// SPDX-License-Identifier: GPL-2.0-only /* * auxtrace.c: AUX area trace support * Copyright (c) 2013-2015, Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "config.h" #include "evlist.h" #include "dso.h" #include "map.h" #include "pmu.h" #include "evsel.h" #include "evsel_config.h" #include "symbol.h" #include "util/perf_api_probe.h" #include "util/synthetic-events.h" #include "thread_map.h" #include "asm/bug.h" #include "auxtrace.h" #include #include "event.h" #include "record.h" #include "session.h" #include "debug.h" #include #include "cs-etm.h" #include "intel-pt.h" #include "intel-bts.h" #include "arm-spe.h" #include "hisi-ptt.h" #include "s390-cpumsf.h" #include "util/mmap.h" #include #include "symbol/kallsyms.h" #include #include "util/sample.h" /* * Make a group from 'leader' to 'last', requiring that the events were not * already grouped to a different leader. */ static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last) { struct evsel *evsel; bool grp; if (!evsel__is_group_leader(leader)) return -EINVAL; grp = false; evlist__for_each_entry(evlist, evsel) { if (grp) { if (!(evsel__leader(evsel) == leader || (evsel__leader(evsel) == evsel && evsel->core.nr_members <= 1))) return -EINVAL; } else if (evsel == leader) { grp = true; } if (evsel == last) break; } grp = false; evlist__for_each_entry(evlist, evsel) { if (grp) { if (!evsel__has_leader(evsel, leader)) { evsel__set_leader(evsel, leader); if (leader->core.nr_members < 1) leader->core.nr_members = 1; leader->core.nr_members += 1; } } else if (evsel == leader) { grp = true; } if (evsel == last) break; } return 0; } static bool auxtrace__dont_decode(struct perf_session *session) { return !session->itrace_synth_opts || session->itrace_synth_opts->dont_decode; } int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, struct auxtrace_mmap_params *mp, void *userpg, int fd) { struct perf_event_mmap_page *pc = userpg; WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); mm->userpg = userpg; mm->mask = mp->mask; mm->len = mp->len; mm->prev = 0; mm->idx = mp->idx; mm->tid = mp->tid; mm->cpu = mp->cpu.cpu; if (!mp->len || !mp->mmap_needed) { mm->base = NULL; return 0; } pc->aux_offset = mp->offset; pc->aux_size = mp->len; mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); if (mm->base == MAP_FAILED) { pr_debug2("failed to mmap AUX area\n"); mm->base = NULL; return -1; } return 0; } void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) { if (mm->base) { munmap(mm->base, mm->len); mm->base = NULL; } } void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, off_t auxtrace_offset, unsigned int auxtrace_pages, bool auxtrace_overwrite) { if (auxtrace_pages) { mp->offset = auxtrace_offset; mp->len = auxtrace_pages * (size_t)page_size; mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); pr_debug2("AUX area mmap length %zu\n", mp->len); } else { mp->len = 0; } } void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, struct evlist *evlist, struct evsel *evsel, int idx) { bool per_cpu = !perf_cpu_map__empty(evlist->core.user_requested_cpus); mp->mmap_needed = evsel->needs_auxtrace_mmap; if (!mp->mmap_needed) return; mp->idx = idx; if (per_cpu) { mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); if (evlist->core.threads) mp->tid = perf_thread_map__pid(evlist->core.threads, 0); else mp->tid = -1; } else { mp->cpu.cpu = -1; mp->tid = perf_thread_map__pid(evlist->core.threads, idx); } } #define AUXTRACE_INIT_NR_QUEUES 32 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) { struct auxtrace_queue *queue_array; unsigned int max_nr_queues, i; max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); if (nr_queues > max_nr_queues) return NULL; queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); if (!queue_array) return NULL; for (i = 0; i < nr_queues; i++) { INIT_LIST_HEAD(&queue_array[i].head); queue_array[i].priv = NULL; } return queue_array; } int auxtrace_queues__init(struct auxtrace_queues *queues) { queues->nr_queues = AUXTRACE_INIT_NR_QUEUES; queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); if (!queues->queue_array) return -ENOMEM; return 0; } static int auxtrace_queues__grow(struct auxtrace_queues *queues, unsigned int new_nr_queues) { unsigned int nr_queues = queues->nr_queues; struct auxtrace_queue *queue_array; unsigned int i; if (!nr_queues) nr_queues = AUXTRACE_INIT_NR_QUEUES; while (nr_queues && nr_queues < new_nr_queues) nr_queues <<= 1; if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) return -EINVAL; queue_array = auxtrace_alloc_queue_array(nr_queues); if (!queue_array) return -ENOMEM; for (i = 0; i < queues->nr_queues; i++) { list_splice_tail(&queues->queue_array[i].head, &queue_array[i].head); queue_array[i].tid = queues->queue_array[i].tid; queue_array[i].cpu = queues->queue_array[i].cpu; queue_array[i].set = queues->queue_array[i].set; queue_array[i].priv = queues->queue_array[i].priv; } queues->nr_queues = nr_queues; queues->queue_array = queue_array; return 0; } static void *auxtrace_copy_data(u64 size, struct perf_session *session) { int fd = perf_data__fd(session->data); void *p; ssize_t ret; if (size > SSIZE_MAX) return NULL; p = malloc(size); if (!p) return NULL; ret = readn(fd, p, size); if (ret != (ssize_t)size) { free(p); return NULL; } return p; } static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, unsigned int idx, struct auxtrace_buffer *buffer) { struct auxtrace_queue *queue; int err; if (idx >= queues->nr_queues) { err = auxtrace_queues__grow(queues, idx + 1); if (err) return err; } queue = &queues->queue_array[idx]; if (!queue->set) { queue->set = true; queue->tid = buffer->tid; queue->cpu = buffer->cpu.cpu; } buffer->buffer_nr = queues->next_buffer_nr++; list_add_tail(&buffer->list, &queue->head); queues->new_data = true; queues->populated = true; return 0; } /* Limit buffers to 32MiB on 32-bit */ #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, unsigned int idx, struct auxtrace_buffer *buffer) { u64 sz = buffer->size; bool consecutive = false; struct auxtrace_buffer *b; int err; while (sz > BUFFER_LIMIT_FOR_32_BIT) { b = memdup(buffer, sizeof(struct auxtrace_buffer)); if (!b) return -ENOMEM; b->size = BUFFER_LIMIT_FOR_32_BIT; b->consecutive = consecutive; err = auxtrace_queues__queue_buffer(queues, idx, b); if (err) { auxtrace_buffer__free(b); return err; } buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; sz -= BUFFER_LIMIT_FOR_32_BIT; consecutive = true; } buffer->size = sz; buffer->consecutive = consecutive; return 0; } static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu) { unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap); } static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, struct perf_session *session, unsigned int idx, struct auxtrace_buffer *buffer, struct auxtrace_buffer **buffer_ptr) { int err = -ENOMEM; if (filter_cpu(session, buffer->cpu)) return 0; buffer = memdup(buffer, sizeof(*buffer)); if (!buffer) return -ENOMEM; if (session->one_mmap) { buffer->data = buffer->data_offset - session->one_mmap_offset + session->one_mmap_addr; } else if (perf_data__is_pipe(session->data)) { buffer->data = auxtrace_copy_data(buffer->size, session); if (!buffer->data) goto out_free; buffer->data_needs_freeing = true; } else if (BITS_PER_LONG == 32 && buffer->size > BUFFER_LIMIT_FOR_32_BIT) { err = auxtrace_queues__split_buffer(queues, idx, buffer); if (err) goto out_free; } err = auxtrace_queues__queue_buffer(queues, idx, buffer); if (err) goto out_free; /* FIXME: Doesn't work for split buffer */ if (buffer_ptr) *buffer_ptr = buffer; return 0; out_free: auxtrace_buffer__free(buffer); return err; } int auxtrace_queues__add_event(struct auxtrace_queues *queues, struct perf_session *session, union perf_event *event, off_t data_offset, struct auxtrace_buffer **buffer_ptr) { struct auxtrace_buffer buffer = { .pid = -1, .tid = event->auxtrace.tid, .cpu = { event->auxtrace.cpu }, .data_offset = data_offset, .offset = event->auxtrace.offset, .reference = event->auxtrace.reference, .size = event->auxtrace.size, }; unsigned int idx = event->auxtrace.idx; return auxtrace_queues__add_buffer(queues, session, idx, &buffer, buffer_ptr); } static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, struct perf_session *session, off_t file_offset, size_t sz) { union perf_event *event; int err; char buf[PERF_SAMPLE_MAX_SIZE]; err = perf_session__peek_event(session, file_offset, buf, PERF_SAMPLE_MAX_SIZE, &event, NULL); if (err) return err; if (event->header.type == PERF_RECORD_AUXTRACE) { if (event->header.size < sizeof(struct perf_record_auxtrace) || event->header.size != sz) { err = -EINVAL; goto out; } file_offset += event->header.size; err = auxtrace_queues__add_event(queues, session, event, file_offset, NULL); } out: return err; } void auxtrace_queues__free(struct auxtrace_queues *queues) { unsigned int i; for (i = 0; i < queues->nr_queues; i++) { while (!list_empty(&queues->queue_array[i].head)) { struct auxtrace_buffer *buffer; buffer = list_entry(queues->queue_array[i].head.next, struct auxtrace_buffer, list); list_del_init(&buffer->list); auxtrace_buffer__free(buffer); } } zfree(&queues->queue_array); queues->nr_queues = 0; } static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, unsigned int pos, unsigned int queue_nr, u64 ordinal) { unsigned int parent; while (pos) { parent = (pos - 1) >> 1; if (heap_array[parent].ordinal <= ordinal) break; heap_array[pos] = heap_array[parent]; pos = parent; } heap_array[pos].queue_nr = queue_nr; heap_array[pos].ordinal = ordinal; } int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, u64 ordinal) { struct auxtrace_heap_item *heap_array; if (queue_nr >= heap->heap_sz) { unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; while (heap_sz <= queue_nr) heap_sz <<= 1; heap_array = realloc(heap->heap_array, heap_sz * sizeof(struct auxtrace_heap_item)); if (!heap_array) return -ENOMEM; heap->heap_array = heap_array; heap->heap_sz = heap_sz; } auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); return 0; } void auxtrace_heap__free(struct auxtrace_heap *heap) { zfree(&heap->heap_array); heap->heap_cnt = 0; heap->heap_sz = 0; } void auxtrace_heap__pop(struct auxtrace_heap *heap) { unsigned int pos, last, heap_cnt = heap->heap_cnt; struct auxtrace_heap_item *heap_array; if (!heap_cnt) return; heap->heap_cnt -= 1; heap_array = heap->heap_array; pos = 0; while (1) { unsigned int left, right; left = (pos << 1) + 1; if (left >= heap_cnt) break; right = left + 1; if (right >= heap_cnt) { heap_array[pos] = heap_array[left]; return; } if (heap_array[left].ordinal < heap_array[right].ordinal) { heap_array[pos] = heap_array[left]; pos = left; } else { heap_array[pos] = heap_array[right]; pos = right; } } last = heap_cnt - 1; auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, heap_array[last].ordinal); } size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, struct evlist *evlist) { if (itr) return itr->info_priv_size(itr, evlist); return 0; } static int auxtrace_not_supported(void) { pr_err("AUX area tracing is not supported on this architecture\n"); return -EINVAL; } int auxtrace_record__info_fill(struct auxtrace_record *itr, struct perf_session *session, struct perf_record_auxtrace_info *auxtrace_info, size_t priv_size) { if (itr) return itr->info_fill(itr, session, auxtrace_info, priv_size); return auxtrace_not_supported(); } void auxtrace_record__free(struct auxtrace_record *itr) { if (itr) itr->free(itr); } int auxtrace_record__snapshot_start(struct auxtrace_record *itr) { if (itr && itr->snapshot_start) return itr->snapshot_start(itr); return 0; } int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) { if (!on_exit && itr && itr->snapshot_finish) return itr->snapshot_finish(itr); return 0; } int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, struct auxtrace_mmap *mm, unsigned char *data, u64 *head, u64 *old) { if (itr && itr->find_snapshot) return itr->find_snapshot(itr, idx, mm, data, head, old); return 0; } int auxtrace_record__options(struct auxtrace_record *itr, struct evlist *evlist, struct record_opts *opts) { if (itr) { itr->evlist = evlist; return itr->recording_options(itr, evlist, opts); } return 0; } u64 auxtrace_record__reference(struct auxtrace_record *itr) { if (itr) return itr->reference(itr); return 0; } int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, struct record_opts *opts, const char *str) { if (!str) return 0; /* PMU-agnostic options */ switch (*str) { case 'e': opts->auxtrace_snapshot_on_exit = true; str++; break; default: break; } if (itr && itr->parse_snapshot_options) return itr->parse_snapshot_options(itr, opts, str); pr_err("No AUX area tracing to snapshot\n"); return -EINVAL; } static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx) { bool per_cpu_mmaps = !perf_cpu_map__empty(evlist->core.user_requested_cpus); if (per_cpu_mmaps) { struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu); if (cpu_map_idx == -1) return -EINVAL; return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx); } return perf_evsel__enable_thread(&evsel->core, idx); } int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx) { struct evsel *evsel; if (!itr->evlist || !itr->pmu) return -EINVAL; evlist__for_each_entry(itr->evlist, evsel) { if (evsel->core.attr.type == itr->pmu->type) { if (evsel->disabled) return 0; return evlist__enable_event_idx(itr->evlist, evsel, idx); } } return -EINVAL; } /* * Event record size is 16-bit which results in a maximum size of about 64KiB. * Allow about 4KiB for the rest of the sample record, to give a maximum * AUX area sample size of 60KiB. */ #define MAX_AUX_SAMPLE_SIZE (60 * 1024) /* Arbitrary default size if no other default provided */ #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024) static int auxtrace_validate_aux_sample_size(struct evlist *evlist, struct record_opts *opts) { struct evsel *evsel; bool has_aux_leader = false; u32 sz; evlist__for_each_entry(evlist, evsel) { sz = evsel->core.attr.aux_sample_size; if (evsel__is_group_leader(evsel)) { has_aux_leader = evsel__is_aux_event(evsel); if (sz) { if (has_aux_leader) pr_err("Cannot add AUX area sampling to an AUX area event\n"); else pr_err("Cannot add AUX area sampling to a group leader\n"); return -EINVAL; } } if (sz > MAX_AUX_SAMPLE_SIZE) { pr_err("AUX area sample size %u too big, max. %d\n", sz, MAX_AUX_SAMPLE_SIZE); return -EINVAL; } if (sz) { if (!has_aux_leader) { pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n"); return -EINVAL; } evsel__set_sample_bit(evsel, AUX); opts->auxtrace_sample_mode = true; } else { evsel__reset_sample_bit(evsel, AUX); } } if (!opts->auxtrace_sample_mode) { pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n"); return -EINVAL; } if (!perf_can_aux_sample()) { pr_err("AUX area sampling is not supported by kernel\n"); return -EINVAL; } return 0; } int auxtrace_parse_sample_options(struct auxtrace_record *itr, struct evlist *evlist, struct record_opts *opts, const char *str) { struct evsel_config_term *term; struct evsel *aux_evsel; bool has_aux_sample_size = false; bool has_aux_leader = false; struct evsel *evsel; char *endptr; unsigned long sz; if (!str) goto no_opt; if (!itr) { pr_err("No AUX area event to sample\n"); return -EINVAL; } sz = strtoul(str, &endptr, 0); if (*endptr || sz > UINT_MAX) { pr_err("Bad AUX area sampling option: '%s'\n", str); return -EINVAL; } if (!sz) sz = itr->default_aux_sample_size; if (!sz) sz = DEFAULT_AUX_SAMPLE_SIZE; /* Set aux_sample_size based on --aux-sample option */ evlist__for_each_entry(evlist, evsel) { if (evsel__is_group_leader(evsel)) { has_aux_leader = evsel__is_aux_event(evsel); } else if (has_aux_leader) { evsel->core.attr.aux_sample_size = sz; } } no_opt: aux_evsel = NULL; /* Override with aux_sample_size from config term */ evlist__for_each_entry(evlist, evsel) { if (evsel__is_aux_event(evsel)) aux_evsel = evsel; term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE); if (term) { has_aux_sample_size = true; evsel->core.attr.aux_sample_size = term->val.aux_sample_size; /* If possible, group with the AUX event */ if (aux_evsel && evsel->core.attr.aux_sample_size) evlist__regroup(evlist, aux_evsel, evsel); } } if (!str && !has_aux_sample_size) return 0; if (!itr) { pr_err("No AUX area event to sample\n"); return -EINVAL; } return auxtrace_validate_aux_sample_size(evlist, opts); } void auxtrace_regroup_aux_output(struct evlist *evlist) { struct evsel *evsel, *aux_evsel = NULL; struct evsel_config_term *term; evlist__for_each_entry(evlist, evsel) { if (evsel__is_aux_event(evsel)) aux_evsel = evsel; term = evsel__get_config_term(evsel, AUX_OUTPUT); /* If possible, group with the AUX event */ if (term && aux_evsel) evlist__regroup(evlist, aux_evsel, evsel); } } struct auxtrace_record *__weak auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) { *err = 0; return NULL; } static int auxtrace_index__alloc(struct list_head *head) { struct auxtrace_index *auxtrace_index; auxtrace_index = malloc(sizeof(struct auxtrace_index)); if (!auxtrace_index) return -ENOMEM; auxtrace_index->nr = 0; INIT_LIST_HEAD(&auxtrace_index->list); list_add_tail(&auxtrace_index->list, head); return 0; } void auxtrace_index__free(struct list_head *head) { struct auxtrace_index *auxtrace_index, *n; list_for_each_entry_safe(auxtrace_index, n, head, list) { list_del_init(&auxtrace_index->list); free(auxtrace_index); } } static struct auxtrace_index *auxtrace_index__last(struct list_head *head) { struct auxtrace_index *auxtrace_index; int err; if (list_empty(head)) { err = auxtrace_index__alloc(head); if (err) return NULL; } auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { err = auxtrace_index__alloc(head); if (err) return NULL; auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); } return auxtrace_index; } int auxtrace_index__auxtrace_event(struct list_head *head, union perf_event *event, off_t file_offset) { struct auxtrace_index *auxtrace_index; size_t nr; auxtrace_index = auxtrace_index__last(head); if (!auxtrace_index) return -ENOMEM; nr = auxtrace_index->nr; auxtrace_index->entries[nr].file_offset = file_offset; auxtrace_index->entries[nr].sz = event->header.size; auxtrace_index->nr += 1; return 0; } static int auxtrace_index__do_write(int fd, struct auxtrace_index *auxtrace_index) { struct auxtrace_index_entry ent; size_t i; for (i = 0; i < auxtrace_index->nr; i++) { ent.file_offset = auxtrace_index->entries[i].file_offset; ent.sz = auxtrace_index->entries[i].sz; if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) return -errno; } return 0; } int auxtrace_index__write(int fd, struct list_head *head) { struct auxtrace_index *auxtrace_index; u64 total = 0; int err; list_for_each_entry(auxtrace_index, head, list) total += auxtrace_index->nr; if (writen(fd, &total, sizeof(total)) != sizeof(total)) return -errno; list_for_each_entry(auxtrace_index, head, list) { err = auxtrace_index__do_write(fd, auxtrace_index); if (err) return err; } return 0; } static int auxtrace_index__process_entry(int fd, struct list_head *head, bool needs_swap) { struct auxtrace_index *auxtrace_index; struct auxtrace_index_entry ent; size_t nr; if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) return -1; auxtrace_index = auxtrace_index__last(head); if (!auxtrace_index) return -1; nr = auxtrace_index->nr; if (needs_swap) { auxtrace_index->entries[nr].file_offset = bswap_64(ent.file_offset); auxtrace_index->entries[nr].sz = bswap_64(ent.sz); } else { auxtrace_index->entries[nr].file_offset = ent.file_offset; auxtrace_index->entries[nr].sz = ent.sz; } auxtrace_index->nr = nr + 1; return 0; } int auxtrace_index__process(int fd, u64 size, struct perf_session *session, bool needs_swap) { struct list_head *head = &session->auxtrace_index; u64 nr; if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) return -1; if (needs_swap) nr = bswap_64(nr); if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) return -1; while (nr--) { int err; err = auxtrace_index__process_entry(fd, head, needs_swap); if (err) return -1; } return 0; } static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, struct perf_session *session, struct auxtrace_index_entry *ent) { return auxtrace_queues__add_indexed_event(queues, session, ent->file_offset, ent->sz); } int auxtrace_queues__process_index(struct auxtrace_queues *queues, struct perf_session *session) { struct auxtrace_index *auxtrace_index; struct auxtrace_index_entry *ent; size_t i; int err; if (auxtrace__dont_decode(session)) return 0; list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { for (i = 0; i < auxtrace_index->nr; i++) { ent = &auxtrace_index->entries[i]; err = auxtrace_queues__process_index_entry(queues, session, ent); if (err) return err; } } return 0; } struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, struct auxtrace_buffer *buffer) { if (buffer) { if (list_is_last(&buffer->list, &queue->head)) return NULL; return list_entry(buffer->list.next, struct auxtrace_buffer, list); } else { if (list_empty(&queue->head)) return NULL; return list_entry(queue->head.next, struct auxtrace_buffer, list); } } struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues, struct perf_sample *sample, struct perf_session *session) { struct perf_sample_id *sid; unsigned int idx; u64 id; id = sample->id; if (!id) return NULL; sid = evlist__id2sid(session->evlist, id); if (!sid) return NULL; idx = sid->idx; if (idx >= queues->nr_queues) return NULL; return &queues->queue_array[idx]; } int auxtrace_queues__add_sample(struct auxtrace_queues *queues, struct perf_session *session, struct perf_sample *sample, u64 data_offset, u64 reference) { struct auxtrace_buffer buffer = { .pid = -1, .data_offset = data_offset, .reference = reference, .size = sample->aux_sample.size, }; struct perf_sample_id *sid; u64 id = sample->id; unsigned int idx; if (!id) return -EINVAL; sid = evlist__id2sid(session->evlist, id); if (!sid) return -ENOENT; idx = sid->idx; buffer.tid = sid->tid; buffer.cpu = sid->cpu; return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL); } struct queue_data { bool samples; bool events; }; static int auxtrace_queue_data_cb(struct perf_session *session, union perf_event *event, u64 offset, void *data) { struct queue_data *qd = data; struct perf_sample sample; int err; if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) { if (event->header.size < sizeof(struct perf_record_auxtrace)) return -EINVAL; offset += event->header.size; return session->auxtrace->queue_data(session, NULL, event, offset); } if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE) return 0; err = evlist__parse_sample(session->evlist, event, &sample); if (err) return err; if (!sample.aux_sample.size) return 0; offset += sample.aux_sample.data - (void *)event; return session->auxtrace->queue_data(session, &sample, NULL, offset); } int auxtrace_queue_data(struct perf_session *session, bool samples, bool events) { struct queue_data qd = { .samples = samples, .events = events, }; if (auxtrace__dont_decode(session)) return 0; if (perf_data__is_pipe(session->data)) return 0; if (!session->auxtrace || !session->auxtrace->queue_data) return -EINVAL; return perf_session__peek_events(session, session->header.data_offset, session->header.data_size, auxtrace_queue_data_cb, &qd); } void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw) { int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ; size_t adj = buffer->data_offset & (page_size - 1); size_t size = buffer->size + adj; off_t file_offset = buffer->data_offset - adj; void *addr; if (buffer->data) return buffer->data; addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset); if (addr == MAP_FAILED) return NULL; buffer->mmap_addr = addr; buffer->mmap_size = size; buffer->data = addr + adj; return buffer->data; } void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) { if (!buffer->data || !buffer->mmap_addr) return; munmap(buffer->mmap_addr, buffer->mmap_size); buffer->mmap_addr = NULL; buffer->mmap_size = 0; buffer->data = NULL; buffer->use_data = NULL; } void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) { auxtrace_buffer__put_data(buffer); if (buffer->data_needs_freeing) { buffer->data_needs_freeing = false; zfree(&buffer->data); buffer->use_data = NULL; buffer->size = 0; } } void auxtrace_buffer__free(struct auxtrace_buffer *buffer) { auxtrace_buffer__drop_data(buffer); free(buffer); } void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type, int code, int cpu, pid_t pid, pid_t tid, u64 ip, const char *msg, u64 timestamp, pid_t machine_pid, int vcpu) { size_t size; memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; auxtrace_error->type = type; auxtrace_error->code = code; auxtrace_error->cpu = cpu; auxtrace_error->pid = pid; auxtrace_error->tid = tid; auxtrace_error->fmt = 1; auxtrace_error->ip = ip; auxtrace_error->time = timestamp; strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); if (machine_pid) { auxtrace_error->fmt = 2; auxtrace_error->machine_pid = machine_pid; auxtrace_error->vcpu = vcpu; size = sizeof(*auxtrace_error); } else { size = (void *)auxtrace_error->msg - (void *)auxtrace_error + strlen(auxtrace_error->msg) + 1; } auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); } void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, int code, int cpu, pid_t pid, pid_t tid, u64 ip, const char *msg, u64 timestamp) { auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid, ip, msg, timestamp, 0, -1); } int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, struct perf_tool *tool, struct perf_session *session, perf_event__handler_t process) { union perf_event *ev; size_t priv_size; int err; pr_debug2("Synthesizing auxtrace information\n"); priv_size = auxtrace_record__info_priv_size(itr, session->evlist); ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); if (!ev) return -ENOMEM; ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + priv_size; err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, priv_size); if (err) goto out_free; err = process(tool, ev, NULL, NULL); out_free: free(ev); return err; } static void unleader_evsel(struct evlist *evlist, struct evsel *leader) { struct evsel *new_leader = NULL; struct evsel *evsel; /* Find new leader for the group */ evlist__for_each_entry(evlist, evsel) { if (!evsel__has_leader(evsel, leader) || evsel == leader) continue; if (!new_leader) new_leader = evsel; evsel__set_leader(evsel, new_leader); } /* Update group information */ if (new_leader) { zfree(&new_leader->group_name); new_leader->group_name = leader->group_name; leader->group_name = NULL; new_leader->core.nr_members = leader->core.nr_members - 1; leader->core.nr_members = 1; } } static void unleader_auxtrace(struct perf_session *session) { struct evsel *evsel; evlist__for_each_entry(session->evlist, evsel) { if (auxtrace__evsel_is_auxtrace(session, evsel) && evsel__is_group_leader(evsel)) { unleader_evsel(session->evlist, evsel); } } } int perf_event__process_auxtrace_info(struct perf_session *session, union perf_event *event) { enum auxtrace_type type = event->auxtrace_info.type; int err; if (dump_trace) fprintf(stdout, " type: %u\n", type); switch (type) { case PERF_AUXTRACE_INTEL_PT: err = intel_pt_process_auxtrace_info(event, session); break; case PERF_AUXTRACE_INTEL_BTS: err = intel_bts_process_auxtrace_info(event, session); break; case PERF_AUXTRACE_ARM_SPE: err = arm_spe_process_auxtrace_info(event, session); break; case PERF_AUXTRACE_CS_ETM: err = cs_etm__process_auxtrace_info(event, session); break; case PERF_AUXTRACE_S390_CPUMSF: err = s390_cpumsf_process_auxtrace_info(event, session); break; case PERF_AUXTRACE_HISI_PTT: err = hisi_ptt_process_auxtrace_info(event, session); break; case PERF_AUXTRACE_UNKNOWN: default: return -EINVAL; } if (err) return err; unleader_auxtrace(session); return 0; } s64 perf_event__process_auxtrace(struct perf_session *session, union perf_event *event) { s64 err; if (dump_trace) fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", event->auxtrace.size, event->auxtrace.offset, event->auxtrace.reference, event->auxtrace.idx, event->auxtrace.tid, event->auxtrace.cpu); if (auxtrace__dont_decode(session)) return event->auxtrace.size; if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) return -EINVAL; err = session->auxtrace->process_auxtrace_event(session, event, session->tool); if (err < 0) return err; return event->auxtrace.size; } #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS #define PERF_ITRACE_DEFAULT_PERIOD 100000 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, bool no_sample) { synth_opts->branches = true; synth_opts->transactions = true; synth_opts->ptwrites = true; synth_opts->pwr_events = true; synth_opts->other_events = true; synth_opts->intr_events = true; synth_opts->errors = true; synth_opts->flc = true; synth_opts->llc = true; synth_opts->tlb = true; synth_opts->mem = true; synth_opts->remote_access = true; if (no_sample) { synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; synth_opts->period = 1; synth_opts->calls = true; } else { synth_opts->instructions = true; synth_opts->cycles = true; synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; } synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; synth_opts->initial_skip = 0; } static int get_flag(const char **ptr, unsigned int *flags) { while (1) { char c = **ptr; if (c >= 'a' && c <= 'z') { *flags |= 1 << (c - 'a'); ++*ptr; return 0; } else if (c == ' ') { ++*ptr; continue; } else { return -1; } } } static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags) { while (1) { switch (**ptr) { case '+': ++*ptr; if (get_flag(ptr, plus_flags)) return -1; break; case '-': ++*ptr; if (get_flag(ptr, minus_flags)) return -1; break; case ' ': ++*ptr; break; default: return 0; } } } #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384 static unsigned int itrace_log_on_error_size(void) { unsigned int sz = 0; perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz); return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ; } /* * Please check tools/perf/Documentation/perf-script.txt for information * about the options parsed here, which is introduced after this cset, * when support in 'perf script' for these options is introduced. */ int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts, const char *str, int unset) { const char *p; char *endptr; bool period_type_set = false; bool period_set = false; bool iy = false; synth_opts->set = true; if (unset) { synth_opts->dont_decode = true; return 0; } if (!str) { itrace_synth_opts__set_default(synth_opts, synth_opts->default_no_sample); return 0; } for (p = str; *p;) { switch (*p++) { case 'i': case 'y': iy = true; if (p[-1] == 'y') synth_opts->cycles = true; else synth_opts->instructions = true; while (*p == ' ' || *p == ',') p += 1; if (isdigit(*p)) { synth_opts->period = strtoull(p, &endptr, 10); period_set = true; p = endptr; while (*p == ' ' || *p == ',') p += 1; switch (*p++) { case 'i': synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; period_type_set = true; break; case 't': synth_opts->period_type = PERF_ITRACE_PERIOD_TICKS; period_type_set = true; break; case 'm': synth_opts->period *= 1000; /* Fall through */ case 'u': synth_opts->period *= 1000; /* Fall through */ case 'n': if (*p++ != 's') goto out_err; synth_opts->period_type = PERF_ITRACE_PERIOD_NANOSECS; period_type_set = true; break; case '\0': goto out; default: goto out_err; } } break; case 'b': synth_opts->branches = true; break; case 'x': synth_opts->transactions = true; break; case 'w': synth_opts->ptwrites = true; break; case 'p': synth_opts->pwr_events = true; break; case 'o': synth_opts->other_events = true; break; case 'I': synth_opts->intr_events = true; break; case 'e': synth_opts->errors = true; if (get_flags(&p, &synth_opts->error_plus_flags, &synth_opts->error_minus_flags)) goto out_err; break; case 'd': synth_opts->log = true; if (get_flags(&p, &synth_opts->log_plus_flags, &synth_opts->log_minus_flags)) goto out_err; if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR) synth_opts->log_on_error_size = itrace_log_on_error_size(); break; case 'c': synth_opts->branches = true; synth_opts->calls = true; break; case 'r': synth_opts->branches = true; synth_opts->returns = true; break; case 'G': case 'g': if (p[-1] == 'G') synth_opts->add_callchain = true; else synth_opts->callchain = true; synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; while (*p == ' ' || *p == ',') p += 1; if (isdigit(*p)) { unsigned int val; val = strtoul(p, &endptr, 10); p = endptr; if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) goto out_err; synth_opts->callchain_sz = val; } break; case 'L': case 'l': if (p[-1] == 'L') synth_opts->add_last_branch = true; else synth_opts->last_branch = true; synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; while (*p == ' ' || *p == ',') p += 1; if (isdigit(*p)) { unsigned int val; val = strtoul(p, &endptr, 10); p = endptr; if (!val || val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) goto out_err; synth_opts->last_branch_sz = val; } break; case 's': synth_opts->initial_skip = strtoul(p, &endptr, 10); if (p == endptr) goto out_err; p = endptr; break; case 'f': synth_opts->flc = true; break; case 'm': synth_opts->llc = true; break; case 't': synth_opts->tlb = true; break; case 'a': synth_opts->remote_access = true; break; case 'M': synth_opts->mem = true; break; case 'q': synth_opts->quick += 1; break; case 'A': synth_opts->approx_ipc = true; break; case 'Z': synth_opts->timeless_decoding = true; break; case ' ': case ',': break; default: goto out_err; } } out: if (iy) { if (!period_type_set) synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; if (!period_set) synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; } return 0; out_err: pr_err("Bad Instruction Tracing options '%s'\n", str); return -EINVAL; } int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset) { return itrace_do_parse_synth_opts(opt->value, str, unset); } static const char * const auxtrace_error_type_name[] = { [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", }; static const char *auxtrace_error_name(int type) { const char *error_type_name = NULL; if (type < PERF_AUXTRACE_ERROR_MAX) error_type_name = auxtrace_error_type_name[type]; if (!error_type_name) error_type_name = "unknown AUX"; return error_type_name; } size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) { struct perf_record_auxtrace_error *e = &event->auxtrace_error; unsigned long long nsecs = e->time; const char *msg = e->msg; int ret; ret = fprintf(fp, " %s error type %u", auxtrace_error_name(e->type), e->type); if (e->fmt && nsecs) { unsigned long secs = nsecs / NSEC_PER_SEC; nsecs -= secs * NSEC_PER_SEC; ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); } else { ret += fprintf(fp, " time 0"); } if (!e->fmt) msg = (const char *)&e->time; if (e->fmt >= 2 && e->machine_pid) ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu); ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", e->cpu, e->pid, e->tid, e->ip, e->code, msg); return ret; } void perf_session__auxtrace_error_inc(struct perf_session *session, union perf_event *event) { struct perf_record_auxtrace_error *e = &event->auxtrace_error; if (e->type < PERF_AUXTRACE_ERROR_MAX) session->evlist->stats.nr_auxtrace_errors[e->type] += 1; } void events_stats__auxtrace_error_warn(const struct events_stats *stats) { int i; for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { if (!stats->nr_auxtrace_errors[i]) continue; ui__warning("%u %s errors\n", stats->nr_auxtrace_errors[i], auxtrace_error_name(i)); } } int perf_event__process_auxtrace_error(struct perf_session *session, union perf_event *event) { if (auxtrace__dont_decode(session)) return 0; perf_event__fprintf_auxtrace_error(event, stdout); return 0; } /* * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode, * 32-bit perf tool cannot access 64-bit value atomically, which might lead to * the issues caused by the below sequence on multiple CPUs: when perf tool * accesses either the load operation or the store operation for 64-bit value, * on some architectures the operation is divided into two instructions, one * is for accessing the low 32-bit value and another is for the high 32-bit; * thus these two user operations can give the kernel chances to access the * 64-bit value, and thus leads to the unexpected load values. * * kernel (64-bit) user (32-bit) * * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo * STORE $aux_data | ,---> * FLUSH $aux_data | | LOAD ->aux_head_hi * STORE ->aux_head --|-------` smp_rmb() * } | LOAD $data * | smp_mb() * | STORE ->aux_tail_lo * `-----------> * STORE ->aux_tail_hi * * For this reason, it's impossible for the perf tool to work correctly when * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we * can not simply limit the AUX ring buffer to less than 4GB, the reason is * the pointers can be increased monotonically, whatever the buffer size it is, * at the end the head and tail can be bigger than 4GB and carry out to the * high 32-bit. * * To mitigate the issues and improve the user experience, we can allow the * perf tool working in certain conditions and bail out with error if detect * any overflow cannot be handled. * * For reading the AUX head, it reads out the values for three times, and * compares the high 4 bytes of the values between the first time and the last * time, if there has no change for high 4 bytes injected by the kernel during * the user reading sequence, it's safe for use the second value. * * When compat_auxtrace_mmap__write_tail() detects any carrying in the high * 32 bits, it means there have two store operations in user space and it cannot * promise the atomicity for 64-bit write, so return '-1' in this case to tell * the caller an overflow error has happened. */ u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm) { struct perf_event_mmap_page *pc = mm->userpg; u64 first, second, last; u64 mask = (u64)(UINT32_MAX) << 32; do { first = READ_ONCE(pc->aux_head); /* Ensure all reads are done after we read the head */ smp_rmb(); second = READ_ONCE(pc->aux_head); /* Ensure all reads are done after we read the head */ smp_rmb(); last = READ_ONCE(pc->aux_head); } while ((first & mask) != (last & mask)); return second; } int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail) { struct perf_event_mmap_page *pc = mm->userpg; u64 mask = (u64)(UINT32_MAX) << 32; if (tail & mask) return -1; /* Ensure all reads are done before we write the tail out */ smp_mb(); WRITE_ONCE(pc->aux_tail, tail); return 0; } static int __auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, struct perf_tool *tool, process_auxtrace_t fn, bool snapshot, size_t snapshot_size) { struct auxtrace_mmap *mm = &map->auxtrace_mmap; u64 head, old = mm->prev, offset, ref; unsigned char *data = mm->base; size_t size, head_off, old_off, len1, len2, padding; union perf_event ev; void *data1, *data2; int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL)); head = auxtrace_mmap__read_head(mm, kernel_is_64_bit); if (snapshot && auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old)) return -1; if (old == head) return 0; pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", mm->idx, old, head, head - old); if (mm->mask) { head_off = head & mm->mask; old_off = old & mm->mask; } else { head_off = head % mm->len; old_off = old % mm->len; } if (head_off > old_off) size = head_off - old_off; else size = mm->len - (old_off - head_off); if (snapshot && size > snapshot_size) size = snapshot_size; ref = auxtrace_record__reference(itr); if (head > old || size <= head || mm->mask) { offset = head - size; } else { /* * When the buffer size is not a power of 2, 'head' wraps at the * highest multiple of the buffer size, so we have to subtract * the remainder here. */ u64 rem = (0ULL - mm->len) % mm->len; offset = head - size - rem; } if (size > head_off) { len1 = size - head_off; data1 = &data[mm->len - len1]; len2 = head_off; data2 = &data[0]; } else { len1 = size; data1 = &data[head_off - len1]; len2 = 0; data2 = NULL; } if (itr->alignment) { unsigned int unwanted = len1 % itr->alignment; len1 -= unwanted; size -= unwanted; } /* padding must be written by fn() e.g. record__process_auxtrace() */ padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); if (padding) padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; memset(&ev, 0, sizeof(ev)); ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; ev.auxtrace.header.size = sizeof(ev.auxtrace); ev.auxtrace.size = size + padding; ev.auxtrace.offset = offset; ev.auxtrace.reference = ref; ev.auxtrace.idx = mm->idx; ev.auxtrace.tid = mm->tid; ev.auxtrace.cpu = mm->cpu; if (fn(tool, map, &ev, data1, len1, data2, len2)) return -1; mm->prev = head; if (!snapshot) { int err; err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit); if (err < 0) return err; if (itr->read_finish) { err = itr->read_finish(itr, mm->idx); if (err < 0) return err; } } return 1; } int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, struct perf_tool *tool, process_auxtrace_t fn) { return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); } int auxtrace_mmap__read_snapshot(struct mmap *map, struct auxtrace_record *itr, struct perf_tool *tool, process_auxtrace_t fn, size_t snapshot_size) { return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); } /** * struct auxtrace_cache - hash table to implement a cache * @hashtable: the hashtable * @sz: hashtable size (number of hlists) * @entry_size: size of an entry * @limit: limit the number of entries to this maximum, when reached the cache * is dropped and caching begins again with an empty cache * @cnt: current number of entries * @bits: hashtable size (@sz = 2^@bits) */ struct auxtrace_cache { struct hlist_head *hashtable; size_t sz; size_t entry_size; size_t limit; size_t cnt; unsigned int bits; }; struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, unsigned int limit_percent) { struct auxtrace_cache *c; struct hlist_head *ht; size_t sz, i; c = zalloc(sizeof(struct auxtrace_cache)); if (!c) return NULL; sz = 1UL << bits; ht = calloc(sz, sizeof(struct hlist_head)); if (!ht) goto out_free; for (i = 0; i < sz; i++) INIT_HLIST_HEAD(&ht[i]); c->hashtable = ht; c->sz = sz; c->entry_size = entry_size; c->limit = (c->sz * limit_percent) / 100; c->bits = bits; return c; out_free: free(c); return NULL; } static void auxtrace_cache__drop(struct auxtrace_cache *c) { struct auxtrace_cache_entry *entry; struct hlist_node *tmp; size_t i; if (!c) return; for (i = 0; i < c->sz; i++) { hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { hlist_del(&entry->hash); auxtrace_cache__free_entry(c, entry); } } c->cnt = 0; } void auxtrace_cache__free(struct auxtrace_cache *c) { if (!c) return; auxtrace_cache__drop(c); zfree(&c->hashtable); free(c); } void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) { return malloc(c->entry_size); } void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, void *entry) { free(entry); } int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, struct auxtrace_cache_entry *entry) { if (c->limit && ++c->cnt > c->limit) auxtrace_cache__drop(c); entry->key = key; hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); return 0; } static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c, u32 key) { struct auxtrace_cache_entry *entry; struct hlist_head *hlist; struct hlist_node *n; if (!c) return NULL; hlist = &c->hashtable[hash_32(key, c->bits)]; hlist_for_each_entry_safe(entry, n, hlist, hash) { if (entry->key == key) { hlist_del(&entry->hash); return entry; } } return NULL; } void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key) { struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key); auxtrace_cache__free_entry(c, entry); } void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) { struct auxtrace_cache_entry *entry; struct hlist_head *hlist; if (!c) return NULL; hlist = &c->hashtable[hash_32(key, c->bits)]; hlist_for_each_entry(entry, hlist, hash) { if (entry->key == key) return entry; } return NULL; } static void addr_filter__free_str(struct addr_filter *filt) { zfree(&filt->str); filt->action = NULL; filt->sym_from = NULL; filt->sym_to = NULL; filt->filename = NULL; } static struct addr_filter *addr_filter__new(void) { struct addr_filter *filt = zalloc(sizeof(*filt)); if (filt) INIT_LIST_HEAD(&filt->list); return filt; } static void addr_filter__free(struct addr_filter *filt) { if (filt) addr_filter__free_str(filt); free(filt); } static void addr_filters__add(struct addr_filters *filts, struct addr_filter *filt) { list_add_tail(&filt->list, &filts->head); filts->cnt += 1; } static void addr_filters__del(struct addr_filters *filts, struct addr_filter *filt) { list_del_init(&filt->list); filts->cnt -= 1; } void addr_filters__init(struct addr_filters *filts) { INIT_LIST_HEAD(&filts->head); filts->cnt = 0; } void addr_filters__exit(struct addr_filters *filts) { struct addr_filter *filt, *n; list_for_each_entry_safe(filt, n, &filts->head, list) { addr_filters__del(filts, filt); addr_filter__free(filt); } } static int parse_num_or_str(char **inp, u64 *num, const char **str, const char *str_delim) { *inp += strspn(*inp, " "); if (isdigit(**inp)) { char *endptr; if (!num) return -EINVAL; errno = 0; *num = strtoull(*inp, &endptr, 0); if (errno) return -errno; if (endptr == *inp) return -EINVAL; *inp = endptr; } else { size_t n; if (!str) return -EINVAL; *inp += strspn(*inp, " "); *str = *inp; n = strcspn(*inp, str_delim); if (!n) return -EINVAL; *inp += n; if (**inp) { **inp = '\0'; *inp += 1; } } return 0; } static int parse_action(struct addr_filter *filt) { if (!strcmp(filt->action, "filter")) { filt->start = true; filt->range = true; } else if (!strcmp(filt->action, "start")) { filt->start = true; } else if (!strcmp(filt->action, "stop")) { filt->start = false; } else if (!strcmp(filt->action, "tracestop")) { filt->start = false; filt->range = true; filt->action += 5; /* Change 'tracestop' to 'stop' */ } else { return -EINVAL; } return 0; } static int parse_sym_idx(char **inp, int *idx) { *idx = -1; *inp += strspn(*inp, " "); if (**inp != '#') return 0; *inp += 1; if (**inp == 'g' || **inp == 'G') { *inp += 1; *idx = 0; } else { unsigned long num; char *endptr; errno = 0; num = strtoul(*inp, &endptr, 0); if (errno) return -errno; if (endptr == *inp || num > INT_MAX) return -EINVAL; *inp = endptr; *idx = num; } return 0; } static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) { int err = parse_num_or_str(inp, num, str, " "); if (!err && *str) err = parse_sym_idx(inp, idx); return err; } static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) { char *fstr; int err; filt->str = fstr = strdup(*filter_inp); if (!fstr) return -ENOMEM; err = parse_num_or_str(&fstr, NULL, &filt->action, " "); if (err) goto out_err; err = parse_action(filt); if (err) goto out_err; err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, &filt->sym_from_idx); if (err) goto out_err; fstr += strspn(fstr, " "); if (*fstr == '/') { fstr += 1; err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, &filt->sym_to_idx); if (err) goto out_err; filt->range = true; } fstr += strspn(fstr, " "); if (*fstr == '@') { fstr += 1; err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); if (err) goto out_err; } fstr += strspn(fstr, " ,"); *filter_inp += fstr - filt->str; return 0; out_err: addr_filter__free_str(filt); return err; } int addr_filters__parse_bare_filter(struct addr_filters *filts, const char *filter) { struct addr_filter *filt; const char *fstr = filter; int err; while (*fstr) { filt = addr_filter__new(); err = parse_one_filter(filt, &fstr); if (err) { addr_filter__free(filt); addr_filters__exit(filts); return err; } addr_filters__add(filts, filt); } return 0; } struct sym_args { const char *name; u64 start; u64 size; int idx; int cnt; bool started; bool global; bool selected; bool duplicate; bool near; }; static bool kern_sym_name_match(const char *kname, const char *name) { size_t n = strlen(name); return !strcmp(kname, name) || (!strncmp(kname, name, n) && kname[n] == '\t'); } static bool kern_sym_match(struct sym_args *args, const char *name, char type) { /* A function with the same name, and global or the n'th found or any */ return kallsyms__is_function(type) && kern_sym_name_match(name, args->name) && ((args->global && isupper(type)) || (args->selected && ++(args->cnt) == args->idx) || (!args->global && !args->selected)); } static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) { struct sym_args *args = arg; if (args->started) { if (!args->size) args->size = start - args->start; if (args->selected) { if (args->size) return 1; } else if (kern_sym_match(args, name, type)) { args->duplicate = true; return 1; } } else if (kern_sym_match(args, name, type)) { args->started = true; args->start = start; } return 0; } static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) { struct sym_args *args = arg; if (kern_sym_match(args, name, type)) { pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", ++args->cnt, start, type, name); args->near = true; } else if (args->near) { args->near = false; pr_err("\t\twhich is near\t\t%s\n", name); } return 0; } static int sym_not_found_error(const char *sym_name, int idx) { if (idx > 0) { pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", idx, sym_name); } else if (!idx) { pr_err("Global symbol '%s' not found.\n", sym_name); } else { pr_err("Symbol '%s' not found.\n", sym_name); } pr_err("Note that symbols must be functions.\n"); return -EINVAL; } static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) { struct sym_args args = { .name = sym_name, .idx = idx, .global = !idx, .selected = idx > 0, }; int err; *start = 0; *size = 0; err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); if (err < 0) { pr_err("Failed to parse /proc/kallsyms\n"); return err; } if (args.duplicate) { pr_err("Multiple kernel symbols with name '%s'\n", sym_name); args.cnt = 0; kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", sym_name); pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); return -EINVAL; } if (!args.started) { pr_err("Kernel symbol lookup: "); return sym_not_found_error(sym_name, idx); } *start = args.start; *size = args.size; return 0; } static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, char type, u64 start) { struct sym_args *args = arg; u64 size; if (!kallsyms__is_function(type)) return 0; if (!args->started) { args->started = true; args->start = start; } /* Don't know exactly where the kernel ends, so we add a page */ size = round_up(start, page_size) + page_size - args->start; if (size > args->size) args->size = size; return 0; } static int addr_filter__entire_kernel(struct addr_filter *filt) { struct sym_args args = { .started = false }; int err; err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); if (err < 0 || !args.started) { pr_err("Failed to parse /proc/kallsyms\n"); return err; } filt->addr = args.start; filt->size = args.size; return 0; } static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) { if (start + size >= filt->addr) return 0; if (filt->sym_from) { pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", filt->sym_to, start, filt->sym_from, filt->addr); } else { pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", filt->sym_to, start, filt->addr); } return -EINVAL; } static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) { bool no_size = false; u64 start, size; int err; if (symbol_conf.kptr_restrict) { pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); return -EINVAL; } if (filt->sym_from && !strcmp(filt->sym_from, "*")) return addr_filter__entire_kernel(filt); if (filt->sym_from) { err = find_kern_sym(filt->sym_from, &start, &size, filt->sym_from_idx); if (err) return err; filt->addr = start; if (filt->range && !filt->size && !filt->sym_to) { filt->size = size; no_size = !size; } } if (filt->sym_to) { err = find_kern_sym(filt->sym_to, &start, &size, filt->sym_to_idx); if (err) return err; err = check_end_after_start(filt, start, size); if (err) return err; filt->size = start + size - filt->addr; no_size = !size; } /* The very last symbol in kallsyms does not imply a particular size */ if (no_size) { pr_err("Cannot determine size of symbol '%s'\n", filt->sym_to ? filt->sym_to : filt->sym_from); return -EINVAL; } return 0; } static struct dso *load_dso(const char *name) { struct map *map; struct dso *dso; map = dso__new_map(name); if (!map) return NULL; if (map__load(map) < 0) pr_err("File '%s' not found or has no symbols.\n", name); dso = dso__get(map__dso(map)); map__put(map); return dso; } static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, int idx) { /* Same name, and global or the n'th found or any */ return !arch__compare_symbol_names(name, sym->name) && ((!idx && sym->binding == STB_GLOBAL) || (idx > 0 && ++*cnt == idx) || idx < 0); } static void print_duplicate_syms(struct dso *dso, const char *sym_name) { struct symbol *sym; bool near = false; int cnt = 0; pr_err("Multiple symbols with name '%s'\n", sym_name); sym = dso__first_symbol(dso); while (sym) { if (dso_sym_match(sym, sym_name, &cnt, -1)) { pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", ++cnt, sym->start, sym->binding == STB_GLOBAL ? 'g' : sym->binding == STB_LOCAL ? 'l' : 'w', sym->name); near = true; } else if (near) { near = false; pr_err("\t\twhich is near\t\t%s\n", sym->name); } sym = dso__next_symbol(sym); } pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", sym_name); pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); } static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, u64 *size, int idx) { struct symbol *sym; int cnt = 0; *start = 0; *size = 0; sym = dso__first_symbol(dso); while (sym) { if (*start) { if (!*size) *size = sym->start - *start; if (idx > 0) { if (*size) return 0; } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { print_duplicate_syms(dso, sym_name); return -EINVAL; } } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { *start = sym->start; *size = sym->end - sym->start; } sym = dso__next_symbol(sym); } if (!*start) return sym_not_found_error(sym_name, idx); return 0; } static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) { if (dso__data_file_size(dso, NULL)) { pr_err("Failed to determine filter for %s\nCannot determine file size.\n", filt->filename); return -EINVAL; } filt->addr = 0; filt->size = dso->data.file_size; return 0; } static int addr_filter__resolve_syms(struct addr_filter *filt) { u64 start, size; struct dso *dso; int err = 0; if (!filt->sym_from && !filt->sym_to) return 0; if (!filt->filename) return addr_filter__resolve_kernel_syms(filt); dso = load_dso(filt->filename); if (!dso) { pr_err("Failed to load symbols from: %s\n", filt->filename); return -EINVAL; } if (filt->sym_from && !strcmp(filt->sym_from, "*")) { err = addr_filter__entire_dso(filt, dso); goto put_dso; } if (filt->sym_from) { err = find_dso_sym(dso, filt->sym_from, &start, &size, filt->sym_from_idx); if (err) goto put_dso; filt->addr = start; if (filt->range && !filt->size && !filt->sym_to) filt->size = size; } if (filt->sym_to) { err = find_dso_sym(dso, filt->sym_to, &start, &size, filt->sym_to_idx); if (err) goto put_dso; err = check_end_after_start(filt, start, size); if (err) return err; filt->size = start + size - filt->addr; } put_dso: dso__put(dso); return err; } static char *addr_filter__to_str(struct addr_filter *filt) { char filename_buf[PATH_MAX]; const char *at = ""; const char *fn = ""; char *filter; int err; if (filt->filename) { at = "@"; fn = realpath(filt->filename, filename_buf); if (!fn) return NULL; } if (filt->range) { err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", filt->action, filt->addr, filt->size, at, fn); } else { err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", filt->action, filt->addr, at, fn); } return err < 0 ? NULL : filter; } static int parse_addr_filter(struct evsel *evsel, const char *filter, int max_nr) { struct addr_filters filts; struct addr_filter *filt; int err; addr_filters__init(&filts); err = addr_filters__parse_bare_filter(&filts, filter); if (err) goto out_exit; if (filts.cnt > max_nr) { pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", filts.cnt, max_nr); err = -EINVAL; goto out_exit; } list_for_each_entry(filt, &filts.head, list) { char *new_filter; err = addr_filter__resolve_syms(filt); if (err) goto out_exit; new_filter = addr_filter__to_str(filt); if (!new_filter) { err = -ENOMEM; goto out_exit; } if (evsel__append_addr_filter(evsel, new_filter)) { err = -ENOMEM; goto out_exit; } } out_exit: addr_filters__exit(&filts); if (err) { pr_err("Failed to parse address filter: '%s'\n", filter); pr_err("Filter format is: filter|start|stop|tracestop [/ ] [@]\n"); pr_err("Where multiple filters are separated by space or comma.\n"); } return err; } static int evsel__nr_addr_filter(struct evsel *evsel) { struct perf_pmu *pmu = evsel__find_pmu(evsel); int nr_addr_filters = 0; if (!pmu) return 0; perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); return nr_addr_filters; } int auxtrace_parse_filters(struct evlist *evlist) { struct evsel *evsel; char *filter; int err, max_nr; evlist__for_each_entry(evlist, evsel) { filter = evsel->filter; max_nr = evsel__nr_addr_filter(evsel); if (!filter || !max_nr) continue; evsel->filter = NULL; err = parse_addr_filter(evsel, filter, max_nr); free(filter); if (err) return err; pr_debug("Address filter: %s\n", evsel->filter); } return 0; } int auxtrace__process_event(struct perf_session *session, union perf_event *event, struct perf_sample *sample, struct perf_tool *tool) { if (!session->auxtrace) return 0; return session->auxtrace->process_event(session, event, sample, tool); } void auxtrace__dump_auxtrace_sample(struct perf_session *session, struct perf_sample *sample) { if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample || auxtrace__dont_decode(session)) return; session->auxtrace->dump_auxtrace_sample(session, sample); } int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool) { if (!session->auxtrace) return 0; return session->auxtrace->flush_events(session, tool); } void auxtrace__free_events(struct perf_session *session) { if (!session->auxtrace) return; return session->auxtrace->free_events(session); } void auxtrace__free(struct perf_session *session) { if (!session->auxtrace) return; return session->auxtrace->free(session); } bool auxtrace__evsel_is_auxtrace(struct perf_session *session, struct evsel *evsel) { if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace) return false; return session->auxtrace->evsel_is_auxtrace(session, evsel); }