs_info, "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", eb->start, eb->read_mirror, parent_transid, btrfs_header_generation(eb)); clear_extent_buffer_uptodate(eb); return 0; } return 1; } static bool btrfs_supported_super_csum(u16 csum_type) { switch (csum_type) { case BTRFS_CSUM_TYPE_CRC32: case BTRFS_CSUM_TYPE_XXHASH: case BTRFS_CSUM_TYPE_SHA256: case BTRFS_CSUM_TYPE_BLAKE2: return true; default: return false; } } /* * Return 0 if the superblock checksum type matches the checksum value of that * algorithm. Pass the raw disk superblock data. */ int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, const struct btrfs_super_block *disk_sb) { char result[BTRFS_CSUM_SIZE]; SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); shash->tfm = fs_info->csum_shash; /* * The super_block structure does not span the whole * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is * filled with zeros and is included in the checksum. */ crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); if (memcmp(disk_sb->csum, result, fs_info->csum_size)) return 1; return 0; } static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) { struct btrfs_fs_info *fs_info = eb->fs_info; int i, num_pages = num_extent_pages(eb); int ret = 0; if (sb_rdonly(fs_info->sb)) return -EROFS; for (i = 0; i < num_pages; i++) { struct page *p = eb->pages[i]; u64 start = max_t(u64, eb->start, page_offset(p)); u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE); u32 len = end - start; ret = btrfs_repair_io_failure(fs_info, 0, start, len, start, p, offset_in_page(start), mirror_num); if (ret) break; } return ret; } /* * helper to read a given tree block, doing retries as required when * the checksums don't match and we have alternate mirrors to try. * * @check: expected tree parentness check, see the comments of the * structure for details. */ int btrfs_read_extent_buffer(struct extent_buffer *eb, struct btrfs_tree_parent_check *check) { struct btrfs_fs_info *fs_info = eb->fs_info; int failed = 0; int ret; int num_copies = 0; int mirror_num = 0; int failed_mirror = 0; ASSERT(check); while (1) { clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); if (!ret) break; num_copies = btrfs_num_copies(fs_info, eb->start, eb->len); if (num_copies == 1) break; if (!failed_mirror) { failed = 1; failed_mirror = eb->read_mirror; } mirror_num++; if (mirror_num == failed_mirror) mirror_num++; if (mirror_num > num_copies) break; } if (failed && !ret && failed_mirror) btrfs_repair_eb_io_failure(eb, failed_mirror); return ret; } /* * Checksum a dirty tree block before IO. */ blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) { struct extent_buffer *eb = bbio->private; struct btrfs_fs_info *fs_info = eb->fs_info; u64 found_start = btrfs_header_bytenr(eb); u8 result[BTRFS_CSUM_SIZE]; int ret; /* Btree blocks are always contiguous on disk. */ if (WARN_ON_ONCE(bbio->file_offset != eb->start)) return BLK_STS_IOERR; if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) return BLK_STS_IOERR; if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { WARN_ON_ONCE(found_start != 0); return BLK_STS_OK; } if (WARN_ON_ONCE(found_start != eb->start)) return BLK_STS_IOERR; if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start, eb->len))) return BLK_STS_IOERR; ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, offsetof(struct btrfs_header, fsid), BTRFS_FSID_SIZE) == 0); csum_tree_block(eb, result); if (btrfs_header_level(eb)) ret = btrfs_check_node(eb); else ret = btrfs_check_leaf(eb); if (ret < 0) goto error; /* * Also check the generation, the eb reached here must be newer than * last committed. Or something seriously wrong happened. */ if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { ret = -EUCLEAN; btrfs_err(fs_info, "block=%llu bad generation, have %llu expect > %llu", eb->start, btrfs_header_generation(eb), fs_info->last_trans_committed); goto error; } write_extent_buffer(eb, result, 0, fs_info->csum_size); return BLK_STS_OK; error: btrfs_print_tree(eb, 0); btrfs_err(fs_info, "block=%llu write time tree block corruption detected", eb->start); /* * Be noisy if this is an extent buffer from a log tree. We don't abort * a transaction in case there's a bad log tree extent buffer, we just * fallback to a transaction commit. Still we want to know when there is * a bad log tree extent buffer, as that may signal a bug somewhere. */ WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); return errno_to_blk_status(ret); } static bool check_tree_block_fsid(struct extent_buffer *eb) { struct btrfs_fs_info *fs_info = eb->fs_info; struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; u8 fsid[BTRFS_FSID_SIZE]; read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), BTRFS_FSID_SIZE); /* * alloc_fs_devices() copies the fsid into metadata_uuid if the * metadata_uuid is unset in the superblock, including for a seed device. * So, we can use fs_devices->metadata_uuid. */ if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) return false; list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) return false; return true; } /* Do basic extent buffer checks at read time */ int btrfs_validate_extent_buffer(struct extent_buffer *eb, struct btrfs_tree_parent_check *check) { struct btrfs_fs_info *fs_info = eb->fs_info; u64 found_start; const u32 csum_size = fs_info->csum_size; u8 found_level; u8 result[BTRFS_CSUM_SIZE]; const u8 *header_csum; int ret = 0; ASSERT(check); found_start = btrfs_header_bytenr(eb); if (found_start != eb->start) { btrfs_err_rl(fs_info, "bad tree block start, mirror %u want %llu have %llu", eb->read_mirror, eb->start, found_start); ret = -EIO; goto out; } if (check_tree_block_fsid(eb)) { btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", eb->start, eb->read_mirror); ret = -EIO; goto out; } found_level = btrfs_header_level(eb); if (found_level >= BTRFS_MAX_LEVEL) { btrfs_err(fs_info, "bad tree block level, mirror %u level %d on logical %llu", eb->read_mirror, btrfs_header_level(eb), eb->start); ret = -EIO; goto out; } csum_tree_block(eb, result); header_csum = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); if (memcmp(result, header_csum, csum_size) != 0) { btrfs_warn_rl(fs_info, "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", eb->start, eb->read_mirror, CSUM_FMT_VALUE(csum_size, header_csum), CSUM_FMT_VALUE(csum_size, result), btrfs_header_level(eb)); ret = -EUCLEAN; goto out; } if (found_level != check->level) { btrfs_err(fs_info, "level verify failed on logical %llu mirror %u wanted %u found %u", eb->start, eb->read_mirror, check->level, found_level); ret = -EIO; goto out; } if (unlikely(check->transid && btrfs_header_generation(eb) != check->transid)) { btrfs_err_rl(eb->fs_info, "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", eb->start, eb->read_mirror, check->transid, btrfs_header_generation(eb)); ret = -EIO; goto out; } if (check->has_first_key) { struct btrfs_key *expect_key = &check->first_key; struct btrfs_key found_key; if (found_level) btrfs_node_key_to_cpu(eb, &found_key, 0); else btrfs_item_key_to_cpu(eb, &found_key, 0); if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { btrfs_err(fs_info, "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", eb->start, check->transid, expect_key->objectid, expect_key->type, expect_key->offset, found_key.objectid, found_key.type, found_key.offset); ret = -EUCLEAN; goto out; } } if (check->owner_root) { ret = btrfs_check_eb_owner(eb, check->owner_root); if (ret < 0) goto out; } /* * If this is a leaf block and it is corrupt, set the corrupt bit so * that we don't try and read the other copies of this block, just * return -EIO. */ if (found_level == 0 && btrfs_check_leaf(eb)) { set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); ret = -EIO; } if (found_level > 0 && btrfs_check_node(eb)) ret = -EIO; if (ret) btrfs_err(fs_info, "read time tree block corruption detected on logical %llu mirror %u", eb->start, eb->read_mirror); out: return ret; } #ifdef CONFIG_MIGRATION static int btree_migrate_folio(struct address_space *mapping, struct folio *dst, struct folio *src, enum migrate_mode mode) { /* * we can't safely write a btree page from here, * we haven't done the locking hook */ if (folio_test_dirty(src)) return -EAGAIN; /* * Buffers may be managed in a filesystem specific way. * We must have no buffers or drop them. */ if (folio_get_private(src) && !filemap_release_folio(src, GFP_KERNEL)) return -EAGAIN; return migrate_folio(mapping, dst, src, mode); } #else #define btree_migrate_folio NULL #endif static int btree_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct btrfs_fs_info *fs_info; int ret; if (wbc->sync_mode == WB_SYNC_NONE) { if (wbc->for_kupdate) return 0; fs_info = BTRFS_I(mapping->host)->root->fs_info; /* this is a bit racy, but that's ok */ ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, BTRFS_DIRTY_METADATA_THRESH, fs_info->dirty_metadata_batch); if (ret < 0) return 0; } return btree_write_cache_pages(mapping, wbc); } static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) { if (folio_test_writeback(folio) || folio_test_dirty(folio)) return false; return try_release_extent_buffer(&folio->page); } static void btree_invalidate_folio(struct folio *folio, size_t offset, size_t length) { struct extent_io_tree *tree; tree = &BTRFS_I(folio->mapping->host)->io_tree; extent_invalidate_folio(tree, folio, offset); btree_release_folio(folio, GFP_NOFS); if (folio_get_private(folio)) { btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, "folio private not zero on folio %llu", (unsigned long long)folio_pos(folio)); folio_detach_private(folio); } } #ifdef DEBUG static bool btree_dirty_folio(struct address_space *mapping, struct folio *folio) { struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); struct btrfs_subpage_info *spi = fs_info->subpage_info; struct btrfs_subpage *subpage; struct extent_buffer *eb; int cur_bit = 0; u64 page_start = folio_pos(folio); if (fs_info->sectorsize == PAGE_SIZE) { eb = folio_get_private(folio); BUG_ON(!eb); BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); BUG_ON(!atomic_read(&eb->refs)); btrfs_assert_tree_write_locked(eb); return filemap_dirty_folio(mapping, folio); } ASSERT(spi); subpage = folio_get_private(folio); for (cur_bit = spi->dirty_offset; cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; cur_bit++) { unsigned long flags; u64 cur; spin_lock_irqsave(&subpage->lock, flags); if (!test_bit(cur_bit, subpage->bitmaps)) { spin_unlock_irqrestore(&subpage->lock, flags); continue; } spin_unlock_irqrestore(&subpage->lock, flags); cur = page_start + cur_bit * fs_info->sectorsize; eb = find_extent_buffer(fs_info, cur); ASSERT(eb); ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); ASSERT(atomic_read(&eb->refs)); btrfs_assert_tree_write_locked(eb); free_extent_buffer(eb); cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; } return filemap_dirty_folio(mapping, folio); } #else #define btree_dirty_folio filemap_dirty_folio #endif static const struct address_space_operations btree_aops = { .writepages = btree_writepages, .release_folio = btree_release_folio, .invalidate_folio = btree_invalidate_folio, .migrate_folio = btree_migrate_folio, .dirty_folio = btree_dirty_folio, }; struct extent_buffer *btrfs_find_create_tree_block( struct btrfs_fs_info *fs_info, u64 bytenr, u64 owner_root, int level) { if (btrfs_is_testing(fs_info)) return alloc_test_extent_buffer(fs_info, bytenr); return alloc_extent_buffer(fs_info, bytenr, owner_root, level); } /* * Read tree block at logical address @bytenr and do variant basic but critical * verification. * * @check: expected tree parentness check, see comments of the * structure for details. */ struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, struct btrfs_tree_parent_check *check) { struct extent_buffer *buf = NULL; int ret; ASSERT(check); buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, check->level); if (IS_ERR(buf)) return buf; ret = btrfs_read_extent_buffer(buf, check); if (ret) { free_extent_buffer_stale(buf); return ERR_PTR(ret); } if (btrfs_check_eb_owner(buf, check->owner_root)) { free_extent_buffer_stale(buf); return ERR_PTR(-EUCLEAN); } return buf; } static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, u64 objectid) { bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); memset(&root->root_key, 0, sizeof(root->root_key)); memset(&root->root_item, 0, sizeof(root->root_item)); memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); root->fs_info = fs_info; root->root_key.objectid = objectid; root->node = NULL; root->commit_root = NULL; root->state = 0; RB_CLEAR_NODE(&root->rb_node); root->last_trans = 0; root->free_objectid = 0; root->nr_delalloc_inodes = 0; root->nr_ordered_extents = 0; root->inode_tree = RB_ROOT; INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); btrfs_init_root_block_rsv(root); INIT_LIST_HEAD(&root->dirty_list); INIT_LIST_HEAD(&root->root_list); INIT_LIST_HEAD(&root->delalloc_inodes); INIT_LIST_HEAD(&root->delalloc_root); INIT_LIST_HEAD(&root->ordered_extents); INIT_LIST_HEAD(&root->ordered_root); INIT_LIST_HEAD(&root->reloc_dirty_list); INIT_LIST_HEAD(&root->logged_list[0]); INIT_LIST_HEAD(&root->logged_list[1]); spin_lock_init(&root->inode_lock); spin_lock_init(&root->delalloc_lock); spin_lock_init(&root->ordered_extent_lock); spin_lock_init(&root->accounting_lock); spin_lock_init(&root->log_extents_lock[0]); spin_lock_init(&root->log_extents_lock[1]); spin_lock_init(&root->qgroup_meta_rsv_lock); mutex_init(&root->objectid_mutex); mutex_init(&root->log_mutex); mutex_init(&root->ordered_extent_mutex); mutex_init(&root->delalloc_mutex); init_waitqueue_head(&root->qgroup_flush_wait); init_waitqueue_head(&root->log_writer_wait); init_waitqueue_head(&root->log_commit_wait[0]); init_waitqueue_head(&root->log_commit_wait[1]); INIT_LIST_HEAD(&root->log_ctxs[0]); INIT_LIST_HEAD(&root->log_ctxs[1]); atomic_set(&root->log_commit[0], 0); atomic_set(&root->log_commit[1], 0); atomic_set(&root->log_writers, 0); atomic_set(&root->log_batch, 0); refcount_set(&root->refs, 1); atomic_set(&root->snapshot_force_cow, 0); atomic_set(&root->nr_swapfiles, 0); root->log_transid = 0; root->log_transid_committed = -1; root->last_log_commit = 0; root->anon_dev = 0; if (!dummy) { extent_io_tree_init(fs_info, &root->dirty_log_pages, IO_TREE_ROOT_DIRTY_LOG_PAGES); extent_io_tree_init(fs_info, &root->log_csum_range, IO_TREE_LOG_CSUM_RANGE); } spin_lock_init(&root->root_item_lock); btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); #ifdef CONFIG_BTRFS_DEBUG INIT_LIST_HEAD(&root->leak_list); spin_lock(&fs_info->fs_roots_radix_lock); list_add_tail(&root->leak_list, &fs_info->allocated_roots); spin_unlock(&fs_info->fs_roots_radix_lock); #endif } static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, u64 objectid, gfp_t flags) { struct btrfs_root *root = kzalloc(sizeof(*root), flags); if (root) __setup_root(root, fs_info, objectid); return root; } #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS /* Should only be used by the testing infrastructure */ struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) { struct btrfs_root *root; if (!fs_info) return ERR_PTR(-EINVAL); root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); if (!root) return ERR_PTR(-ENOMEM); /* We don't use the stripesize in selftest, set it as sectorsize */ root->alloc_bytenr = 0; return root; } #endif static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) { const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); } static int global_root_key_cmp(const void *k, const struct rb_node *node) { const struct btrfs_key *key = k; const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); return btrfs_comp_cpu_keys(key, &root->root_key); } int btrfs_global_root_insert(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; struct rb_node *tmp; int ret = 0; write_lock(&fs_info->global_root_lock); tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); write_unlock(&fs_info->global_root_lock); if (tmp) { ret = -EEXIST; btrfs_warn(fs_info, "global root %llu %llu already exists", root->root_key.objectid, root->root_key.offset); } return ret; } void btrfs_global_root_delete(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; write_lock(&fs_info->global_root_lock); rb_erase(&root->rb_node, &fs_info->global_root_tree); write_unlock(&fs_info->global_root_lock); } struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, struct btrfs_key *key) { struct rb_node *node; struct btrfs_root *root = NULL; read_lock(&fs_info->global_root_lock); node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); if (node) root = container_of(node, struct btrfs_root, rb_node); read_unlock(&fs_info->global_root_lock); return root; } static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) { struct btrfs_block_group *block_group; u64 ret; if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) return 0; if (bytenr) block_group = btrfs_lookup_block_group(fs_info, bytenr); else block_group = btrfs_lookup_first_block_group(fs_info, bytenr); ASSERT(block_group); if (!block_group) return 0; ret = block_group->global_root_id; btrfs_put_block_group(block_group); return ret; } struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) { struct btrfs_key key = { .objectid = BTRFS_CSUM_TREE_OBJECTID, .type = BTRFS_ROOT_ITEM_KEY, .offset = btrfs_global_root_id(fs_info, bytenr), }; return btrfs_global_root(fs_info, &key); } struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) { struct btrfs_key key = { .objectid = BTRFS_EXTENT_TREE_OBJECTID, .type = BTRFS_ROOT_ITEM_KEY, .offset = btrfs_global_root_id(fs_info, bytenr), }; return btrfs_global_root(fs_info, &key); } struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) { if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) return fs_info->block_group_root; return btrfs_extent_root(fs_info, 0); } struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, u64 objectid) { struct btrfs_fs_info *fs_info = trans->fs_info; struct extent_buffer *leaf; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *root; struct btrfs_key key; unsigned int nofs_flag; int ret = 0; /* * We're holding a transaction handle, so use a NOFS memory allocation * context to avoid deadlock if reclaim happens. */ nofs_flag = memalloc_nofs_save(); root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); memalloc_nofs_restore(nofs_flag); if (!root) return ERR_PTR(-ENOMEM); root->root_key.objectid = objectid; root->root_key.type = BTRFS_ROOT_ITEM_KEY; root->root_key.offset = 0; leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); if (IS_ERR(leaf)) { ret = PTR_ERR(leaf); leaf = NULL; goto fail; } root->node = leaf; btrfs_mark_buffer_dirty(trans, leaf); root->commit_root = btrfs_root_node(root); set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); btrfs_set_root_flags(&root->root_item, 0); btrfs_set_root_limit(&root->root_item, 0); btrfs_set_root_bytenr(&root->root_item, leaf->start); btrfs_set_root_generation(&root->root_item, trans->transid); btrfs_set_root_level(&root->root_item, 0); btrfs_set_root_refs(&root->root_item, 1); btrfs_set_root_used(&root->root_item, leaf->len); btrfs_set_root_last_snapshot(&root->root_item, 0); btrfs_set_root_dirid(&root->root_item, 0); if (is_fstree(objectid)) generate_random_guid(root->root_item.uuid); else export_guid(root->root_item.uuid, &guid_null); btrfs_set_root_drop_level(&root->root_item, 0); btrfs_tree_unlock(leaf); key.objectid = objectid; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = 0; ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); if (ret) goto fail; return root; fail: btrfs_put_root(root); return ERR_PTR(ret); } static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *root; root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); if (!root) return ERR_PTR(-ENOMEM); root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; root->root_key.type = BTRFS_ROOT_ITEM_KEY; root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; return root; } int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct extent_buffer *leaf; /* * DON'T set SHAREABLE bit for log trees. * * Log trees are not exposed to user space thus can't be snapshotted, * and they go away before a real commit is actually done. * * They do store pointers to file data extents, and those reference * counts still get updated (along with back refs to the log tree). */ leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); if (IS_ERR(leaf)) return PTR_ERR(leaf); root->node = leaf; btrfs_mark_buffer_dirty(trans, root->node); btrfs_tree_unlock(root->node); return 0; } int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *log_root; log_root = alloc_log_tree(trans, fs_info); if (IS_ERR(log_root)) return PTR_ERR(log_root); if (!btrfs_is_zoned(fs_info)) { int ret = btrfs_alloc_log_tree_node(trans, log_root); if (ret) { btrfs_put_root(log_root); return ret; } } WARN_ON(fs_info->log_root_tree); fs_info->log_root_tree = log_root; return 0; } int btrfs_add_log_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_root *log_root; struct btrfs_inode_item *inode_item; int ret; log_root = alloc_log_tree(trans, fs_info); if (IS_ERR(log_root)) return PTR_ERR(log_root); ret = btrfs_alloc_log_tree_node(trans, log_root); if (ret) { btrfs_put_root(log_root); return ret; } log_root->last_trans = trans->transid; log_root->root_key.offset = root->root_key.objectid; inode_item = &log_root->root_item.inode; btrfs_set_stack_inode_generation(inode_item, 1); btrfs_set_stack_inode_size(inode_item, 3); btrfs_set_stack_inode_nlink(inode_item, 1); btrfs_set_stack_inode_nbytes(inode_item, fs_info->nodesize); btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); btrfs_set_root_node(&log_root->root_item, log_root->node); WARN_ON(root->log_root); root->log_root = log_root; root->log_transid = 0; root->log_transid_committed = -1; root->last_log_commit = 0; return 0; } static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, struct btrfs_path *path, struct btrfs_key *key) { struct btrfs_root *root; struct btrfs_tree_parent_check check = { 0 }; struct btrfs_fs_info *fs_info = tree_root->fs_info; u64 generation; int ret; int level; root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); if (!root) return ERR_PTR(-ENOMEM); ret = btrfs_find_root(tree_root, key, path, &root->root_item, &root->root_key); if (ret) { if (ret > 0) ret = -ENOENT; goto fail; } generation = btrfs_root_generation(&root->root_item); level = btrfs_root_level(&root->root_item); check.level = level; check.transid = generation; check.owner_root = key->objectid; root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), &check); if (IS_ERR(root->node)) { ret = PTR_ERR(root->node); root->node = NULL; goto fail; } if (!btrfs_buffer_uptodate(root->node, generation, 0)) { ret = -EIO; goto fail; } /* * For real fs, and not log/reloc trees, root owner must * match its root node owner */ if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && root->root_key.objectid != btrfs_header_owner(root->node)) { btrfs_crit(fs_info, "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", root->root_key.objectid, root->node->start, btrfs_header_owner(root->node), root->root_key.objectid); ret = -EUCLEAN; goto fail; } root->commit_root = btrfs_root_node(root); return root; fail: btrfs_put_root(root); return ERR_PTR(ret); } struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, struct btrfs_key *key) { struct btrfs_root *root; struct btrfs_path *path; path = btrfs_alloc_path(); if (!path) return ERR_PTR(-ENOMEM); root = read_tree_root_path(tree_root, path, key); btrfs_free_path(path); return root; } /* * Initialize subvolume root in-memory structure * * @anon_dev: anonymous device to attach to the root, if zero, allocate new */ static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) { int ret; btrfs_drew_lock_init(&root->snapshot_lock); if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && !btrfs_is_data_reloc_root(root) && is_fstree(root->root_key.objectid)) { set_bit(BTRFS_ROOT_SHAREABLE, &root->state); btrfs_check_and_init_root_item(&root->root_item); } /* * Don't assign anonymous block device to roots that are not exposed to * userspace, the id pool is limited to 1M */ if (is_fstree(root->root_key.objectid) && btrfs_root_refs(&root->root_item) > 0) { if (!anon_dev) { ret = get_anon_bdev(&root->anon_dev); if (ret) goto fail; } else { root->anon_dev = anon_dev; } } mutex_lock(&root->objectid_mutex); ret = btrfs_init_root_free_objectid(root); if (ret) { mutex_unlock(&root->objectid_mutex); goto fail; } ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); mutex_unlock(&root->objectid_mutex); return 0; fail: /* The caller is responsible to call btrfs_free_fs_root */ return ret; } static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, u64 root_id) { struct btrfs_root *root; spin_lock(&fs_info->fs_roots_radix_lock); root = radix_tree_lookup(&fs_info->fs_roots_radix, (unsigned long)root_id); root = btrfs_grab_root(root); spin_unlock(&fs_info->fs_roots_radix_lock); return root; } static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, u64 objectid) { struct btrfs_key key = { .objectid = objectid, .type = BTRFS_ROOT_ITEM_KEY, .offset = 0, }; switch (objectid) { case BTRFS_ROOT_TREE_OBJECTID: return btrfs_grab_root(fs_info->tree_root); case BTRFS_EXTENT_TREE_OBJECTID: return btrfs_grab_root(btrfs_global_root(fs_info, &key)); case BTRFS_CHUNK_TREE_OBJECTID: return btrfs_grab_root(fs_info->chunk_root); case BTRFS_DEV_TREE_OBJECTID: return btrfs_grab_root(fs_info->dev_root); case BTRFS_CSUM_TREE_OBJECTID: return btrfs_grab_root(btrfs_global_root(fs_info, &key)); case BTRFS_QUOTA_TREE_OBJECTID: return btrfs_grab_root(fs_info->quota_root); case BTRFS_UUID_TREE_OBJECTID: return btrfs_grab_root(fs_info->uuid_root); case BTRFS_BLOCK_GROUP_TREE_OBJECTID: return btrfs_grab_root(fs_info->block_group_root); case BTRFS_FREE_SPACE_TREE_OBJECTID: return btrfs_grab_root(btrfs_global_root(fs_info, &key)); default: return NULL; } } int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) { int ret; ret = radix_tree_preload(GFP_NOFS); if (ret) return ret; spin_lock(&fs_info->fs_roots_radix_lock); ret = radix_tree_insert(&fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid, root); if (ret == 0) { btrfs_grab_root(root); set_bit(BTRFS_ROOT_IN_RADIX, &root->state); } spin_unlock(&fs_info->fs_roots_radix_lock); radix_tree_preload_end(); return ret; } void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) { #ifdef CONFIG_BTRFS_DEBUG struct btrfs_root *root; while (!list_empty(&fs_info->allocated_roots)) { char buf[BTRFS_ROOT_NAME_BUF_LEN]; root = list_first_entry(&fs_info->allocated_roots, struct btrfs_root, leak_list); btrfs_err(fs_info, "leaked root %s refcount %d", btrfs_root_name(&root->root_key, buf), refcount_read(&root->refs)); while (refcount_read(&root->refs) > 1) btrfs_put_root(root); btrfs_put_root(root); } #endif } static void free_global_roots(struct btrfs_fs_info *fs_info) { struct btrfs_root *root; struct rb_node *node; while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { root = rb_entry(node, struct btrfs_root, rb_node); rb_erase(&root->rb_node, &fs_info->global_root_tree); btrfs_put_root(root); } } void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) { percpu_counter_destroy(&fs_info->dirty_metadata_bytes); percpu_counter_destroy(&fs_info->delalloc_bytes); percpu_counter_destroy(&fs_info->ordered_bytes); percpu_counter_destroy(&fs_info->dev_replace.bio_counter); btrfs_free_csum_hash(fs_info); btrfs_free_stripe_hash_table(fs_info); btrfs_free_ref_cache(fs_info); kfree(fs_info->balance_ctl); kfree(fs_info->delayed_root); free_global_roots(fs_info); btrfs_put_root(fs_info->tree_root); btrfs_put_root(fs_info->chunk_root); btrfs_put_root(fs_info->dev_root); btrfs_put_root(fs_info->quota_root); btrfs_put_root(fs_info->uuid_root); btrfs_put_root(fs_info->fs_root); btrfs_put_root(fs_info->data_reloc_root); btrfs_put_root(fs_info->block_group_root); btrfs_check_leaked_roots(fs_info); btrfs_extent_buffer_leak_debug_check(fs_info); kfree(fs_info->super_copy); kfree(fs_info->super_for_commit); kfree(fs_info->subpage_info); kvfree(fs_info); } /* * Get an in-memory reference of a root structure. * * For essential trees like root/extent tree, we grab it from fs_info directly. * For subvolume trees, we check the cached filesystem roots first. If not * found, then read it from disk and add it to cached fs roots. * * Caller should release the root by calling btrfs_put_root() after the usage. * * NOTE: Reloc and log trees can't be read by this function as they share the * same root objectid. * * @objectid: root id * @anon_dev: preallocated anonymous block device number for new roots, * pass NULL for a new allocation. * @check_ref: whether to check root item references, If true, return -ENOENT * for orphan roots */ static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, u64 objectid, dev_t *anon_dev, bool check_ref) { struct btrfs_root *root; struct btrfs_path *path; struct btrfs_key key; int ret; root = btrfs_get_global_root(fs_info, objectid); if (root) return root; /* * If we're called for non-subvolume trees, and above function didn't * find one, do not try to read it from disk. * * This is namely for free-space-tree and quota tree, which can change * at runtime and should only be grabbed from fs_info. */ if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) return ERR_PTR(-ENOENT); again: root = btrfs_lookup_fs_root(fs_info, objectid); if (root) { /* * Some other caller may have read out the newly inserted * subvolume already (for things like backref walk etc). Not * that common but still possible. In that case, we just need * to free the anon_dev. */ if (unlikely(anon_dev && *anon_dev)) { free_anon_bdev(*anon_dev); *anon_dev = 0; } if (check_ref && btrfs_root_refs(&root->root_item) == 0) { btrfs_put_root(root); return ERR_PTR(-ENOENT); } return root; } key.objectid = objectid; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; root = btrfs_read_tree_root(fs_info->tree_root, &key); if (IS_ERR(root)) return root; if (check_ref && btrfs_root_refs(&root->root_item) == 0) { ret = -ENOENT; goto fail; } ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); if (ret) goto fail; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto fail; } key.objectid = BTRFS_ORPHAN_OBJECTID; key.type = BTRFS_ORPHAN_ITEM_KEY; key.offset = objectid; ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); btrfs_free_path(path); if (ret < 0) goto fail; if (ret == 0) set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); ret = btrfs_insert_fs_root(fs_info, root); if (ret) { if (ret == -EEXIST) { btrfs_put_root(root); goto again; } goto fail; } return root; fail: /* * If our caller provided us an anonymous device, then it's his * responsibility to free it in case we fail. So we have to set our * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() * and once again by our caller. */ if (anon_dev && *anon_dev) root->anon_dev = 0; btrfs_put_root(root); return ERR_PTR(ret); } /* * Get in-memory reference of a root structure * * @objectid: tree objectid * @check_ref: if set, verify that the tree exists and the item has at least * one reference */ struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, u64 objectid, bool check_ref) { return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); } /* * Get in-memory reference of a root structure, created as new, optionally pass * the anonymous block device id * * @objectid: tree objectid * @anon_dev: if NULL, allocate a new anonymous block device or use the * parameter value if not NULL */ struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, u64 objectid, dev_t *anon_dev) { return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); } /* * btrfs_get_fs_root_commit_root - return a root for the given objectid * @fs_info: the fs_info * @objectid: the objectid we need to lookup * * This is exclusively used for backref walking, and exists specifically because * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref * creation time, which means we may have to read the tree_root in order to look * up a fs root that is not in memory. If the root is not in memory we will * read the tree root commit root and look up the fs root from there. This is a * temporary root, it will not be inserted into the radix tree as it doesn't * have the most uptodate information, it'll simply be discarded once the * backref code is finished using the root. */ struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, struct btrfs_path *path, u64 objectid) { struct btrfs_root *root; struct btrfs_key key; ASSERT(path->search_commit_root && path->skip_locking); /* * This can return -ENOENT if we ask for a root that doesn't exist, but * since this is called via the backref walking code we won't be looking * up a root that doesn't exist, unless there's corruption. So if root * != NULL just return it. */ root = btrfs_get_global_root(fs_info, objectid); if (root) return root; root = btrfs_lookup_fs_root(fs_info, objectid); if (root) return root; key.objectid = objectid; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; root = read_tree_root_path(fs_info->tree_root, path, &key); btrfs_release_path(path); return root; } static int cleaner_kthread(void *arg) { struct btrfs_fs_info *fs_info = arg; int again; while (1) { again = 0; set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); /* Make the cleaner go to sleep early. */ if (btrfs_need_cleaner_sleep(fs_info)) goto sleep; /* * Do not do anything if we might cause open_ctree() to block * before we have finished mounting the filesystem. */ if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) goto sleep; if (!mutex_trylock(&fs_info->cleaner_mutex)) goto sleep; /* * Avoid the problem that we change the status of the fs * during the above check and trylock. */ if (btrfs_need_cleaner_sleep(fs_info)) { mutex_unlock(&fs_info->cleaner_mutex); goto sleep; } if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) btrfs_sysfs_feature_update(fs_info); btrfs_run_delayed_iputs(fs_info); again = btrfs_clean_one_deleted_snapshot(fs_info); mutex_unlock(&fs_info->cleaner_mutex); /* * The defragger has dealt with the R/O remount and umount, * needn't do anything special here. */ btrfs_run_defrag_inodes(fs_info); /* * Acquires fs_info->reclaim_bgs_lock to avoid racing * with relocation (btrfs_relocate_chunk) and relocation * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) * after acquiring fs_info->reclaim_bgs_lock. So we * can't hold, nor need to, fs_info->cleaner_mutex when deleting * unused block groups. */ btrfs_delete_unused_bgs(fs_info); /* * Reclaim block groups in the reclaim_bgs list after we deleted * all unused block_groups. This possibly gives us some more free * space. */ btrfs_reclaim_bgs(fs_info); sleep: clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); if (kthread_should_park()) kthread_parkme(); if (kthread_should_stop()) return 0; if (!again) { set_current_state(TASK_INTERRUPTIBLE); schedule(); __set_current_state(TASK_RUNNING); } } } static int transaction_kthread(void *arg) { struct btrfs_root *root = arg; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_trans_handle *trans; struct btrfs_transaction *cur; u64 transid; time64_t delta; unsigned long delay; bool cannot_commit; do { cannot_commit = false; delay = msecs_to_jiffies(fs_info->commit_interval * 1000); mutex_lock(&fs_info->transaction_kthread_mutex); spin_lock(&fs_info->trans_lock); cur = fs_info->running_transaction; if (!cur) { spin_unlock(&fs_info->trans_lock); goto sleep; } delta = ktime_get_seconds() - cur->start_time; if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && cur->state < TRANS_STATE_COMMIT_PREP && delta < fs_info->commit_interval) { spin_unlock(&fs_info->trans_lock); delay -= msecs_to_jiffies((delta - 1) * 1000); delay = min(delay, msecs_to_jiffies(fs_info->commit_interval * 1000)); goto sleep; } transid = cur->transid; spin_unlock(&fs_info->trans_lock); /* If the file system is aborted, this will always fail. */ trans = btrfs_attach_transaction(root); if (IS_ERR(trans)) { if (PTR_ERR(trans) != -ENOENT) cannot_commit = true; goto sleep; } if (transid == trans->transid) { btrfs_commit_transaction(trans); } else { btrfs_end_transaction(trans); } sleep: wake_up_process(fs_info->cleaner_kthread); mutex_unlock(&fs_info->transaction_kthread_mutex); if (BTRFS_FS_ERROR(fs_info)) btrfs_cleanup_transaction(fs_info); if (!kthread_should_stop() && (!btrfs_transaction_blocked(fs_info) || cannot_commit)) schedule_timeout_interruptible(delay); } while (!kthread_should_stop()); return 0; } /* * This will find the highest generation in the array of root backups. The * index of the highest array is returned, or -EINVAL if we can't find * anything. * * We check to make sure the array is valid by comparing the * generation of the latest root in the array with the generation * in the super block. If they don't match we pitch it. */ static int find_newest_super_backup(struct btrfs_fs_info *info) { const u64 newest_gen = btrfs_super_generation(info->super_copy); u64 cur; struct btrfs_root_backup *root_backup; int i; for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { root_backup = info->super_copy->super_roots + i; cur = btrfs_backup_tree_root_gen(root_backup); if (cur == newest_gen) return i; } return -EINVAL; } /* * copy all the root pointers into the super backup array. * this will bump the backup pointer by one when it is * done */ static void backup_super_roots(struct btrfs_fs_info *info) { const int next_backup = info->backup_root_index; struct btrfs_root_backup *root_backup; root_backup = info->super_for_commit->super_roots + next_backup; /* * make sure all of our padding and empty slots get zero filled * regardless of which ones we use today */ memset(root_backup, 0, sizeof(*root_backup)); info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); btrfs_set_backup_tree_root_gen(root_backup, btrfs_header_generation(info->tree_root->node)); btrfs_set_backup_tree_root_level(root_backup, btrfs_header_level(info->tree_root->node)); btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); btrfs_set_backup_chunk_root_gen(root_backup, btrfs_header_generation(info->chunk_root->node)); btrfs_set_backup_chunk_root_level(root_backup, btrfs_header_level(info->chunk_root->node)); if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { struct btrfs_root *extent_root = btrfs_extent_root(info, 0); struct btrfs_root *csum_root = btrfs_csum_root(info, 0); btrfs_set_backup_extent_root(root_backup, extent_root->node->start); btrfs_set_backup_extent_root_gen(root_backup, btrfs_header_generation(extent_root->node)); btrfs_set_backup_extent_root_level(root_backup, btrfs_header_level(extent_root->node)); btrfs_set_backup_csum_root(root_backup, csum_root->node->start); btrfs_set_backup_csum_root_gen(root_backup, btrfs_header_generation(csum_root->node)); btrfs_set_backup_csum_root_level(root_backup, btrfs_header_level(csum_root->node)); } /* * we might commit during log recovery, which happens before we set * the fs_root. Make sure it is valid before we fill it in. */ if (info->fs_root && info->fs_root->node) { btrfs_set_backup_fs_root(root_backup, info->fs_root->node->start); btrfs_set_backup_fs_root_gen(root_backup, btrfs_header_generation(info->fs_root->node)); btrfs_set_backup_fs_root_level(root_backup, btrfs_header_level(info->fs_root->node)); } btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); btrfs_set_backup_dev_root_gen(root_backup, btrfs_header_generation(info->dev_root->node)); btrfs_set_backup_dev_root_level(root_backup, btrfs_header_level(info->dev_root->node)); btrfs_set_backup_total_bytes(root_backup, btrfs_super_total_bytes(info->super_copy)); btrfs_set_backup_bytes_used(root_backup, btrfs_super_bytes_used(info->super_copy)); btrfs_set_backup_num_devices(root_backup, btrfs_super_num_devices(info->super_copy)); /* * if we don't copy this out to the super_copy, it won't get remembered * for the next commit */ memcpy(&info->super_copy->super_roots, &info->super_for_commit->super_roots, sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); } /* * read_backup_root - Reads a backup root based on the passed priority. Prio 0 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots * * fs_info - filesystem whose backup roots need to be read * priority - priority of backup root required * * Returns backup root index on success and -EINVAL otherwise. */ static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) { int backup_index = find_newest_super_backup(fs_info); struct btrfs_super_block *super = fs_info->super_copy; struct btrfs_root_backup *root_backup; if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { if (priority == 0) return backup_index; backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; backup_index %= BTRFS_NUM_BACKUP_ROOTS; } else { return -EINVAL; } root_backup = super->super_roots + backup_index; btrfs_set_super_generation(super, btrfs_backup_tree_root_gen(root_backup)); btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); btrfs_set_super_root_level(super, btrfs_backup_tree_root_level(root_backup)); btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); /* * Fixme: the total bytes and num_devices need to match or we should * need a fsck */ btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); return backup_index; } /* helper to cleanup workers */ static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) { btrfs_destroy_workqueue(fs_info->fixup_workers); btrfs_destroy_workqueue(fs_info->delalloc_workers); btrfs_destroy_workqueue(fs_info->workers); if (fs_info->endio_workers) destroy_workqueue(fs_info->endio_workers); if (fs_info->rmw_workers) destroy_workqueue(fs_info->rmw_workers); if (fs_info->compressed_write_workers) destroy_workqueue(fs_info->compressed_write_workers); btrfs_destroy_workqueue(fs_info->endio_write_workers); btrfs_destroy_workqueue(fs_info->endio_freespace_worker); btrfs_destroy_workqueue(fs_info->delayed_workers); btrfs_destroy_workqueue(fs_info->caching_workers); btrfs_destroy_workqueue(fs_info->flush_workers); btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); if (fs_info->discard_ctl.discard_workers) destroy_workqueue(fs_info->discard_ctl.discard_workers); /* * Now that all other work queues are destroyed, we can safely destroy * the queues used for metadata I/O, since tasks from those other work * queues can do metadata I/O operations. */ if (fs_info->endio_meta_workers) destroy_workqueue(fs_info->endio_meta_workers); } static void free_root_extent_buffers(struct btrfs_root *root) { if (root) { free_extent_buffer(root->node); free_extent_buffer(root->commit_root); root->node = NULL; root->commit_root = NULL; } } static void free_global_root_pointers(struct btrfs_fs_info *fs_info) { struct btrfs_root *root, *tmp; rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree, rb_node) free_root_extent_buffers(root); } /* helper to cleanup tree roots */ static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) { free_root_extent_buffers(info->tree_root); free_global_root_pointers(info); free_root_extent_buffers(info->dev_root); free_root_extent_buffers(info->quota_root); free_root_extent_buffers(info->uuid_root); free_root_extent_buffers(info->fs_root); free_root_extent_buffers(info->data_reloc_root); free_root_extent_buffers(info->block_group_root); if (free_chunk_root) free_root_extent_buffers(info->chunk_root); } void btrfs_put_root(struct btrfs_root *root) { if (!root) return; if (refcount_dec_and_test(&root->refs)) { WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); if (root->anon_dev) free_anon_bdev(root->anon_dev); free_root_extent_buffers(root); #ifdef CONFIG_BTRFS_DEBUG spin_lock(&root->fs_info->fs_roots_radix_lock); list_del_init(&root->leak_list); spin_unlock(&root->fs_info->fs_roots_radix_lock); #endif kfree(root); } } void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) { int ret; struct btrfs_root *gang[8]; int i; while (!list_empty(&fs_info->dead_roots)) { gang[0] = list_entry(fs_info->dead_roots.next, struct btrfs_root, root_list); list_del(&gang[0]->root_list); if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) btrfs_drop_and_free_fs_root(fs_info, gang[0]); btrfs_put_root(gang[0]); } while (1) { ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, (void **)gang, 0, ARRAY_SIZE(gang)); if (!ret) break; for (i = 0; i < ret; i++) btrfs_drop_and_free_fs_root(fs_info, gang[i]); } } static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) { mutex_init(&fs_info->scrub_lock); atomic_set(&fs_info->scrubs_running, 0); atomic_set(&fs_info->scrub_pause_req, 0); atomic_set(&fs_info->scrubs_paused, 0); atomic_set(&fs_info->scrub_cancel_req, 0); init_waitqueue_head(&fs_info->scrub_pause_wait); refcount_set(&fs_info->scrub_workers_refcnt, 0); } static void btrfs_init_balance(struct btrfs_fs_info *fs_info) { spin_lock_init(&fs_info->balance_lock); mutex_init(&fs_info->balance_mutex); atomic_set(&fs_info->balance_pause_req, 0); atomic_set(&fs_info->balance_cancel_req, 0); fs_info->balance_ctl = NULL; init_waitqueue_head(&fs_info->balance_wait_q); atomic_set(&fs_info->reloc_cancel_req, 0); } static int btrfs_init_btree_inode(struct super_block *sb) { struct btrfs_fs_info *fs_info = btrfs_sb(sb); unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, fs_info->tree_root); struct inode *inode; inode = new_inode(sb); if (!inode) return -ENOMEM; inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; set_nlink(inode, 1); /* * we set the i_size on the btree inode to the max possible int. * the real end of the address space is determined by all of * the devices in the system */ inode->i_size = OFFSET_MAX; inode->i_mapping->a_ops = &btree_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, IO_TREE_BTREE_INODE_IO); extent_map_tree_init(&BTRFS_I(inode)->extent_tree); BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; BTRFS_I(inode)->location.type = 0; BTRFS_I(inode)->location.offset = 0; set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); __insert_inode_hash(inode, hash); fs_info->btree_inode = inode; return 0; } static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) { mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); init_rwsem(&fs_info->dev_replace.rwsem); init_waitqueue_head(&fs_info->dev_replace.replace_wait); } static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) { spin_lock_init(&fs_info->qgroup_lock); mutex_init(&fs_info->qgroup_ioctl_lock); fs_info->qgroup_tree = RB_ROOT; INIT_LIST_HEAD(&fs_info->dirty_qgroups); fs_info->qgroup_seq = 1; fs_info->qgroup_ulist = NULL; fs_info->qgroup_rescan_running = false; fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; mutex_init(&fs_info->qgroup_rescan_lock); } static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) { u32 max_active = fs_info->thread_pool_size; unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; fs_info->workers = btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); fs_info->delalloc_workers = btrfs_alloc_workqueue(fs_info, "delalloc", flags, max_active, 2); fs_info->flush_workers = btrfs_alloc_workqueue(fs_info, "flush_delalloc", flags, max_active, 0); fs_info->caching_workers = btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); fs_info->fixup_workers = btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); fs_info->endio_workers = alloc_workqueue("btrfs-endio", flags, max_active); fs_info->endio_meta_workers = alloc_workqueue("btrfs-endio-meta", flags, max_active); fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); fs_info->endio_write_workers = btrfs_alloc_workqueue(fs_info, "endio-write", flags, max_active, 2); fs_info->compressed_write_workers = alloc_workqueue("btrfs-compressed-write", flags, max_active); fs_info->endio_freespace_worker = btrfs_alloc_workqueue(fs_info, "freespace-write", flags, max_active, 0); fs_info->delayed_workers = btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, max_active, 0); fs_info->qgroup_rescan_workers = btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", ordered_flags); fs_info->discard_ctl.discard_workers = alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); if (!(fs_info->workers && fs_info->delalloc_workers && fs_info->flush_workers && fs_info->endio_workers && fs_info->endio_meta_workers && fs_info->compressed_write_workers && fs_info->endio_write_workers && fs_info->endio_freespace_worker && fs_info->rmw_workers && fs_info->caching_workers && fs_info->fixup_workers && fs_info->delayed_workers && fs_info->qgroup_rescan_workers && fs_info->discard_ctl.discard_workers)) { return -ENOMEM; } return 0; } static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) { struct crypto_shash *csum_shash; const char *csum_driver = btrfs_super_csum_driver(csum_type); csum_shash = crypto_alloc_shash(csum_driver, 0, 0); if (IS_ERR(csum_shash)) { btrfs_err(fs_info, "error allocating %s hash for checksum", csum_driver); return PTR_ERR(csum_shash); } fs_info->csum_shash = csum_shash; /* * Check if the checksum implementation is a fast accelerated one. * As-is this is a bit of a hack and should be replaced once the csum * implementations provide that information themselves. */ switch (csum_type) { case BTRFS_CSUM_TYPE_CRC32: if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); break; case BTRFS_CSUM_TYPE_XXHASH: set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); break; default: break; } btrfs_info(fs_info, "using %s (%s) checksum algorithm", btrfs_super_csum_name(csum_type), crypto_shash_driver_name(csum_shash)); return 0; } static int btrfs_replay_log(struct btrfs_fs_info *fs_info, struct btrfs_fs_devices *fs_devices) { int ret; struct btrfs_tree_parent_check check = { 0 }; struct btrfs_root *log_tree_root; struct btrfs_super_block *disk_super = fs_info->super_copy; u64 bytenr = btrfs_super_log_root(disk_super); int level = btrfs_super_log_root_level(disk_super); if (fs_devices->rw_devices == 0) { btrfs_warn(fs_info, "log replay required on RO media"); return -EIO; } log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_KERNEL); if (!log_tree_root) return -ENOMEM; check.level = level; check.transid = fs_info->generation + 1; check.owner_root = BTRFS_TREE_LOG_OBJECTID; log_tree_root->node = read_tree_block(fs_info, bytenr, &check); if (IS_ERR(log_tree_root->node)) { btrfs_warn(fs_info, "failed to read log tree"); ret = PTR_ERR(log_tree_root->node); log_tree_root->node = NULL; btrfs_put_root(log_tree_root); return ret; } if (!extent_buffer_uptodate(log_tree_root->node)) { btrfs_err(fs_info, "failed to read log tree"); btrfs_put_root(log_tree_root); return -EIO; } /* returns with log_tree_root freed on success */ ret = btrfs_recover_log_trees(log_tree_root); if (ret) { btrfs_handle_fs_error(fs_info, ret, "Failed to recover log tree"); btrfs_put_root(log_tree_root); return ret; } if (sb_rdonly(fs_info->sb)) { ret = btrfs_commit_super(fs_info); if (ret) return ret; } return 0; } static int load_global_roots_objectid(struct btrfs_root *tree_root, struct btrfs_path *path, u64 objectid, const char *name) { struct btrfs_fs_info *fs_info = tree_root->fs_info; struct btrfs_root *root; u64 max_global_id = 0; int ret; struct btrfs_key key = { .objectid = objectid, .type = BTRFS_ROOT_ITEM_KEY, .offset = 0, }; bool found = false; /* If we have IGNOREDATACSUMS skip loading these roots. */ if (objectid == BTRFS_CSUM_TREE_OBJECTID && btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); return 0; } while (1) { ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); if (ret < 0) break; if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(tree_root, path); if (ret) { if (ret > 0) ret = 0; break; } } ret = 0; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.objectid != objectid) break; btrfs_release_path(path); /* * Just worry about this for extent tree, it'll be the same for * everybody. */ if (objectid == BTRFS_EXTENT_TREE_OBJECTID) max_global_id = max(max_global_id, key.offset); found = true; root = read_tree_root_path(tree_root, path, &key); if (IS_ERR(root)) { if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) ret = PTR_ERR(root); break; } set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); ret = btrfs_global_root_insert(root); if (ret) { btrfs_put_root(root); break; } key.offset++; } btrfs_release_path(path); if (objectid == BTRFS_EXTENT_TREE_OBJECTID) fs_info->nr_global_roots = max_global_id + 1; if (!found || ret) { if (objectid == BTRFS_CSUM_TREE_OBJECTID) set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) ret = ret ? ret : -ENOENT; else ret = 0; btrfs_err(fs_info, "failed to load root %s", name); } return ret; } static int load_global_roots(struct btrfs_root *tree_root) { struct btrfs_path *path; int ret = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = load_global_roots_objectid(tree_root, path, BTRFS_EXTENT_TREE_OBJECTID, "extent"); if (ret) goto out; ret = load_global_roots_objectid(tree_root, path, BTRFS_CSUM_TREE_OBJECTID, "csum"); if (ret) goto out; if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) goto out; ret = load_global_roots_objectid(tree_root, path, BTRFS_FREE_SPACE_TREE_OBJECTID, "free space"); out: btrfs_free_path(path); return ret; } static int btrfs_read_roots(struct btrfs_fs_info *fs_info) { struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *root; struct btrfs_key location; int ret; BUG_ON(!fs_info->tree_root); ret = load_global_roots(tree_root); if (ret) return ret; location.type = BTRFS_ROOT_ITEM_KEY; location.offset = 0; if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; root = btrfs_read_tree_root(tree_root, &location); if (IS_ERR(root)) { if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { ret = PTR_ERR(root); goto out; } } else { set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); fs_info->block_group_root = root; } } location.objectid = BTRFS_DEV_TREE_OBJECTID; root = btrfs_read_tree_root(tree_root, &location); if (IS_ERR(root)) { if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { ret = PTR_ERR(root); goto out; } } else { set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); fs_info->dev_root = root; } /* Initialize fs_info for all devices in any case */ ret = btrfs_init_devices_late(fs_info); if (ret) goto out; /* * This tree can share blocks with some other fs tree during relocation * and we need a proper setup by btrfs_get_fs_root */ root = btrfs_get_fs_root(tree_root->fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID, true); if (IS_ERR(root)) { if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { ret = PTR_ERR(root); goto out; } } else { set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); fs_info->data_reloc_root = root; } location.objectid = BTRFS_QUOTA_TREE_OBJECTID; root = btrfs_read_tree_root(tree_root, &location); if (!IS_ERR(root)) { set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); fs_info->quota_root = root; } location.objectid = BTRFS_UUID_TREE_OBJECTID; root = btrfs_read_tree_root(tree_root, &location); if (IS_ERR(root)) { if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { ret = PTR_ERR(root); if (ret != -ENOENT) goto out; } } else { set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); fs_info->uuid_root = root; } return 0; out: btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", location.objectid, ret); return ret; } /* * Real super block validation * NOTE: super csum type and incompat features will not be checked here. * * @sb: super block to check * @mirror_num: the super block number to check its bytenr: * 0 the primary (1st) sb * 1, 2 2nd and 3rd backup copy * -1 skip bytenr check */ int btrfs_validate_super(struct btrfs_fs_info *fs_info, struct btrfs_super_block *sb, int mirror_num) { u64 nodesize = btrfs_super_nodesize(sb); u64 sectorsize = btrfs_super_sectorsize(sb); int ret = 0; if (btrfs_super_magic(sb) != BTRFS_MAGIC) { btrfs_err(fs_info, "no valid FS found"); ret = -EINVAL; } if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); ret = -EINVAL; } if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { btrfs_err(fs_info, "tree_root level too big: %d >= %d", btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); ret = -EINVAL; } if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { btrfs_err(fs_info, "chunk_root level too big: %d >= %d", btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); ret = -EINVAL; } if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { btrfs_err(fs_info, "log_root level too big: %d >= %d", btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); ret = -EINVAL; } /* * Check sectorsize and nodesize first, other check will need it. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. */ if (!is_power_of_2(sectorsize) || sectorsize < 4096 || sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); ret = -EINVAL; } /* * We only support at most two sectorsizes: 4K and PAGE_SIZE. * * We can support 16K sectorsize with 64K page size without problem, * but such sectorsize/pagesize combination doesn't make much sense. * 4K will be our future standard, PAGE_SIZE is supported from the very * beginning. */ if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { btrfs_err(fs_info, "sectorsize %llu not yet supported for page size %lu", sectorsize, PAGE_SIZE); ret = -EINVAL; } if (!is_power_of_2(nodesize) || nodesize < sectorsize || nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { btrfs_err(fs_info, "invalid nodesize %llu", nodesize); ret = -EINVAL; } if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { btrfs_err(fs_info, "invalid leafsize %u, should be %llu", le32_to_cpu(sb->__unused_leafsize), nodesize); ret = -EINVAL; } /* Root alignment check */ if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { btrfs_warn(fs_info, "tree_root block unaligned: %llu", btrfs_super_root(sb)); ret = -EINVAL; } if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { btrfs_warn(fs_info, "chunk_root block unaligned: %llu", btrfs_super_chunk_root(sb)); ret = -EINVAL; } if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { btrfs_warn(fs_info, "log_root block unaligned: %llu", btrfs_super_log_root(sb)); ret = -EINVAL; } if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { btrfs_err(fs_info, "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", sb->fsid, fs_info->fs_devices->fsid); ret = -EINVAL; } if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), BTRFS_FSID_SIZE) != 0) { btrfs_err(fs_info, "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); ret = -EINVAL; } if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) { btrfs_err(fs_info, "dev_item UUID does not match metadata fsid: %pU != %pU", fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); ret = -EINVAL; } /* * Artificial requirement for block-group-tree to force newer features * (free-space-tree, no-holes) so the test matrix is smaller. */ if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || !btrfs_fs_incompat(fs_info, NO_HOLES))) { btrfs_err(fs_info, "block-group-tree feature requires fres-space-tree and no-holes"); ret = -EINVAL; } /* * Hint to catch really bogus numbers, bitflips or so, more exact checks are * done later */ if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { btrfs_err(fs_info, "bytes_used is too small %llu", btrfs_super_bytes_used(sb)); ret = -EINVAL; } if (!is_power_of_2(btrfs_super_stripesize(sb))) { btrfs_err(fs_info, "invalid stripesize %u", btrfs_super_stripesize(sb)); ret = -EINVAL; } if (btrfs_super_num_devices(sb) > (1UL << 31)) btrfs_warn(fs_info, "suspicious number of devices: %llu", btrfs_super_num_devices(sb)); if (btrfs_super_num_devices(sb) == 0) { btrfs_err(fs_info, "number of devices is 0"); ret = -EINVAL; } if (mirror_num >= 0 && btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { btrfs_err(fs_info, "super offset mismatch %llu != %u", btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); ret = -EINVAL; } /* * Obvious sys_chunk_array corruptions, it must hold at least one key * and one chunk */ if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { btrfs_err(fs_info, "system chunk array too big %u > %u", btrfs_super_sys_array_size(sb), BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); ret = -EINVAL; } if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) + sizeof(struct btrfs_chunk)) { btrfs_err(fs_info, "system chunk array too small %u < %zu", btrfs_super_sys_array_size(sb), sizeof(struct btrfs_disk_key) + sizeof(struct btrfs_chunk)); ret = -EINVAL; } /* * The generation is a global counter, we'll trust it more than the others * but it's still possible that it's the one that's wrong. */ if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) btrfs_warn(fs_info, "suspicious: generation < chunk_root_generation: %llu < %llu", btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) && btrfs_super_cache_generation(sb) != (u64)-1) btrfs_warn(fs_info, "suspicious: generation < cache_generation: %llu < %llu", btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); return ret; } /* * Validation of super block at mount time. * Some checks already done early at mount time, like csum type and incompat * flags will be skipped. */ static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) { return btrfs_validate_super(fs_info, fs_info->super_copy, 0); } /* * Validation of super block at write time. * Some checks like bytenr check will be skipped as their values will be * overwritten soon. * Extra checks like csum type and incompat flags will be done here. */ static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, struct btrfs_super_block *sb) { int ret; ret = btrfs_validate_super(fs_info, sb, -1); if (ret < 0) goto out; if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { ret = -EUCLEAN; btrfs_err(fs_info, "invalid csum type, has %u want %u", btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); goto out; } if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { ret = -EUCLEAN; btrfs_err(fs_info, "invalid incompat flags, has 0x%llx valid mask 0x%llx", btrfs_super_incompat_flags(sb), (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); goto out; } out: if (ret < 0) btrfs_err(fs_info, "super block corruption detected before writing it to disk"); return ret; } static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) { struct btrfs_tree_parent_check check = { .level = level, .transid = gen, .owner_root = root->root_key.objectid }; int ret = 0; root->node = read_tree_block(root->fs_info, bytenr, &check); if (IS_ERR(root->node)) { ret = PTR_ERR(root->node); root->node = NULL; return ret; } if (!extent_buffer_uptodate(root->node)) { free_extent_buffer(root->node); root->node = NULL; return -EIO; } btrfs_set_root_node(&root->root_item, root->node); root->commit_root = btrfs_root_node(root); btrfs_set_root_refs(&root->root_item, 1); return ret; } static int load_important_roots(struct btrfs_fs_info *fs_info) { struct btrfs_super_block *sb = fs_info->super_copy; u64 gen, bytenr; int level, ret; bytenr = btrfs_super_root(sb); gen = btrfs_super_generation(sb); level = btrfs_super_root_level(sb); ret = load_super_root(fs_info->tree_root, bytenr, gen, level); if (ret) { btrfs_warn(fs_info, "couldn't read tree root"); return ret; } return 0; } static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) { int backup_index = find_newest_super_backup(fs_info); struct btrfs_super_block *sb = fs_info->super_copy; struct btrfs_root *tree_root = fs_info->tree_root; bool handle_error = false; int ret = 0; int i; for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { if (handle_error) { if (!IS_ERR(tree_root->node)) free_extent_buffer(tree_root->node); tree_root->node = NULL; if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) break; free_root_pointers(fs_info, 0); /* * Don't use the log in recovery mode, it won't be * valid */ btrfs_set_super_log_root(sb, 0); /* We can't trust the free space cache either */ btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); btrfs_warn(fs_info, "try to load backup roots slot %d", i); ret = read_backup_root(fs_info, i); backup_index = ret; if (ret < 0) return ret; } ret = load_important_roots(fs_info); if (ret) { handle_error = true; continue; } /* * No need to hold btrfs_root::objectid_mutex since the fs * hasn't been fully initialised and we are the only user */ ret = btrfs_init_root_free_objectid(tree_root); if (ret < 0) { handle_error = true; continue; } ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); ret = btrfs_read_roots(fs_info); if (ret < 0) { handle_error = true; continue; } /* All successful */ fs_info->generation = btrfs_header_generation(tree_root->node); fs_info->last_trans_committed = fs_info->generation; fs_info->last_reloc_trans = 0; /* Always begin writing backup roots after the one being used */ if (backup_index < 0) { fs_info->backup_root_index = 0; } else { fs_info->backup_root_index = backup_index + 1; fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; } break; } return ret; } void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) { INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); INIT_LIST_HEAD(&fs_info->trans_list); INIT_LIST_HEAD(&fs_info->dead_roots); INIT_LIST_HEAD(&fs_info->delayed_iputs); INIT_LIST_HEAD(&fs_info->delalloc_roots); INIT_LIST_HEAD(&fs_info->caching_block_groups); spin_lock_init(&fs_info->delalloc_root_lock); spin_lock_init(&fs_info->trans_lock); spin_lock_init(&fs_info->fs_roots_radix_lock); spin_lock_init(&fs_info->delayed_iput_lock); spin_lock_init(&fs_info->defrag_inodes_lock); spin_lock_init(&fs_info->super_lock); spin_lock_init(&fs_info->buffer_lock); spin_lock_init(&fs_info->unused_bgs_lock); spin_lock_init(&fs_info->treelog_bg_lock); spin_lock_init(&fs_info->zone_active_bgs_lock); spin_lock_init(&fs_info->relocation_bg_lock); rwlock_init(&fs_info->tree_mod_log_lock); rwlock_init(&fs_info->global_root_lock); mutex_init(&fs_info->unused_bg_unpin_mutex); mutex_init(&fs_info->reclaim_bgs_lock); mutex_init(&fs_info->reloc_mutex); mutex_init(&fs_info->delalloc_root_mutex); mutex_init(&fs_info->zoned_meta_io_lock); mutex_init(&fs_info->zoned_data_reloc_io_lock); seqlock_init(&fs_info->profiles_lock); btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, BTRFS_LOCKDEP_TRANS_UNBLOCKED); btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, BTRFS_LOCKDEP_TRANS_COMPLETED); INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); INIT_LIST_HEAD(&fs_info->space_info); INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); INIT_LIST_HEAD(&fs_info->unused_bgs); INIT_LIST_HEAD(&fs_info->reclaim_bgs); INIT_LIST_HEAD(&fs_info->zone_active_bgs); #ifdef CONFIG_BTRFS_DEBUG INIT_LIST_HEAD(&fs_info->allocated_roots); INIT_LIST_HEAD(&fs_info->allocated_ebs); spin_lock_init(&fs_info->eb_leak_lock); #endif extent_map_tree_init(&fs_info->mapping_tree); btrfs_init_block_rsv(&fs_info->global_block_rsv, BTRFS_BLOCK_RSV_GLOBAL); btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); btrfs_init_block_rsv(&fs_info->delayed_block_rsv, BTRFS_BLOCK_RSV_DELOPS); btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, BTRFS_BLOCK_RSV_DELREFS); atomic_set(&fs_info->async_delalloc_pages, 0); atomic_set(&fs_info->defrag_running, 0); atomic_set(&fs_info->nr_delayed_iputs, 0); atomic64_set(&fs_info->tree_mod_seq, 0); fs_info->global_root_tree = RB_ROOT; fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; fs_info->metadata_ratio = 0; fs_info->defrag_inodes = RB_ROOT; atomic64_set(&fs_info->free_chunk_space, 0); fs_info->tree_mod_log = RB_ROOT; fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; btrfs_init_ref_verify(fs_info); fs_info->thread_pool_size = min_t(unsigned long, num_online_cpus() + 2, 8); INIT_LIST_HEAD(&fs_info->ordered_roots); spin_lock_init(&fs_info->ordered_root_lock); btrfs_init_scrub(fs_info); #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY fs_info->check_integrity_print_mask = 0; #endif btrfs_init_balance(fs_info); btrfs_init_async_reclaim_work(fs_info); rwlock_init(&fs_info->block_group_cache_lock); fs_info->block_group_cache_tree = RB_ROOT_CACHED; extent_io_tree_init(fs_info, &fs_info->excluded_extents, IO_TREE_FS_EXCLUDED_EXTENTS); mutex_init(&fs_info->ordered_operations_mutex); mutex_init(&fs_info->tree_log_mutex); mutex_init(&fs_info->chunk_mutex); mutex_init(&fs_info->transaction_kthread_mutex); mutex_init(&fs_info->cleaner_mutex); mutex_init(&fs_info->ro_block_group_mutex); init_rwsem(&fs_info->commit_root_sem); init_rwsem(&fs_info->cleanup_work_sem); init_rwsem(&fs_info->subvol_sem); sema_init(&fs_info->uuid_tree_rescan_sem, 1); btrfs_init_dev_replace_locks(fs_info); btrfs_init_qgroup(fs_info); btrfs_discard_init(fs_info); btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); btrfs_init_free_cluster(&fs_info->data_alloc_cluster); init_waitqueue_head(&fs_info->transaction_throttle); init_waitqueue_head(&fs_info->transaction_wait); init_waitqueue_head(&fs_info->transaction_blocked_wait); init_waitqueue_head(&fs_info->async_submit_wait); init_waitqueue_head(&fs_info->delayed_iputs_wait); /* Usable values until the real ones are cached from the superblock */ fs_info->nodesize = 4096; fs_info->sectorsize = 4096; fs_info->sectorsize_bits = ilog2(4096); fs_info->stripesize = 4096; fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; spin_lock_init(&fs_info->swapfile_pins_lock); fs_info->swapfile_pins = RB_ROOT; fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); } static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) { int ret; fs_info->sb = sb; /* Temporary fixed values for block size until we read the superblock. */ sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); if (ret) return ret; ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); if (ret) return ret; fs_info->dirty_metadata_batch = PAGE_SIZE * (1 + ilog2(nr_cpu_ids)); ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); if (ret) return ret; ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, GFP_KERNEL); if (ret) return ret; fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), GFP_KERNEL); if (!fs_info->delayed_root) return -ENOMEM; btrfs_init_delayed_root(fs_info->delayed_root); if (sb_rdonly(sb)) set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); return btrfs_alloc_stripe_hash_table(fs_info); } static int btrfs_uuid_rescan_kthread(void *data) { struct btrfs_fs_info *fs_info = data; int ret; /* * 1st step is to iterate through the existing UUID tree and * to delete all entries that contain outdated data. * 2nd step is to add all missing entries to the UUID tree. */ ret = btrfs_uuid_tree_iterate(fs_info); if (ret < 0) { if (ret != -EINTR) btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); up(&fs_info->uuid_tree_rescan_sem); return ret; } return btrfs_uuid_scan_kthread(data); } static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) { struct task_struct *task; down(&fs_info->uuid_tree_rescan_sem); task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); if (IS_ERR(task)) { /* fs_info->update_uuid_tree_gen remains 0 in all error case */ btrfs_warn(fs_info, "failed to start uuid_rescan task"); up(&fs_info->uuid_tree_rescan_sem); return PTR_ERR(task); } return 0; } static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) { u64 root_objectid = 0; struct btrfs_root *gang[8]; int i = 0; int err = 0; unsigned int ret = 0; while (1) { spin_lock(&fs_info->fs_roots_radix_lock); ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, (void **)gang, root_objectid, ARRAY_SIZE(gang)); if (!ret) { spin_unlock(&fs_info->fs_roots_radix_lock); break; } root_objectid = gang[ret - 1]->root_key.objectid + 1; for (i = 0; i < ret; i++) { /* Avoid to grab roots in dead_roots. */ if (btrfs_root_refs(&gang[i]->root_item) == 0) { gang[i] = NULL; continue; } /* Grab all the search result for later use. */ gang[i] = btrfs_grab_root(gang[i]); } spin_unlock(&fs_info->fs_roots_radix_lock); for (i = 0; i < ret; i++) { if (!gang[i]) continue; root_objectid = gang[i]->root_key.objectid; err = btrfs_orphan_cleanup(gang[i]); if (err) goto out; btrfs_put_root(gang[i]); } root_objectid++; } out: /* Release the uncleaned roots due to error. */ for (; i < ret; i++) { if (gang[i]) btrfs_put_root(gang[i]); } return err; } /* * Some options only have meaning at mount time and shouldn't persist across * remounts, or be displayed. Clear these at the end of mount and remount * code paths. */ void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) { btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); } /* * Mounting logic specific to read-write file systems. Shared by open_ctree * and btrfs_remount when remounting from read-only to read-write. */ int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) { int ret; const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); bool rebuild_free_space_tree = false; if (btrfs_test_opt(fs_info, CLEAR_CACHE) && btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { rebuild_free_space_tree = true; } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { btrfs_warn(fs_info, "free space tree is invalid"); rebuild_free_space_tree = true; } if (rebuild_free_space_tree) { btrfs_info(fs_info, "rebuilding free space tree"); ret = btrfs_rebuild_free_space_tree(fs_info); if (ret) { btrfs_warn(fs_info, "failed to rebuild free space tree: %d", ret); goto out; } } if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { btrfs_info(fs_info, "disabling free space tree"); ret = btrfs_delete_free_space_tree(fs_info); if (ret) { btrfs_warn(fs_info, "failed to disable free space tree: %d", ret); goto out; } } /* * btrfs_find_orphan_roots() is responsible for finding all the dead * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load * them into the fs_info->fs_roots_radix tree. This must be done before * calling btrfs_orphan_cleanup() on the tree root. If we don't do it * first, then btrfs_orphan_cleanup() will delete a dead root's orphan * item before the root's tree is deleted - this means that if we unmount * or crash before the deletion completes, on the next mount we will not * delete what remains of the tree because the orphan item does not * exists anymore, which is what tells us we have a pending deletion. */ ret = btrfs_find_orphan_roots(fs_info); if (ret) goto out; ret = btrfs_cleanup_fs_roots(fs_info); if (ret) goto out; down_read(&fs_info->cleanup_work_sem); if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { up_read(&fs_info->cleanup_work_sem); goto out; } up_read(&fs_info->cleanup_work_sem); mutex_lock(&fs_info->cleaner_mutex); ret = btrfs_recover_relocation(fs_info); mutex_unlock(&fs_info->cleaner_mutex); if (ret < 0) { btrfs_warn(fs_info, "failed to recover relocation: %d", ret); goto out; } if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { btrfs_info(fs_info, "creating free space tree"); ret = btrfs_create_free_space_tree(fs_info); if (ret) { btrfs_warn(fs_info, "failed to create free space tree: %d", ret); goto out; } } if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); if (ret) goto out; } ret = btrfs_resume_balance_async(fs_info); if (ret) goto out; ret = btrfs_resume_dev_replace_async(fs_info); if (ret) { btrfs_warn(fs_info, "failed to resume dev_replace"); goto out; } btrfs_qgroup_rescan_resume(fs_info); if (!fs_info->uuid_root) { btrfs_info(fs_info, "creating UUID tree"); ret = btrfs_create_uuid_tree(fs_info); if (ret) { btrfs_warn(fs_info, "failed to create the UUID tree %d", ret); goto out; } } out: return ret; } /* * Do various sanity and dependency checks of different features. * * @is_rw_mount: If the mount is read-write. * * This is the place for less strict checks (like for subpage or artificial * feature dependencies). * * For strict checks or possible corruption detection, see * btrfs_validate_super(). * * This should be called after btrfs_parse_options(), as some mount options * (space cache related) can modify on-disk format like free space tree and * screw up certain feature dependencies. */ int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) { struct btrfs_super_block *disk_super = fs_info->super_copy; u64 incompat = btrfs_super_incompat_flags(disk_super); const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { btrfs_err(fs_info, "cannot mount because of unknown incompat features (0x%llx)", incompat); return -EINVAL; } /* Runtime limitation for mixed block groups. */ if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && (fs_info->sectorsize != fs_info->nodesize)) { btrfs_err(fs_info, "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", fs_info->nodesize, fs_info->sectorsize); return -EINVAL; } /* Mixed backref is an always-enabled feature. */ incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; /* Set compression related flags just in case. */ if (fs_info->compress_type == BTRFS_COMPRESS_LZO) incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; /* * An ancient flag, which should really be marked deprecated. * Such runtime limitation doesn't really need a incompat flag. */ if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; if (compat_ro_unsupp && is_rw_mount) { btrfs_err(fs_info, "cannot mount read-write because of unknown compat_ro features (0x%llx)", compat_ro); return -EINVAL; } /* * We have unsupported RO compat features, although RO mounted, we * should not cause any metadata writes, including log replay. * Or we could screw up whatever the new feature requires. */ if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && !btrfs_test_opt(fs_info, NOLOGREPLAY)) { btrfs_err(fs_info, "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", compat_ro); return -EINVAL; } /* * Artificial limitations for block group tree, to force * block-group-tree to rely on no-holes and free-space-tree. */ if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && (!btrfs_fs_incompat(fs_info, NO_HOLES) || !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { btrfs_err(fs_info, "block-group-tree feature requires no-holes and free-space-tree features"); return -EINVAL; } /* * Subpage runtime limitation on v1 cache. * * V1 space cache still has some hard codeed PAGE_SIZE usage, while * we're already defaulting to v2 cache, no need to bother v1 as it's * going to be deprecated anyway. */ if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { btrfs_warn(fs_info, "v1 space cache is not supported for page size %lu with sectorsize %u", PAGE_SIZE, fs_info->sectorsize); return -EINVAL; } /* This can be called by remount, we need to protect the super block. */ spin_lock(&fs_info->super_lock); btrfs_set_super_incompat_flags(disk_super, incompat); spin_unlock(&fs_info->super_lock); return 0; } int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, char *options) { u32 sectorsize; u32 nodesize; u32 stripesize; u64 generation; u64 features; u16 csum_type; struct btrfs_super_block *disk_super; struct btrfs_fs_info *fs_info = btrfs_sb(sb); struct btrfs_root *tree_root; struct btrfs_root *chunk_root; int ret; int level; ret = init_mount_fs_info(fs_info, sb); if (ret) goto fail; /* These need to be init'ed before we start creating inodes and such. */ tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); fs_info->tree_root = tree_root; chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, GFP_KERNEL); fs_info->chunk_root = chunk_root; if (!tree_root || !chunk_root) { ret = -ENOMEM; goto fail; } ret = btrfs_init_btree_inode(sb); if (ret) goto fail; invalidate_bdev(fs_devices->latest_dev->bdev); /* * Read super block and check the signature bytes only */ disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); if (IS_ERR(disk_super)) { ret = PTR_ERR(disk_super); goto fail_alloc; } btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); /* * Verify the type first, if that or the checksum value are * corrupted, we'll find out */ csum_type = btrfs_super_csum_type(disk_super); if (!btrfs_supported_super_csum(csum_type)) { btrfs_err(fs_info, "unsupported checksum algorithm: %u", csum_type); ret = -EINVAL; btrfs_release_disk_super(disk_super); goto fail_alloc; } fs_info->csum_size = btrfs_super_csum_size(disk_super); ret = btrfs_init_csum_hash(fs_info, csum_type); if (ret) { btrfs_release_disk_super(disk_super); goto fail_alloc; } /* * We want to check superblock checksum, the type is stored inside. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). */ if (btrfs_check_super_csum(fs_info, disk_super)) { btrfs_err(fs_info, "superblock checksum mismatch"); ret = -EINVAL; btrfs_release_disk_super(disk_super); goto fail_alloc; } /* * super_copy is zeroed at allocation time and we never touch the * following bytes up to INFO_SIZE, the checksum is calculated from * the whole block of INFO_SIZE */ memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); btrfs_release_disk_super(disk_super); disk_super = fs_info->super_copy; features = btrfs_super_flags(disk_super); if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; btrfs_set_super_flags(disk_super, features); btrfs_info(fs_info, "found metadata UUID change in progress flag, clearing"); } memcpy(fs_info->super_for_commit, fs_info->super_copy, sizeof(*fs_info->super_for_commit)); ret = btrfs_validate_mount_super(fs_info); if (ret) { btrfs_err(fs_info, "superblock contains fatal errors"); ret = -EINVAL; goto fail_alloc; } if (!btrfs_super_root(disk_super)) { btrfs_err(fs_info, "invalid superblock tree root bytenr"); ret = -EINVAL; goto fail_alloc; } /* check FS state, whether FS is broken. */ if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) WRITE_ONCE(fs_info->fs_error, -EUCLEAN); /* * In the long term, we'll store the compression type in the super * block, and it'll be used for per file compression control. */ fs_info->compress_type = BTRFS_COMPRESS_ZLIB; /* Set up fs_info before parsing mount options */ nodesize = btrfs_super_nodesize(disk_super); sectorsize = btrfs_super_sectorsize(disk_super); stripesize = sectorsize; fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); fs_info->nodesize = nodesize; fs_info->sectorsize = sectorsize; fs_info->sectorsize_bits = ilog2(sectorsize); fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; fs_info->stripesize = stripesize; ret = btrfs_parse_options(fs_info, options, sb->s_flags); if (ret) goto fail_alloc; ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); if (ret < 0) goto fail_alloc; if (sectorsize < PAGE_SIZE) { struct btrfs_subpage_info *subpage_info; /* * V1 space cache has some hardcoded PAGE_SIZE usage, and is * going to be deprecated. * * Force to use v2 cache for subpage case. */ btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); btrfs_set_and_info(fs_info, FREE_SPACE_TREE, "forcing free space tree for sector size %u with page size %lu", sectorsize, PAGE_SIZE); btrfs_warn(fs_info, "read-write for sector size %u with page size %lu is experimental", sectorsize, PAGE_SIZE); subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); if (!subpage_info) { ret = -ENOMEM; goto fail_alloc; } btrfs_init_subpage_info(subpage_info, sectorsize); fs_info->subpage_info = subpage_info; } ret = btrfs_init_workqueues(fs_info); if (ret) goto fail_sb_buffer; sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); /* Update the values for the current filesystem. */ sb->s_blocksize = sectorsize; sb->s_blocksize_bits = blksize_bits(sectorsize); memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); mutex_lock(&fs_info->chunk_mutex); ret = btrfs_read_sys_array(fs_info); mutex_unlock(&fs_info->chunk_mutex); if (ret) { btrfs_err(fs_info, "failed to read the system array: %d", ret); goto fail_sb_buffer; } generation = btrfs_super_chunk_root_generation(disk_super); level = btrfs_super_chunk_root_level(disk_super); ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), generation, level); if (ret) { btrfs_err(fs_info, "failed to read chunk root"); goto fail_tree_roots; } read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, offsetof(struct btrfs_header, chunk_tree_uuid), BTRFS_UUID_SIZE); ret = btrfs_read_chunk_tree(fs_info); if (ret) { btrfs_err(fs_info, "failed to read chunk tree: %d", ret); goto fail_tree_roots; } /* * At this point we know all the devices that make this filesystem, * including the seed devices but we don't know yet if the replace * target is required. So free devices that are not part of this * filesystem but skip the replace target device which is checked * below in btrfs_init_dev_replace(). */ btrfs_free_extra_devids(fs_devices); if (!fs_devices->latest_dev->bdev) { btrfs_err(fs_info, "failed to read devices"); ret = -EIO; goto fail_tree_roots; } ret = init_tree_roots(fs_info); if (ret) goto fail_tree_roots; /* * Get zone type information of zoned block devices. This will also * handle emulation of a zoned filesystem if a regular device has the * zoned incompat feature flag set. */ ret = btrfs_get_dev_zone_info_all_devices(fs_info); if (ret) { btrfs_err(fs_info, "zoned: failed to read device zone info: %d", ret); goto fail_block_groups; } /* * If we have a uuid root and we're not being told to rescan we need to * check the generation here so we can set the * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the * transaction during a balance or the log replay without updating the * uuid generation, and then if we crash we would rescan the uuid tree, * even though it was perfectly fine. */ if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); ret = btrfs_verify_dev_extents(fs_info); if (ret) { btrfs_err(fs_info, "failed to verify dev extents against chunks: %d", ret); goto fail_block_groups; } ret = btrfs_recover_balance(fs_info); if (ret) { btrfs_err(fs_info, "failed to recover balance: %d", ret); goto fail_block_groups; } ret = btrfs_init_dev_stats(fs_info); if (ret) { btrfs_err(fs_info, "failed to init dev_stats: %d", ret); goto fail_block_groups; } ret = btrfs_init_dev_replace(fs_info); if (ret) { btrfs_err(fs_info, "failed to init dev_replace: %d", ret); goto fail_block_groups; } ret = btrfs_check_zoned_mode(fs_info); if (ret) { btrfs_err(fs_info, "failed to initialize zoned mode: %d", ret); goto fail_block_groups; } ret = btrfs_sysfs_add_fsid(fs_devices); if (ret) { btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", ret); goto fail_block_groups; } ret = btrfs_sysfs_add_mounted(fs_info); if (ret) { btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); goto fail_fsdev_sysfs; } ret = btrfs_init_space_info(fs_info); if (ret) { btrfs_err(fs_info, "failed to initialize space info: %d", ret); goto fail_sysfs; } ret = btrfs_read_block_groups(fs_info); if (ret) { btrfs_err(fs_info, "failed to read block groups: %d", ret); goto fail_sysfs; } btrfs_free_zone_cache(fs_info); btrfs_check_active_zone_reservation(fs_info); if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && !btrfs_check_rw_degradable(fs_info, NULL)) { btrfs_warn(fs_info, "writable mount is not allowed due to too many missing devices"); ret = -EINVAL; goto fail_sysfs; } fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, "btrfs-cleaner"); if (IS_ERR(fs_info->cleaner_kthread)) { ret = PTR_ERR(fs_info->cleaner_kthread); goto fail_sysfs; } fs_info->transaction_kthread = kthread_run(transaction_kthread, tree_root, "btrfs-transaction"); if (IS_ERR(fs_info->transaction_kthread)) { ret = PTR_ERR(fs_info->transaction_kthread); goto fail_cleaner; } if (!btrfs_test_opt(fs_info, NOSSD) && !fs_info->fs_devices->rotating) { btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); } /* * For devices supporting discard turn on discard=async automatically, * unless it's already set or disabled. This could be turned off by * nodiscard for the same mount. * * The zoned mode piggy backs on the discard functionality for * resetting a zone. There is no reason to delay the zone reset as it is * fast enough. So, do not enable async discard for zoned mode. */ if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || btrfs_test_opt(fs_info, DISCARD_ASYNC) || btrfs_test_opt(fs_info, NODISCARD)) && fs_info->fs_devices->discardable && !btrfs_is_zoned(fs_info)) { btrfs_set_and_info(fs_info, DISCARD_ASYNC, "auto enabling async discard"); } #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { ret = btrfsic_mount(fs_info, fs_devices, btrfs_test_opt(fs_info, CHECK_INTEGRITY_DATA) ? 1 : 0, fs_info->check_integrity_print_mask); if (ret) btrfs_warn(fs_info, "failed to initialize integrity check module: %d", ret); } #endif ret = btrfs_read_qgroup_config(fs_info); if (ret) goto fail_trans_kthread; if (btrfs_build_ref_tree(fs_info)) btrfs_err(fs_info, "couldn't build ref tree"); /* do not make disk changes in broken FS or nologreplay is given */ if (btrfs_super_log_root(disk_super) != 0 && !btrfs_test_opt(fs_info, NOLOGREPLAY)) { btrfs_info(fs_info, "start tree-log replay"); ret = btrfs_replay_log(fs_info, fs_devices); if (ret) goto fail_qgroup; } fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); if (IS_ERR(fs_info->fs_root)) { ret = PTR_ERR(fs_info->fs_root); btrfs_warn(fs_info, "failed to read fs tree: %d", ret); fs_info->fs_root = NULL; goto fail_qgroup; } if (sb_rdonly(sb)) goto clear_oneshot; ret = btrfs_start_pre_rw_mount(fs_info); if (ret) { close_ctree(fs_info); return ret; } btrfs_discard_resume(fs_info); if (fs_info->uuid_root && (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { btrfs_info(fs_info, "checking UUID tree"); ret = btrfs_check_uuid_tree(fs_info); if (ret) { btrfs_warn(fs_info, "failed to check the UUID tree: %d", ret); close_ctree(fs_info); return ret; } } set_bit(BTRFS_FS_OPEN, &fs_info->flags); /* Kick the cleaner thread so it'll start deleting snapshots. */ if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) wake_up_process(fs_info->cleaner_kthread); clear_oneshot: btrfs_clear_oneshot_options(fs_info); return 0; fail_qgroup: btrfs_free_qgroup_config(fs_info); fail_trans_kthread: kthread_stop(fs_info->transaction_kthread); btrfs_cleanup_transaction(fs_info); btrfs_free_fs_roots(fs_info); fail_cleaner: kthread_stop(fs_info->cleaner_kthread); /* * make sure we're done with the btree inode before we stop our * kthreads */ filemap_write_and_wait(fs_info->btree_inode->i_mapping); fail_sysfs: btrfs_sysfs_remove_mounted(fs_info); fail_fsdev_sysfs: btrfs_sysfs_remove_fsid(fs_info->fs_devices); fail_block_groups: btrfs_put_block_group_cache(fs_info); fail_tree_roots: if (fs_info->data_reloc_root) btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); free_root_pointers(fs_info, true); invalidate_inode_pages2(fs_info->btree_inode->i_mapping); fail_sb_buffer: btrfs_stop_all_workers(fs_info); btrfs_free_block_groups(fs_info); fail_alloc: btrfs_mapping_tree_free(&fs_info->mapping_tree); iput(fs_info->btree_inode); fail: btrfs_close_devices(fs_info->fs_devices); ASSERT(ret < 0); return ret; } ALLOW_ERROR_INJECTION(open_ctree, ERRNO); static void btrfs_end_super_write(struct bio *bio) { struct btrfs_device *device = bio->bi_private; struct bio_vec *bvec; struct bvec_iter_all iter_all; struct page *page; bio_for_each_segment_all(bvec, bio, iter_all) { page = bvec->bv_page; if (bio->bi_status) { btrfs_warn_rl_in_rcu(device->fs_info, "lost page write due to IO error on %s (%d)", btrfs_dev_name(device), blk_status_to_errno(bio->bi_status)); ClearPageUptodate(page); SetPageError(page); btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); } else { SetPageUptodate(page); } put_page(page); unlock_page(page); } bio_put(bio); } struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, bool drop_cache) { struct btrfs_super_block *super; struct page *page; u64 bytenr, bytenr_orig; struct address_space *mapping = bdev->bd_inode->i_mapping; int ret; bytenr_orig = btrfs_sb_offset(copy_num); ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); if (ret == -ENOENT) return ERR_PTR(-EINVAL); else if (ret) return ERR_PTR(ret); if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) return ERR_PTR(-EINVAL); if (drop_cache) { /* This should only be called with the primary sb. */ ASSERT(copy_num == 0); /* * Drop the page of the primary superblock, so later read will * always read from the device. */ invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT, (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); } page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); if (IS_ERR(page)) return ERR_CAST(page); super = page_address(page); if (btrfs_super_magic(super) != BTRFS_MAGIC) { btrfs_release_disk_super(super); return ERR_PTR(-ENODATA); } if (btrfs_super_bytenr(super) != bytenr_orig) { btrfs_release_disk_super(super); return ERR_PTR(-EINVAL); } return super; } struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) { struct btrfs_super_block *super, *latest = NULL; int i; u64 transid = 0; /* we would like to check all the supers, but that would make * a btrfs mount succeed after a mkfs from a different FS. * So, we need to add a special mount option to scan for * later supers, using BTRFS_SUPER_MIRROR_MAX instead */ for (i = 0; i < 1; i++) { super = btrfs_read_dev_one_super(bdev, i, false); if (IS_ERR(super)) continue; if (!latest || btrfs_super_generation(super) > transid) { if (latest) btrfs_release_disk_super(super); latest = super; transid = btrfs_super_generation(super); } } return super; } /* * Write superblock @sb to the @device. Do not wait for completion, all the * pages we use for writing are locked. * * Write @max_mirrors copies of the superblock, where 0 means default that fit * the expected device size at commit time. Note that max_mirrors must be * same for write and wait phases. * * Return number of errors when page is not found or submission fails. */ static int write_dev_supers(struct btrfs_device *device, struct btrfs_super_block *sb, int max_mirrors) { struct btrfs_fs_info *fs_info = device->fs_info; struct address_space *mapping = device->bdev->bd_inode->i_mapping; SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); int i; int errors = 0; int ret; u64 bytenr, bytenr_orig; if (max_mirrors == 0) max_mirrors = BTRFS_SUPER_MIRROR_MAX; shash->tfm = fs_info->csum_shash; for (i = 0; i < max_mirrors; i++) { struct page *page; struct bio *bio; struct btrfs_super_block *disk_super; bytenr_orig = btrfs_sb_offset(i); ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); if (ret == -ENOENT) { continue; } else if (ret < 0) { btrfs_err(device->fs_info, "couldn't get super block location for mirror %d", i); errors++; continue; } if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->commit_total_bytes) break; btrfs_set_super_bytenr(sb, bytenr_orig); crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, sb->csum); page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); if (!page) { btrfs_err(device->fs_info, "couldn't get super block page for bytenr %llu", bytenr); errors++; continue; } /* Bump the refcount for wait_dev_supers() */ get_page(page); disk_super = page_address(page); memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); /* * Directly use bios here instead of relying on the page cache * to do I/O, so we don't lose the ability to do integrity * checking. */ bio = bio_alloc(device->bdev, 1, REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, GFP_NOFS); bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; bio->bi_private = device; bio->bi_end_io = btrfs_end_super_write; __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, offset_in_page(bytenr)); /* * We FUA only the first super block. The others we allow to * go down lazy and there's a short window where the on-disk * copies might still contain the older version. */ if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) bio->bi_opf |= REQ_FUA; btrfsic_check_bio(bio); submit_bio(bio); if (btrfs_advance_sb_log(device, i)) errors++; } return errors < i ? 0 : -1; } /* * Wait for write completion of superblocks done by write_dev_supers, * @max_mirrors same for write and wait phases. * * Return number of errors when page is not found or not marked up to * date. */ static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) { int i; int errors = 0; bool primary_failed = false; int ret; u64 bytenr; if (max_mirrors == 0) max_mirrors = BTRFS_SUPER_MIRROR_MAX; for (i = 0; i < max_mirrors; i++) { struct page *page; ret = btrfs_sb_log_location(device, i, READ, &bytenr); if (ret == -ENOENT) { break; } else if (ret < 0) { errors++; if (i == 0) primary_failed = true; continue; } if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->commit_total_bytes) break; page = find_get_page(device->bdev->bd_inode->i_mapping, bytenr >> PAGE_SHIFT); if (!page) { errors++; if (i == 0) primary_failed = true; continue; } /* Page is submitted locked and unlocked once the IO completes */ wait_on_page_locked(page); if (PageError(page)) { errors++; if (i == 0) primary_failed = true; } /* Drop our reference */ put_page(page); /* Drop the reference from the writing run */ put_page(page); } /* log error, force error return */ if (primary_failed) { btrfs_err(device->fs_info, "error writing primary super block to device %llu", device->devid); return -1; } return errors < i ? 0 : -1; } /* * endio for the write_dev_flush, this will wake anyone waiting * for the barrier when it is done */ static void btrfs_end_empty_barrier(struct bio *bio) { bio_uninit(bio); complete(bio->bi_private); } /* * Submit a flush request to the device if it supports it. Error handling is * done in the waiting counterpart. */ static void write_dev_flush(struct btrfs_device *device) { struct bio *bio = &device->flush_bio; device->last_flush_error = BLK_STS_OK; #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY /* * When a disk has write caching disabled, we skip submission of a bio * with flush and sync requests before writing the superblock, since * it's not needed. However when the integrity checker is enabled, this * results in reports that there are metadata blocks referred by a * superblock that were not properly flushed. So don't skip the bio * submission only when the integrity checker is enabled for the sake * of simplicity, since this is a debug tool and not meant for use in * non-debug builds. */ if (!bdev_write_cache(device->bdev)) return; #endif bio_init(bio, device->bdev, NULL, 0, REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); bio->bi_end_io = btrfs_end_empty_barrier; init_completion(&device->flush_wait); bio->bi_private = &device->flush_wait; btrfsic_check_bio(bio); submit_bio(bio); set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); } /* * If the flush bio has been submitted by write_dev_flush, wait for it. * Return true for any error, and false otherwise. */ static bool wait_dev_flush(struct btrfs_device *device) { struct bio *bio = &device->flush_bio; if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) return false; wait_for_completion_io(&device->flush_wait); if (bio->bi_status) { device->last_flush_error = bio->bi_status; btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); return true; } return false; } /* * send an empty flush down to each device in parallel, * then wait for them */ static int barrier_all_devices(struct btrfs_fs_info *info) { struct list_head *head; struct btrfs_device *dev; int errors_wait = 0; lockdep_assert_held(&info->fs_devices->device_list_mutex); /* send down all the barriers */ head = &info->fs_devices->devices; list_for_each_entry(dev, head, dev_list) { if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) continue; if (!dev->bdev) continue; if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) continue; write_dev_flush(dev); } /* wait for all the barriers */ list_for_each_entry(dev, head, dev_list) { if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) continue; if (!dev->bdev) { errors_wait++; continue; } if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) continue; if (wait_dev_flush(dev)) errors_wait++; } /* * Checks last_flush_error of disks in order to determine the device * state. */ if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) return -EIO; return 0; } int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) { int raid_type; int min_tolerated = INT_MAX; if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) min_tolerated = min_t(int, min_tolerated, btrfs_raid_array[BTRFS_RAID_SINGLE]. tolerated_failures); for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { if (raid_type == BTRFS_RAID_SINGLE) continue; if (!(flags & btrfs_raid_array[raid_type].bg_flag)) continue; min_tolerated = min_t(int, min_tolerated, btrfs_raid_array[raid_type]. tolerated_failures); } if (min_tolerated == INT_MAX) { pr_warn("BTRFS: unknown raid flag: %llu", flags); min_tolerated = 0; } return min_tolerated; } int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) { struct list_head *head; struct btrfs_device *dev; struct btrfs_super_block *sb; struct btrfs_dev_item *dev_item; int ret; int do_barriers; int max_errors; int total_errors = 0; u64 flags; do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); /* * max_mirrors == 0 indicates we're from commit_transaction, * not from fsync where the tree roots in fs_info have not * been consistent on disk. */ if (max_mirrors == 0) backup_super_roots(fs_info); sb = fs_info->super_for_commit; dev_item = &sb->dev_item; mutex_lock(&fs_info->fs_devices->device_list_mutex); head = &fs_info->fs_devices->devices; max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; if (do_barriers) { ret = barrier_all_devices(fs_info); if (ret) { mutex_unlock( &fs_info->fs_devices->device_list_mutex); btrfs_handle_fs_error(fs_info, ret, "errors while submitting device barriers."); return ret; } } list_for_each_entry(dev, head, dev_list) { if (!dev->bdev) { total_errors++; continue; } if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) continue; btrfs_set_stack_device_generation(dev_item, 0); btrfs_set_stack_device_type(dev_item, dev->type); btrfs_set_stack_device_id(dev_item, dev->devid); btrfs_set_stack_device_total_bytes(dev_item, dev->commit_total_bytes); btrfs_set_stack_device_bytes_used(dev_item, dev->commit_bytes_used); btrfs_set_stack_device_io_align(dev_item, dev->io_align); btrfs_set_stack_device_io_width(dev_item, dev->io_width); btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, BTRFS_FSID_SIZE); flags = btrfs_super_flags(sb); btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); ret = btrfs_validate_write_super(fs_info, sb); if (ret < 0) { mutex_unlock(&fs_info->fs_devices->device_list_mutex); btrfs_handle_fs_error(fs_info, -EUCLEAN, "unexpected superblock corruption detected"); return -EUCLEAN; } ret = write_dev_supers(dev, sb, max_mirrors); if (ret) total_errors++; } if (total_errors > max_errors) { btrfs_err(fs_info, "%d errors while writing supers", total_errors); mutex_unlock(&fs_info->fs_devices->device_list_mutex); /* FUA is masked off if unsupported and can't be the reason */ btrfs_handle_fs_error(fs_info, -EIO, "%d errors while writing supers", total_errors); return -EIO; } total_errors = 0; list_for_each_entry(dev, head, dev_list) { if (!dev->bdev) continue; if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) continue; ret = wait_dev_supers(dev, max_mirrors); if (ret) total_errors++; } mutex_unlock(&fs_info->fs_devices->device_list_mutex); if (total_errors > max_errors) { btrfs_handle_fs_error(fs_info, -EIO, "%d errors while writing supers", total_errors); return -EIO; } return 0; } /* Drop a fs root from the radix tree and free it. */ void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) { bool drop_ref = false; spin_lock(&fs_info->fs_roots_radix_lock); radix_tree_delete(&fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid); if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) drop_ref = true; spin_unlock(&fs_info->fs_roots_radix_lock); if (BTRFS_FS_ERROR(fs_info)) { ASSERT(root->log_root == NULL); if (root->reloc_root) { btrfs_put_root(root->reloc_root); root->reloc_root = NULL; } } if (drop_ref) btrfs_put_root(root); } int btrfs_commit_super(struct btrfs_fs_info *fs_info) { struct btrfs_root *root = fs_info->tree_root; struct btrfs_trans_handle *trans; mutex_lock(&fs_info->cleaner_mutex); btrfs_run_delayed_iputs(fs_info); mutex_unlock(&fs_info->cleaner_mutex); wake_up_process(fs_info->cleaner_kthread); /* wait until ongoing cleanup work done */ down_write(&fs_info->cleanup_work_sem); up_write(&fs_info->cleanup_work_sem); trans = btrfs_join_transaction(root); if (IS_ERR(trans)) return PTR_ERR(trans); return btrfs_commit_transaction(trans); } static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) { struct btrfs_transaction *trans; struct btrfs_transaction *tmp; bool found = false; if (list_empty(&fs_info->trans_list)) return; /* * This function is only called at the very end of close_ctree(), * thus no other running transaction, no need to take trans_lock. */ ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { struct extent_state *cached = NULL; u64 dirty_bytes = 0; u64 cur = 0; u64 found_start; u64 found_end; found = true; while (find_first_extent_bit(&trans->dirty_pages, cur, &found_start, &found_end, EXTENT_DIRTY, &cached)) { dirty_bytes += found_end + 1 - found_start; cur = found_end + 1; } btrfs_warn(fs_info, "transaction %llu (with %llu dirty metadata bytes) is not committed", trans->transid, dirty_bytes); btrfs_cleanup_one_transaction(trans, fs_info); if (trans == fs_info->running_transaction) fs_info->running_transaction = NULL; list_del_init(&trans->list); btrfs_put_transaction(trans); trace_btrfs_transaction_commit(fs_info); } ASSERT(!found); } void __cold close_ctree(struct btrfs_fs_info *fs_info) { int ret; set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); /* * If we had UNFINISHED_DROPS we could still be processing them, so * clear that bit and wake up relocation so it can stop. * We must do this before stopping the block group reclaim task, because * at btrfs_relocate_block_group() we wait for this bit, and after the * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will * return 1. */ btrfs_wake_unfinished_drop(fs_info); /* * We may have the reclaim task running and relocating a data block group, * in which case it may create delayed iputs. So stop it before we park * the cleaner kthread otherwise we can get new delayed iputs after * parking the cleaner, and that can make the async reclaim task to hang * if it's waiting for delayed iputs to complete, since the cleaner is * parked and can not run delayed iputs - this will make us hang when * trying to stop the async reclaim task. */ cancel_work_sync(&fs_info->reclaim_bgs_work); /* * We don't want the cleaner to start new transactions, add more delayed * iputs, etc. while we're closing. We can't use kthread_stop() yet * because that frees the task_struct, and the transaction kthread might * still try to wake up the cleaner. */ kthread_park(fs_info->cleaner_kthread); /* wait for the qgroup rescan worker to stop */ btrfs_qgroup_wait_for_completion(fs_info, false); /* wait for the uuid_scan task to finish */ down(&fs_info->uuid_tree_rescan_sem); /* avoid complains from lockdep et al., set sem back to initial state */ up(&fs_info->uuid_tree_rescan_sem); /* pause restriper - we want to resume on mount */ btrfs_pause_balance(fs_info); btrfs_dev_replace_suspend_for_unmount(fs_info); btrfs_scrub_cancel(fs_info); /* wait for any defraggers to finish */ wait_event(fs_info->transaction_wait, (atomic_read(&fs_info->defrag_running) == 0)); /* clear out the rbtree of defraggable inodes */ btrfs_cleanup_defrag_inodes(fs_info); /* * Wait for any fixup workers to complete. * If we don't wait for them here and they are still running by the time * we call kthread_stop() against the cleaner kthread further below, we * get an use-after-free on the cleaner because the fixup worker adds an * inode to the list of delayed iputs and then attempts to wakeup the * cleaner kthread, which was already stopped and destroyed. We parked * already the cleaner, but below we run all pending delayed iputs. */ btrfs_flush_workqueue(fs_info->fixup_workers); /* * After we parked the cleaner kthread, ordered extents may have * completed and created new delayed iputs. If one of the async reclaim * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we * can hang forever trying to stop it, because if a delayed iput is * added after it ran btrfs_run_delayed_iputs() and before it called * btrfs_wait_on_delayed_iputs(), it will hang forever since there is * no one else to run iputs. * * So wait for all ongoing ordered extents to complete and then run * delayed iputs. This works because once we reach this point no one * can either create new ordered extents nor create delayed iputs * through some other means. * * Also note that btrfs_wait_ordered_roots() is not safe here, because * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, * but the delayed iput for the respective inode is made only when doing * the final btrfs_put_ordered_extent() (which must happen at * btrfs_finish_ordered_io() when we are unmounting). */ btrfs_flush_workqueue(fs_info->endio_write_workers); /* Ordered extents for free space inodes. */ btrfs_flush_workqueue(fs_info->endio_freespace_worker); btrfs_run_delayed_iputs(fs_info); cancel_work_sync(&fs_info->async_reclaim_work); cancel_work_sync(&fs_info->async_data_reclaim_work); cancel_work_sync(&fs_info->preempt_reclaim_work); /* Cancel or finish ongoing discard work */ btrfs_discard_cleanup(fs_info); if (!sb_rdonly(fs_info->sb)) { /* * The cleaner kthread is stopped, so do one final pass over * unused block groups. */ btrfs_delete_unused_bgs(fs_info); /* * There might be existing delayed inode workers still running * and holding an empty delayed inode item. We must wait for * them to complete first because they can create a transaction. * This happens when someone calls btrfs_balance_delayed_items() * and then a transaction commit runs the same delayed nodes * before any delayed worker has done something with the nodes. * We must wait for any worker here and not at transaction * commit time since that could cause a deadlock. * This is a very rare case. */ btrfs_flush_workqueue(fs_info->delayed_workers); ret = btrfs_commit_super(fs_info); if (ret) btrfs_err(fs_info, "commit super ret %d", ret); } if (BTRFS_FS_ERROR(fs_info)) btrfs_error_commit_super(fs_info); kthread_stop(fs_info->transaction_kthread); kthread_stop(fs_info->cleaner_kthread); ASSERT(list_empty(&fs_info->delayed_iputs)); set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); if (btrfs_check_quota_leak(fs_info)) { WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); btrfs_err(fs_info, "qgroup reserved space leaked"); } btrfs_free_qgroup_config(fs_info); ASSERT(list_empty(&fs_info->delalloc_roots)); if (percpu_counter_sum(&fs_info->delalloc_bytes)) { btrfs_info(fs_info, "at unmount delalloc count %lld", percpu_counter_sum(&fs_info->delalloc_bytes)); } if (percpu_counter_sum(&fs_info->ordered_bytes)) btrfs_info(fs_info, "at unmount dio bytes count %lld", percpu_counter_sum(&fs_info->ordered_bytes)); btrfs_sysfs_remove_mounted(fs_info); btrfs_sysfs_remove_fsid(fs_info->fs_devices); btrfs_put_block_group_cache(fs_info); /* * we must make sure there is not any read request to * submit after we stopping all workers. */ invalidate_inode_pages2(fs_info->btree_inode->i_mapping); btrfs_stop_all_workers(fs_info); /* We shouldn't have any transaction open at this point */ warn_about_uncommitted_trans(fs_info); clear_bit(BTRFS_FS_OPEN, &fs_info->flags); free_root_pointers(fs_info, true); btrfs_free_fs_roots(fs_info); /* * We must free the block groups after dropping the fs_roots as we could * have had an IO error and have left over tree log blocks that aren't * cleaned up until the fs roots are freed. This makes the block group * accounting appear to be wrong because there's pending reserved bytes, * so make sure we do the block group cleanup afterwards. */ btrfs_free_block_groups(fs_info); iput(fs_info->btree_inode); #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) btrfsic_unmount(fs_info->fs_devices); #endif btrfs_mapping_tree_free(&fs_info->mapping_tree); btrfs_close_devices(fs_info->fs_devices); } void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, struct extent_buffer *buf) { struct btrfs_fs_info *fs_info = buf->fs_info; u64 transid = btrfs_header_generation(buf); #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS /* * This is a fast path so only do this check if we have sanity tests * enabled. Normal people shouldn't be using unmapped buffers as dirty * outside of the sanity tests. */ if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) return; #endif /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ ASSERT(trans->transid == fs_info->generation); btrfs_assert_tree_write_locked(buf); if (transid != fs_info->generation) { WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", buf->start, transid, fs_info->generation); btrfs_abort_transaction(trans, -EUCLEAN); } set_extent_buffer_dirty(buf); #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY /* * btrfs_check_leaf() won't check item data if we don't have WRITTEN * set, so this will only validate the basic structure of the items. */ if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) { btrfs_print_leaf(buf); ASSERT(0); } #endif } static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, int flush_delayed) { /* * looks as though older kernels can get into trouble with * this code, they end up stuck in balance_dirty_pages forever */ int ret; if (current->flags & PF_MEMALLOC) return; if (flush_delayed) btrfs_balance_delayed_items(fs_info); ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, BTRFS_DIRTY_METADATA_THRESH, fs_info->dirty_metadata_batch); if (ret > 0) { balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); } } void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) { __btrfs_btree_balance_dirty(fs_info, 1); } void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) { __btrfs_btree_balance_dirty(fs_info, 0); } static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) { /* cleanup FS via transaction */ btrfs_cleanup_transaction(fs_info); mutex_lock(&fs_info->cleaner_mutex); btrfs_run_delayed_iputs(fs_info); mutex_unlock(&fs_info->cleaner_mutex); down_write(&fs_info->cleanup_work_sem); up_write(&fs_info->cleanup_work_sem); } static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) { struct btrfs_root *gang[8]; u64 root_objectid = 0; int ret; spin_lock(&fs_info->fs_roots_radix_lock); while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, (void **)gang, root_objectid, ARRAY_SIZE(gang))) != 0) { int i; for (i = 0; i < ret; i++) gang[i] = btrfs_grab_root(gang[i]); spin_unlock(&fs_info->fs_roots_radix_lock); for (i = 0; i < ret; i++) { if (!gang[i]) continue; root_objectid = gang[i]->root_key.objectid; btrfs_free_log(NULL, gang[i]); btrfs_put_root(gang[i]); } root_objectid++; spin_lock(&fs_info->fs_roots_radix_lock); } spin_unlock(&fs_info->fs_roots_radix_lock); btrfs_free_log_root_tree(NULL, fs_info); } static void btrfs_destroy_ordered_extents(struct btrfs_root *root) { struct btrfs_ordered_extent *ordered; spin_lock(&root->ordered_extent_lock); /* * This will just short circuit the ordered completion stuff which will * make sure the ordered extent gets properly cleaned up. */ list_for_each_entry(ordered, &root->ordered_extents, root_extent_list) set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); spin_unlock(&root->ordered_extent_lock); } static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) { struct btrfs_root *root; LIST_HEAD(splice); spin_lock(&fs_info->ordered_root_lock); list_splice_init(&fs_info->ordered_roots, &splice); while (!list_empty(&splice)) { root = list_first_entry(&splice, struct btrfs_root, ordered_root); list_move_tail(&root->ordered_root, &fs_info->ordered_roots); spin_unlock(&fs_info->ordered_root_lock); btrfs_destroy_ordered_extents(root); cond_resched(); spin_lock(&fs_info->ordered_root_lock); } spin_unlock(&fs_info->ordered_root_lock); /* * We need this here because if we've been flipped read-only we won't * get sync() from the umount, so we need to make sure any ordered * extents that haven't had their dirty pages IO start writeout yet * actually get run and error out properly. */ btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); } static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, struct btrfs_fs_info *fs_info) { struct rb_node *node; struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs; struct btrfs_delayed_ref_node *ref; spin_lock(&delayed_refs->lock); while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { struct btrfs_delayed_ref_head *head; struct rb_node *n; bool pin_bytes = false; head = rb_entry(node, struct btrfs_delayed_ref_head, href_node); if (btrfs_delayed_ref_lock(delayed_refs, head)) continue; spin_lock(&head->lock); while ((n = rb_first_cached(&head->ref_tree)) != NULL) { ref = rb_entry(n, struct btrfs_delayed_ref_node, ref_node); rb_erase_cached(&ref->ref_node, &head->ref_tree); RB_CLEAR_NODE(&ref->ref_node); if (!list_empty(&ref->add_list)) list_del(&ref->add_list); atomic_dec(&delayed_refs->num_entries); btrfs_put_delayed_ref(ref); } if (head->must_insert_reserved) pin_bytes = true; btrfs_free_delayed_extent_op(head->extent_op); btrfs_delete_ref_head(delayed_refs, head); spin_unlock(&head->lock); spin_unlock(&delayed_refs->lock); mutex_unlock(&head->mutex); if (pin_bytes) { struct btrfs_block_group *cache; cache = btrfs_lookup_block_group(fs_info, head->bytenr); BUG_ON(!cache); spin_lock(&cache->space_info->lock); spin_lock(&cache->lock); cache->pinned += head->num_bytes; btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, head->num_bytes); cache->reserved -= head->num_bytes; cache->space_info->bytes_reserved -= head->num_bytes; spin_unlock(&cache->lock); spin_unlock(&cache->space_info->lock); btrfs_put_block_group(cache); btrfs_error_unpin_extent_range(fs_info, head->bytenr, head->bytenr + head->num_bytes - 1); } btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); btrfs_put_delayed_ref_head(head); cond_resched(); spin_lock(&delayed_refs->lock); } btrfs_qgroup_destroy_extent_records(trans); spin_unlock(&delayed_refs->lock); } static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) { struct btrfs_inode *btrfs_inode; LIST_HEAD(splice); spin_lock(&root->delalloc_lock); list_splice_init(&root->delalloc_inodes, &splice); while (!list_empty(&splice)) { struct inode *inode = NULL; btrfs_inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); __btrfs_del_delalloc_inode(root, btrfs_inode); spin_unlock(&root->delalloc_lock); /* * Make sure we get a live inode and that it'll not disappear * meanwhile. */ inode = igrab(&btrfs_inode->vfs_inode); if (inode) { unsigned int nofs_flag; nofs_flag = memalloc_nofs_save(); invalidate_inode_pages2(inode->i_mapping); memalloc_nofs_restore(nofs_flag); iput(inode); } spin_lock(&root->delalloc_lock); } spin_unlock(&root->delalloc_lock); } static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) { struct btrfs_root *root; LIST_HEAD(splice); spin_lock(&fs_info->delalloc_root_lock); list_splice_init(&fs_info->delalloc_roots, &splice); while (!list_empty(&splice)) { root = list_first_entry(&splice, struct btrfs_root, delalloc_root); root = btrfs_grab_root(root); BUG_ON(!root); spin_unlock(&fs_info->delalloc_root_lock); btrfs_destroy_delalloc_inodes(root); btrfs_put_root(root); spin_lock(&fs_info->delalloc_root_lock); } spin_unlock(&fs_info->delalloc_root_lock); } static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, struct extent_io_tree *dirty_pages, int mark) { struct extent_buffer *eb; u64 start = 0; u64 end; while (find_first_extent_bit(dirty_pages, start, &start, &end, mark, NULL)) { clear_extent_bits(dirty_pages, start, end, mark); while (start <= end) { eb = find_extent_buffer(fs_info, start); start += fs_info->nodesize; if (!eb) continue; btrfs_tree_lock(eb); wait_on_extent_buffer_writeback(eb); btrfs_clear_buffer_dirty(NULL, eb); btrfs_tree_unlock(eb); free_extent_buffer_stale(eb); } } } static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, struct extent_io_tree *unpin) { u64 start; u64 end; while (1) { struct extent_state *cached_state = NULL; /* * The btrfs_finish_extent_commit() may get the same range as * ours between find_first_extent_bit and clear_extent_dirty. * Hence, hold the unused_bg_unpin_mutex to avoid double unpin * the same extent range. */ mutex_lock(&fs_info->unused_bg_unpin_mutex); if (!find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY, &cached_state)) { mutex_unlock(&fs_info->unused_bg_unpin_mutex); break; } clear_extent_dirty(unpin, start, end, &cached_state); free_extent_state(cached_state); btrfs_error_unpin_extent_range(fs_info, start, end); mutex_unlock(&fs_info->unused_bg_unpin_mutex); cond_resched(); } } static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) { struct inode *inode; inode = cache->io_ctl.inode; if (inode) { unsigned int nofs_flag; nofs_flag = memalloc_nofs_save(); invalidate_inode_pages2(inode->i_mapping); memalloc_nofs_restore(nofs_flag); BTRFS_I(inode)->generation = 0; cache->io_ctl.inode = NULL; iput(inode); } ASSERT(cache->io_ctl.pages == NULL); btrfs_put_block_group(cache); } void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, struct btrfs_fs_info *fs_info) { struct btrfs_block_group *cache; spin_lock(&cur_trans->dirty_bgs_lock); while (!list_empty(&cur_trans->dirty_bgs)) { cache = list_first_entry(&cur_trans->dirty_bgs, struct btrfs_block_group, dirty_list); if (!list_empty(&cache->io_list)) { spin_unlock(&cur_trans->dirty_bgs_lock); list_del_init(&cache->io_list); btrfs_cleanup_bg_io(cache); spin_lock(&cur_trans->dirty_bgs_lock); } list_del_init(&cache->dirty_list); spin_lock(&cache->lock); cache->disk_cache_state = BTRFS_DC_ERROR; spin_unlock(&cache->lock); spin_unlock(&cur_trans->dirty_bgs_lock); btrfs_put_block_group(cache); btrfs_delayed_refs_rsv_release(fs_info, 1); spin_lock(&cur_trans->dirty_bgs_lock); } spin_unlock(&cur_trans->dirty_bgs_lock); /* * Refer to the definition of io_bgs member for details why it's safe * to use it without any locking */ while (!list_empty(&cur_trans->io_bgs)) { cache = list_first_entry(&cur_trans->io_bgs, struct btrfs_block_group, io_list); list_del_init(&cache->io_list); spin_lock(&cache->lock); cache->disk_cache_state = BTRFS_DC_ERROR; spin_unlock(&cache->lock); btrfs_cleanup_bg_io(cache); } } static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) { struct btrfs_root *gang[8]; int i; int ret; spin_lock(&fs_info->fs_roots_radix_lock); while (1) { ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, (void **)gang, 0, ARRAY_SIZE(gang), BTRFS_ROOT_TRANS_TAG); if (ret == 0) break; for (i = 0; i < ret; i++) { struct btrfs_root *root = gang[i]; btrfs_qgroup_free_meta_all_pertrans(root); radix_tree_tag_clear(&fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid, BTRFS_ROOT_TRANS_TAG); } } spin_unlock(&fs_info->fs_roots_radix_lock); } void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, struct btrfs_fs_info *fs_info) { struct btrfs_device *dev, *tmp; btrfs_cleanup_dirty_bgs(cur_trans, fs_info); ASSERT(list_empty(&cur_trans->dirty_bgs)); ASSERT(list_empty(&cur_trans->io_bgs)); list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, post_commit_list) { list_del_init(&dev->post_commit_list); } btrfs_destroy_delayed_refs(cur_trans, fs_info); cur_trans->state = TRANS_STATE_COMMIT_START; wake_up(&fs_info->transaction_blocked_wait); cur_trans->state = TRANS_STATE_UNBLOCKED; wake_up(&fs_info->transaction_wait); btrfs_destroy_delayed_inodes(fs_info); btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, EXTENT_DIRTY); btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); btrfs_free_all_qgroup_pertrans(fs_info); cur_trans->state =TRANS_STATE_COMPLETED; wake_up(&cur_trans->commit_wait); } static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) { struct btrfs_transaction *t; mutex_lock(&fs_info->transaction_kthread_mutex); spin_lock(&fs_info->trans_lock); while (!list_empty(&fs_info->trans_list)) { t = list_first_entry(&fs_info->trans_list, struct btrfs_transaction, list); if (t->state >= TRANS_STATE_COMMIT_PREP) { refcount_inc(&t->use_count); spin_unlock(&fs_info->trans_lock); btrfs_wait_for_commit(fs_info, t->transid); btrfs_put_transaction(t); spin_lock(&fs_info->trans_lock); continue; } if (t == fs_info->running_transaction) { t->state = TRANS_STATE_COMMIT_DOING; spin_unlock(&fs_info->trans_lock); /* * We wait for 0 num_writers since we don't hold a trans * handle open currently for this transaction. */ wait_event(t->writer_wait, atomic_read(&t->num_writers) == 0); } else { spin_unlock(&fs_info->trans_lock); } btrfs_cleanup_one_transaction(t, fs_info); spin_lock(&fs_info->trans_lock); if (t == fs_info->running_transaction) fs_info->running_transaction = NULL; list_del_init(&t->list); spin_unlock(&fs_info->trans_lock); btrfs_put_transaction(t); trace_btrfs_transaction_commit(fs_info); spin_lock(&fs_info->trans_lock); } spin_unlock(&fs_info->trans_lock); btrfs_destroy_all_ordered_extents(fs_info); btrfs_destroy_delayed_inodes(fs_info); btrfs_assert_delayed_root_empty(fs_info); btrfs_destroy_all_delalloc_inodes(fs_info); btrfs_drop_all_logs(fs_info); mutex_unlock(&fs_info->transaction_kthread_mutex); return 0; } int btrfs_init_root_free_objectid(struct btrfs_root *root) { struct btrfs_path *path; int ret; struct extent_buffer *l; struct btrfs_key search_key; struct btrfs_key found_key; int slot; path = btrfs_alloc_path(); if (!path) return -ENOMEM; search_key.objectid = BTRFS_LAST_FREE_OBJECTID; search_key.type = -1; search_key.offset = (u64)-1; ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); if (ret < 0) goto error; BUG_ON(ret == 0); /* Corruption */ if (path->slots[0] > 0) { slot = path->slots[0] - 1; l = path->nodes[0]; btrfs_item_key_to_cpu(l, &found_key, slot); root->free_objectid = max_t(u64, found_key.objectid + 1, BTRFS_FIRST_FREE_OBJECTID); } else { root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; } ret = 0; error: btrfs_free_path(path); return ret; } int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) { int ret; mutex_lock(&root->objectid_mutex); if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { btrfs_warn(root->fs_info, "the objectid of root %llu reaches its highest value", root->root_key.objectid); ret = -ENOSPC; goto out; } *objectid = root->free_objectid++; ret = 0; out: mutex_unlock(&root->objectid_mutex); return ret; }