// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_shared.h" #include "xfs_mount.h" #include "xfs_ag.h" #include "xfs_defer.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_extfree_item.h" #include "xfs_log.h" #include "xfs_btree.h" #include "xfs_rmap.h" #include "xfs_alloc.h" #include "xfs_bmap.h" #include "xfs_trace.h" #include "xfs_error.h" #include "xfs_log_priv.h" #include "xfs_log_recover.h" struct kmem_cache *xfs_efi_cache; struct kmem_cache *xfs_efd_cache; static const struct xfs_item_ops xfs_efi_item_ops; static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_efi_log_item, efi_item); } STATIC void xfs_efi_item_free( struct xfs_efi_log_item *efip) { kmem_free(efip->efi_item.li_lv_shadow); if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) kmem_free(efip); else kmem_cache_free(xfs_efi_cache, efip); } /* * Freeing the efi requires that we remove it from the AIL if it has already * been placed there. However, the EFI may not yet have been placed in the AIL * when called by xfs_efi_release() from EFD processing due to the ordering of * committed vs unpin operations in bulk insert operations. Hence the reference * count to ensure only the last caller frees the EFI. */ STATIC void xfs_efi_release( struct xfs_efi_log_item *efip) { ASSERT(atomic_read(&efip->efi_refcount) > 0); if (!atomic_dec_and_test(&efip->efi_refcount)) return; xfs_trans_ail_delete(&efip->efi_item, 0); xfs_efi_item_free(efip); } STATIC void xfs_efi_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { struct xfs_efi_log_item *efip = EFI_ITEM(lip); *nvecs += 1; *nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents); } /* * This is called to fill in the vector of log iovecs for the * given efi log item. We use only 1 iovec, and we point that * at the efi_log_format structure embedded in the efi item. * It is at this point that we assert that all of the extent * slots in the efi item have been filled. */ STATIC void xfs_efi_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_efi_log_item *efip = EFI_ITEM(lip); struct xfs_log_iovec *vecp = NULL; ASSERT(atomic_read(&efip->efi_next_extent) == efip->efi_format.efi_nextents); efip->efi_format.efi_type = XFS_LI_EFI; efip->efi_format.efi_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, &efip->efi_format, xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents)); } /* * The unpin operation is the last place an EFI is manipulated in the log. It is * either inserted in the AIL or aborted in the event of a log I/O error. In * either case, the EFI transaction has been successfully committed to make it * this far. Therefore, we expect whoever committed the EFI to either construct * and commit the EFD or drop the EFD's reference in the event of error. Simply * drop the log's EFI reference now that the log is done with it. */ STATIC void xfs_efi_item_unpin( struct xfs_log_item *lip, int remove) { struct xfs_efi_log_item *efip = EFI_ITEM(lip); xfs_efi_release(efip); } /* * The EFI has been either committed or aborted if the transaction has been * cancelled. If the transaction was cancelled, an EFD isn't going to be * constructed and thus we free the EFI here directly. */ STATIC void xfs_efi_item_release( struct xfs_log_item *lip) { xfs_efi_release(EFI_ITEM(lip)); } /* * Allocate and initialize an efi item with the given number of extents. */ STATIC struct xfs_efi_log_item * xfs_efi_init( struct xfs_mount *mp, uint nextents) { struct xfs_efi_log_item *efip; ASSERT(nextents > 0); if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { efip = kzalloc(xfs_efi_log_item_sizeof(nextents), GFP_KERNEL | __GFP_NOFAIL); } else { efip = kmem_cache_zalloc(xfs_efi_cache, GFP_KERNEL | __GFP_NOFAIL); } xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); efip->efi_format.efi_nextents = nextents; efip->efi_format.efi_id = (uintptr_t)(void *)efip; atomic_set(&efip->efi_next_extent, 0); atomic_set(&efip->efi_refcount, 2); return efip; } /* * Copy an EFI format buffer from the given buf, and into the destination * EFI format structure. * The given buffer can be in 32 bit or 64 bit form (which has different padding), * one of which will be the native format for this kernel. * It will handle the conversion of formats if necessary. */ STATIC int xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) { xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; uint i; uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents); uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents); uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents); if (buf->i_len == len) { memcpy(dst_efi_fmt, src_efi_fmt, offsetof(struct xfs_efi_log_format, efi_extents)); for (i = 0; i < src_efi_fmt->efi_nextents; i++) memcpy(&dst_efi_fmt->efi_extents[i], &src_efi_fmt->efi_extents[i], sizeof(struct xfs_extent)); return 0; } else if (buf->i_len == len32) { xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { dst_efi_fmt->efi_extents[i].ext_start = src_efi_fmt_32->efi_extents[i].ext_start; dst_efi_fmt->efi_extents[i].ext_len = src_efi_fmt_32->efi_extents[i].ext_len; } return 0; } else if (buf->i_len == len64) { xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { dst_efi_fmt->efi_extents[i].ext_start = src_efi_fmt_64->efi_extents[i].ext_start; dst_efi_fmt->efi_extents[i].ext_len = src_efi_fmt_64->efi_extents[i].ext_len; } return 0; } XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr, buf->i_len); return -EFSCORRUPTED; } static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_efd_log_item, efd_item); } STATIC void xfs_efd_item_free(struct xfs_efd_log_item *efdp) { kmem_free(efdp->efd_item.li_lv_shadow); if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) kmem_free(efdp); else kmem_cache_free(xfs_efd_cache, efdp); } STATIC void xfs_efd_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { struct xfs_efd_log_item *efdp = EFD_ITEM(lip); *nvecs += 1; *nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents); } /* * This is called to fill in the vector of log iovecs for the * given efd log item. We use only 1 iovec, and we point that * at the efd_log_format structure embedded in the efd item. * It is at this point that we assert that all of the extent * slots in the efd item have been filled. */ STATIC void xfs_efd_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_efd_log_item *efdp = EFD_ITEM(lip); struct xfs_log_iovec *vecp = NULL; ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); efdp->efd_format.efd_type = XFS_LI_EFD; efdp->efd_format.efd_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, &efdp->efd_format, xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents)); } /* * The EFD is either committed or aborted if the transaction is cancelled. If * the transaction is cancelled, drop our reference to the EFI and free the EFD. */ STATIC void xfs_efd_item_release( struct xfs_log_item *lip) { struct xfs_efd_log_item *efdp = EFD_ITEM(lip); xfs_efi_release(efdp->efd_efip); xfs_efd_item_free(efdp); } static struct xfs_log_item * xfs_efd_item_intent( struct xfs_log_item *lip) { return &EFD_ITEM(lip)->efd_efip->efi_item; } static const struct xfs_item_ops xfs_efd_item_ops = { .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | XFS_ITEM_INTENT_DONE, .iop_size = xfs_efd_item_size, .iop_format = xfs_efd_item_format, .iop_release = xfs_efd_item_release, .iop_intent = xfs_efd_item_intent, }; /* * Allocate an "extent free done" log item that will hold nextents worth of * extents. The caller must use all nextents extents, because we are not * flexible about this at all. */ static struct xfs_efd_log_item * xfs_trans_get_efd( struct xfs_trans *tp, struct xfs_efi_log_item *efip, unsigned int nextents) { struct xfs_efd_log_item *efdp; ASSERT(nextents > 0); if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { efdp = kzalloc(xfs_efd_log_item_sizeof(nextents), GFP_KERNEL | __GFP_NOFAIL); } else { efdp = kmem_cache_zalloc(xfs_efd_cache, GFP_KERNEL | __GFP_NOFAIL); } xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops); efdp->efd_efip = efip; efdp->efd_format.efd_nextents = nextents; efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; xfs_trans_add_item(tp, &efdp->efd_item); return efdp; } /* * Fill the EFD with all extents from the EFI when we need to roll the * transaction and continue with a new EFI. * * This simply copies all the extents in the EFI to the EFD rather than make * assumptions about which extents in the EFI have already been processed. We * currently keep the xefi list in the same order as the EFI extent list, but * that may not always be the case. Copying everything avoids leaving a landmine * were we fail to cancel all the extents in an EFI if the xefi list is * processed in a different order to the extents in the EFI. */ static void xfs_efd_from_efi( struct xfs_efd_log_item *efdp) { struct xfs_efi_log_item *efip = efdp->efd_efip; uint i; ASSERT(efip->efi_format.efi_nextents > 0); ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents); for (i = 0; i < efip->efi_format.efi_nextents; i++) { efdp->efd_format.efd_extents[i] = efip->efi_format.efi_extents[i]; } efdp->efd_next_extent = efip->efi_format.efi_nextents; } /* * Free an extent and log it to the EFD. Note that the transaction is marked * dirty regardless of whether the extent free succeeds or fails to support the * EFI/EFD lifecycle rules. */ static int xfs_trans_free_extent( struct xfs_trans *tp, struct xfs_efd_log_item *efdp, struct xfs_extent_free_item *xefi) { struct xfs_owner_info oinfo = { }; struct xfs_mount *mp = tp->t_mountp; struct xfs_extent *extp; uint next_extent; xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock); int error; oinfo.oi_owner = xefi->xefi_owner; if (xefi->xefi_flags & XFS_EFI_ATTR_FORK) oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK; if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK) oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK; trace_xfs_bmap_free_deferred(tp->t_mountp, xefi->xefi_pag->pag_agno, 0, agbno, xefi->xefi_blockcount); error = __xfs_free_extent(tp, xefi->xefi_pag, agbno, xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv, xefi->xefi_flags & XFS_EFI_SKIP_DISCARD); /* * Mark the transaction dirty, even on error. This ensures the * transaction is aborted, which: * * 1.) releases the EFI and frees the EFD * 2.) shuts down the filesystem */ tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE; set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); /* * If we need a new transaction to make progress, the caller will log a * new EFI with the current contents. It will also log an EFD to cancel * the existing EFI, and so we need to copy all the unprocessed extents * in this EFI to the EFD so this works correctly. */ if (error == -EAGAIN) { xfs_efd_from_efi(efdp); return error; } next_extent = efdp->efd_next_extent; ASSERT(next_extent < efdp->efd_format.efd_nextents); extp = &(efdp->efd_format.efd_extents[next_extent]); extp->ext_start = xefi->xefi_startblock; extp->ext_len = xefi->xefi_blockcount; efdp->efd_next_extent++; return error; } /* Sort bmap items by AG. */ static int xfs_extent_free_diff_items( void *priv, const struct list_head *a, const struct list_head *b) { struct xfs_extent_free_item *ra; struct xfs_extent_free_item *rb; ra = container_of(a, struct xfs_extent_free_item, xefi_list); rb = container_of(b, struct xfs_extent_free_item, xefi_list); return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno; } /* Log a free extent to the intent item. */ STATIC void xfs_extent_free_log_item( struct xfs_trans *tp, struct xfs_efi_log_item *efip, struct xfs_extent_free_item *xefi) { uint next_extent; struct xfs_extent *extp; tp->t_flags |= XFS_TRANS_DIRTY; set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); /* * atomic_inc_return gives us the value after the increment; * we want to use it as an array index so we need to subtract 1 from * it. */ next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; ASSERT(next_extent < efip->efi_format.efi_nextents); extp = &efip->efi_format.efi_extents[next_extent]; extp->ext_start = xefi->xefi_startblock; extp->ext_len = xefi->xefi_blockcount; } static struct xfs_log_item * xfs_extent_free_create_intent( struct xfs_trans *tp, struct list_head *items, unsigned int count, bool sort) { struct xfs_mount *mp = tp->t_mountp; struct xfs_efi_log_item *efip = xfs_efi_init(mp, count); struct xfs_extent_free_item *xefi; ASSERT(count > 0); xfs_trans_add_item(tp, &efip->efi_item); if (sort) list_sort(mp, items, xfs_extent_free_diff_items); list_for_each_entry(xefi, items, xefi_list) xfs_extent_free_log_item(tp, efip, xefi); return &efip->efi_item; } /* Get an EFD so we can process all the free extents. */ static struct xfs_log_item * xfs_extent_free_create_done( struct xfs_trans *tp, struct xfs_log_item *intent, unsigned int count) { return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item; } /* Take a passive ref to the AG containing the space we're freeing. */ void xfs_extent_free_get_group( struct xfs_mount *mp, struct xfs_extent_free_item *xefi) { xfs_agnumber_t agno; agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock); xefi->xefi_pag = xfs_perag_intent_get(mp, agno); } /* Release a passive AG ref after some freeing work. */ static inline void xfs_extent_free_put_group( struct xfs_extent_free_item *xefi) { xfs_perag_intent_put(xefi->xefi_pag); } /* Process a free extent. */ STATIC int xfs_extent_free_finish_item( struct xfs_trans *tp, struct xfs_log_item *done, struct list_head *item, struct xfs_btree_cur **state) { struct xfs_extent_free_item *xefi; int error; xefi = container_of(item, struct xfs_extent_free_item, xefi_list); error = xfs_trans_free_extent(tp, EFD_ITEM(done), xefi); /* * Don't free the XEFI if we need a new transaction to complete * processing of it. */ if (error == -EAGAIN) return error; xfs_extent_free_put_group(xefi); kmem_cache_free(xfs_extfree_item_cache, xefi); return error; } /* Abort all pending EFIs. */ STATIC void xfs_extent_free_abort_intent( struct xfs_log_item *intent) { xfs_efi_release(EFI_ITEM(intent)); } /* Cancel a free extent. */ STATIC void xfs_extent_free_cancel_item( struct list_head *item) { struct xfs_extent_free_item *xefi; xefi = container_of(item, struct xfs_extent_free_item, xefi_list); xfs_extent_free_put_group(xefi); kmem_cache_free(xfs_extfree_item_cache, xefi); } const struct xfs_defer_op_type xfs_extent_free_defer_type = { .max_items = XFS_EFI_MAX_FAST_EXTENTS, .create_intent = xfs_extent_free_create_intent, .abort_intent = xfs_extent_free_abort_intent, .create_done = xfs_extent_free_create_done, .finish_item = xfs_extent_free_finish_item, .cancel_item = xfs_extent_free_cancel_item, }; /* * AGFL blocks are accounted differently in the reserve pools and are not * inserted into the busy extent list. */ STATIC int xfs_agfl_free_finish_item( struct xfs_trans *tp, struct xfs_log_item *done, struct list_head *item, struct xfs_btree_cur **state) { struct xfs_owner_info oinfo = { }; struct xfs_mount *mp = tp->t_mountp; struct xfs_efd_log_item *efdp = EFD_ITEM(done); struct xfs_extent_free_item *xefi; struct xfs_extent *extp; struct xfs_buf *agbp; int error; xfs_agblock_t agbno; uint next_extent; xefi = container_of(item, struct xfs_extent_free_item, xefi_list); ASSERT(xefi->xefi_blockcount == 1); agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock); oinfo.oi_owner = xefi->xefi_owner; trace_xfs_agfl_free_deferred(mp, xefi->xefi_pag->pag_agno, 0, agbno, xefi->xefi_blockcount); error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp); if (!error) error = xfs_free_agfl_block(tp, xefi->xefi_pag->pag_agno, agbno, agbp, &oinfo); /* * Mark the transaction dirty, even on error. This ensures the * transaction is aborted, which: * * 1.) releases the EFI and frees the EFD * 2.) shuts down the filesystem */ tp->t_flags |= XFS_TRANS_DIRTY; set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); next_extent = efdp->efd_next_extent; ASSERT(next_extent < efdp->efd_format.efd_nextents); extp = &(efdp->efd_format.efd_extents[next_extent]); extp->ext_start = xefi->xefi_startblock; extp->ext_len = xefi->xefi_blockcount; efdp->efd_next_extent++; xfs_extent_free_put_group(xefi); kmem_cache_free(xfs_extfree_item_cache, xefi); return error; } /* sub-type with special handling for AGFL deferred frees */ const struct xfs_defer_op_type xfs_agfl_free_defer_type = { .max_items = XFS_EFI_MAX_FAST_EXTENTS, .create_intent = xfs_extent_free_create_intent, .abort_intent = xfs_extent_free_abort_intent, .create_done = xfs_extent_free_create_done, .finish_item = xfs_agfl_free_finish_item, .cancel_item = xfs_extent_free_cancel_item, }; /* Is this recovered EFI ok? */ static inline bool xfs_efi_validate_ext( struct xfs_mount *mp, struct xfs_extent *extp) { return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len); } /* * Process an extent free intent item that was recovered from * the log. We need to free the extents that it describes. */ STATIC int xfs_efi_item_recover( struct xfs_defer_pending *dfp, struct list_head *capture_list) { struct xfs_trans_res resv; struct xfs_log_item *lip = dfp->dfp_intent; struct xfs_efi_log_item *efip = EFI_ITEM(lip); struct xfs_mount *mp = lip->li_log->l_mp; struct xfs_efd_log_item *efdp; struct xfs_trans *tp; int i; int error = 0; bool requeue_only = false; /* * First check the validity of the extents described by the * EFI. If any are bad, then assume that all are bad and * just toss the EFI. */ for (i = 0; i < efip->efi_format.efi_nextents; i++) { if (!xfs_efi_validate_ext(mp, &efip->efi_format.efi_extents[i])) { XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, &efip->efi_format, sizeof(efip->efi_format)); return -EFSCORRUPTED; } } resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate); error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp); if (error) return error; efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); xlog_recover_transfer_intent(tp, dfp); for (i = 0; i < efip->efi_format.efi_nextents; i++) { struct xfs_extent_free_item fake = { .xefi_owner = XFS_RMAP_OWN_UNKNOWN, .xefi_agresv = XFS_AG_RESV_NONE, }; struct xfs_extent *extp; extp = &efip->efi_format.efi_extents[i]; fake.xefi_startblock = extp->ext_start; fake.xefi_blockcount = extp->ext_len; if (!requeue_only) { xfs_extent_free_get_group(mp, &fake); error = xfs_trans_free_extent(tp, efdp, &fake); xfs_extent_free_put_group(&fake); } /* * If we can't free the extent without potentially deadlocking, * requeue the rest of the extents to a new so that they get * run again later with a new transaction context. */ if (error == -EAGAIN || requeue_only) { error = xfs_free_extent_later(tp, fake.xefi_startblock, fake.xefi_blockcount, &XFS_RMAP_OINFO_ANY_OWNER, fake.xefi_agresv); if (!error) { requeue_only = true; continue; } } if (error == -EFSCORRUPTED) XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, extp, sizeof(*extp)); if (error) goto abort_error; } return xfs_defer_ops_capture_and_commit(tp, capture_list); abort_error: xfs_trans_cancel(tp); return error; } STATIC bool xfs_efi_item_match( struct xfs_log_item *lip, uint64_t intent_id) { return EFI_ITEM(lip)->efi_format.efi_id == intent_id; } /* Relog an intent item to push the log tail forward. */ static struct xfs_log_item * xfs_efi_item_relog( struct xfs_log_item *intent, struct xfs_trans *tp) { struct xfs_efd_log_item *efdp; struct xfs_efi_log_item *efip; struct xfs_extent *extp; unsigned int count; count = EFI_ITEM(intent)->efi_format.efi_nextents; extp = EFI_ITEM(intent)->efi_format.efi_extents; tp->t_flags |= XFS_TRANS_DIRTY; efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count); efdp->efd_next_extent = count; memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp)); set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); efip = xfs_efi_init(tp->t_mountp, count); memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp)); atomic_set(&efip->efi_next_extent, count); xfs_trans_add_item(tp, &efip->efi_item); set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); return &efip->efi_item; } static const struct xfs_item_ops xfs_efi_item_ops = { .flags = XFS_ITEM_INTENT, .iop_size = xfs_efi_item_size, .iop_format = xfs_efi_item_format, .iop_unpin = xfs_efi_item_unpin, .iop_release = xfs_efi_item_release, .iop_recover = xfs_efi_item_recover, .iop_match = xfs_efi_item_match, .iop_relog = xfs_efi_item_relog, }; /* * This routine is called to create an in-core extent free intent * item from the efi format structure which was logged on disk. * It allocates an in-core efi, copies the extents from the format * structure into it, and adds the efi to the AIL with the given * LSN. */ STATIC int xlog_recover_efi_commit_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t lsn) { struct xfs_mount *mp = log->l_mp; struct xfs_efi_log_item *efip; struct xfs_efi_log_format *efi_formatp; int error; efi_formatp = item->ri_buf[0].i_addr; if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) { XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, item->ri_buf[0].i_addr, item->ri_buf[0].i_len); return -EFSCORRUPTED; } efip = xfs_efi_init(mp, efi_formatp->efi_nextents); error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); if (error) { xfs_efi_item_free(efip); return error; } atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); xlog_recover_intent_item(log, &efip->efi_item, lsn, XFS_DEFER_OPS_TYPE_FREE); return 0; } const struct xlog_recover_item_ops xlog_efi_item_ops = { .item_type = XFS_LI_EFI, .commit_pass2 = xlog_recover_efi_commit_pass2, }; /* * This routine is called when an EFD format structure is found in a committed * transaction in the log. Its purpose is to cancel the corresponding EFI if it * was still in the log. To do this it searches the AIL for the EFI with an id * equal to that in the EFD format structure. If we find it we drop the EFD * reference, which removes the EFI from the AIL and frees it. */ STATIC int xlog_recover_efd_commit_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t lsn) { struct xfs_efd_log_format *efd_formatp; int buflen = item->ri_buf[0].i_len; efd_formatp = item->ri_buf[0].i_addr; if (buflen < sizeof(struct xfs_efd_log_format)) { XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, efd_formatp, buflen); return -EFSCORRUPTED; } if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof( efd_formatp->efd_nextents) && item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof( efd_formatp->efd_nextents)) { XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, efd_formatp, buflen); return -EFSCORRUPTED; } xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); return 0; } const struct xlog_recover_item_ops xlog_efd_item_ops = { .item_type = XFS_LI_EFD, .commit_pass2 = xlog_recover_efd_commit_pass2, };