#include #include #include #include #include #include "owipcalc.h" bool quiet = true; bool printed = false; struct cidr *stack = NULL; void cidr_push(struct cidr *a) { if (a) { a->next = stack; stack = a; } } bool cidr_pop(struct cidr *a) { struct cidr *old = stack; if (old) { stack = stack->next; free(old); return true; } return false; } static struct cidr * cidr_clone(struct cidr *a) { struct cidr *b = malloc(sizeof(*b)); if (!b) { fprintf(stderr, "out of memory\n"); exit(255); } memcpy(b, a, sizeof(*b)); cidr_push(b); return b; } struct cidr * cidr_parse4(const char *s) { char *p = NULL, *r; struct in_addr mask; struct cidr *addr = malloc(sizeof(struct cidr)); if (!addr || (strlen(s) >= sizeof(addr->buf.v4))) goto err; snprintf(addr->buf.v4, sizeof(addr->buf.v4), "%s", s); addr->family = AF_INET; if ((p = strchr(addr->buf.v4, '/')) != NULL) { *p++ = 0; if (strchr(p, '.') != NULL) { if (inet_pton(AF_INET, p, &mask) != 1) goto err; for (addr->prefix = 0; mask.s_addr; mask.s_addr >>= 1) addr->prefix += (mask.s_addr & 1); } else { addr->prefix = strtoul(p, &r, 10); if ((p == r) || (*r != 0) || (addr->prefix > 32)) goto err; } } else { addr->prefix = 32; } if (p == addr->buf.v4+1) memset(&addr->addr.v4, 0, sizeof(addr->addr.v4)); else if (inet_pton(AF_INET, addr->buf.v4, &addr->addr.v4) != 1) goto err; return addr; err: if (addr) free(addr); return NULL; } bool cidr_add4(struct cidr *a, struct cidr *b) { uint32_t x = ntohl(a->addr.v4.s_addr); uint32_t y = ntohl(b->addr.v4.s_addr); struct cidr *n = cidr_clone(a); if ((n->family != AF_INET) || (b->family != AF_INET)) return false; if ((uint32_t)(x + y) < x) { fprintf(stderr, "overflow during 'add'\n"); return false; } n->addr.v4.s_addr = htonl(x + y); return true; } bool cidr_sub4(struct cidr *a, struct cidr *b) { uint32_t x = ntohl(a->addr.v4.s_addr); uint32_t y = ntohl(b->addr.v4.s_addr); struct cidr *n = cidr_clone(a); if ((n->family != AF_INET) || (b->family != AF_INET)) return false; if ((uint32_t)(x - y) > x) { fprintf(stderr, "underflow during 'sub'\n"); return false; } n->addr.v4.s_addr = htonl(x - y); return true; } bool cidr_network4(struct cidr *a) { struct cidr *n = cidr_clone(a); n->addr.v4.s_addr &= htonl(~((1 << (32 - n->prefix)) - 1)); n->prefix = 32; return true; } bool cidr_broadcast4(struct cidr *a) { struct cidr *n = cidr_clone(a); n->addr.v4.s_addr |= htonl(((1 << (32 - n->prefix)) - 1)); n->prefix = 32; return true; } bool cidr_contains4(struct cidr *a, struct cidr *b) { uint32_t net1 = a->addr.v4.s_addr & htonl(~((1 << (32 - a->prefix)) - 1)); uint32_t net2 = b->addr.v4.s_addr & htonl(~((1 << (32 - a->prefix)) - 1)); if (printed) qprintf(" "); if ((a->prefix == 0) || ((b->prefix >= a->prefix) && (net1 == net2))) { qprintf("1"); return true; } else { qprintf("0"); return false; } } bool cidr_netmask4(struct cidr *a) { struct cidr *n = cidr_clone(a); n->addr.v4.s_addr = htonl(~((1 << (32 - n->prefix)) - 1)); n->prefix = 32; return true; } bool cidr_private4(struct cidr *a) { uint32_t x = ntohl(a->addr.v4.s_addr); if (printed) qprintf(" "); if (((x >= 0x0A000000) && (x <= 0x0AFFFFFF)) || ((x >= 0xAC100000) && (x <= 0xAC1FFFFF)) || ((x >= 0xC0A80000) && (x <= 0xC0A8FFFF))) { qprintf("1"); return true; } else { qprintf("0"); return false; } } bool cidr_linklocal4(struct cidr *a) { uint32_t x = ntohl(a->addr.v4.s_addr); if (printed) qprintf(" "); if ((x >= 0xA9FE0000) && (x <= 0xA9FEFFFF)) { qprintf("1"); return true; } else { qprintf("0"); return false; } } bool cidr_prev4(struct cidr *a, struct cidr *b) { struct cidr *n = cidr_clone(a); n->prefix = b->prefix; n->addr.v4.s_addr -= htonl(1 << (32 - b->prefix)); return true; } bool cidr_next4(struct cidr *a, struct cidr *b) { struct cidr *n = cidr_clone(a); n->prefix = b->prefix; n->addr.v4.s_addr += htonl(1 << (32 - b->prefix)); return true; } bool cidr_6to4(struct cidr *a) { struct cidr *n = cidr_clone(a); uint32_t x = a->addr.v4.s_addr; memset(&n->addr.v6.s6_addr, 0, sizeof(n->addr.v6.s6_addr)); n->family = AF_INET6; n->prefix = 48; n->addr.v6.s6_addr[0] = 0x20; n->addr.v6.s6_addr[1] = 0x02; n->addr.v6.s6_addr[2] = (x >> 24); n->addr.v6.s6_addr[3] = (x >> 16) & 0xFF; n->addr.v6.s6_addr[4] = (x >> 8) & 0xFF; n->addr.v6.s6_addr[5] = x & 0xFF; return true; } bool cidr_print4(struct cidr *a) { char *p; if (!a || (a->family != AF_INET)) return false; if (!(p = (char *)inet_ntop(AF_INET, &a->addr.v4, a->buf.v4, sizeof(a->buf.v4)))) return false; if (printed) qprintf(" "); qprintf("%s", p); if (a->prefix < 32) qprintf("/%u", a->prefix); cidr_pop(a); return true; } struct cidr * cidr_parse6(const char *s) { char *p = NULL, *r; struct cidr *addr = malloc(sizeof(struct cidr)); if (!addr || (strlen(s) >= sizeof(addr->buf.v6))) goto err; snprintf(addr->buf.v6, sizeof(addr->buf.v6), "%s", s); addr->family = AF_INET6; if ((p = strchr(addr->buf.v6, '/')) != NULL) { *p++ = 0; addr->prefix = strtoul(p, &r, 10); if ((p == r) || (*r != 0) || (addr->prefix > 128)) goto err; } else { addr->prefix = 128; } if (p == addr->buf.v6+1) memset(&addr->addr.v6, 0, sizeof(addr->addr.v6)); else if (inet_pton(AF_INET6, addr->buf.v6, &addr->addr.v6) != 1) goto err; return addr; err: if (addr) free(addr); return NULL; } bool cidr_add6(struct cidr *a, struct cidr *b) { uint8_t idx = 15, carry = 0, overflow = 0; struct cidr *n = cidr_clone(a); struct in6_addr *x = &n->addr.v6; struct in6_addr *y = &b->addr.v6; if ((a->family != AF_INET6) || (b->family != AF_INET6)) return false; do { overflow = !!((x->s6_addr[idx] + y->s6_addr[idx] + carry) >= 256); x->s6_addr[idx] += y->s6_addr[idx] + carry; carry = overflow; } while (idx-- > 0); if (carry) { fprintf(stderr, "overflow during 'add'\n"); return false; } return true; } bool cidr_sub6(struct cidr *a, struct cidr *b) { uint8_t idx = 15, carry = 0, underflow = 0; struct cidr *n = cidr_clone(a); struct in6_addr *x = &n->addr.v6; struct in6_addr *y = &b->addr.v6; if ((n->family != AF_INET6) || (b->family != AF_INET6)) return false; do { underflow = !!((x->s6_addr[idx] - y->s6_addr[idx] - carry) < 0); x->s6_addr[idx] -= y->s6_addr[idx] + carry; carry = underflow; } while (idx-- > 0); if (carry) { fprintf(stderr, "underflow during 'sub'\n"); return false; } return true; } bool cidr_prev6(struct cidr *a, struct cidr *b) { uint8_t idx, carry = 1, underflow = 0; struct cidr *n = cidr_clone(a); struct in6_addr *x = &n->addr.v6; if (b->prefix == 0) { fprintf(stderr, "underflow during 'prev'\n"); return false; } idx = (b->prefix - 1) / 8; do { underflow = !!((x->s6_addr[idx] - carry) < 0); x->s6_addr[idx] -= carry; carry = underflow; } while (idx-- > 0); if (carry) { fprintf(stderr, "underflow during 'prev'\n"); return false; } n->prefix = b->prefix; return true; } bool cidr_next6(struct cidr *a, struct cidr *b) { uint8_t idx, carry = 1, overflow = 0; struct cidr *n = cidr_clone(a); struct in6_addr *x = &n->addr.v6; if (b->prefix == 0) { fprintf(stderr, "overflow during 'next'\n"); return false; } idx = (b->prefix - 1) / 8; do { overflow = !!((x->s6_addr[idx] + carry) >= 256); x->s6_addr[idx] += carry; carry = overflow; } while (idx-- > 0); if (carry) { fprintf(stderr, "overflow during 'next'\n"); return false; } n->prefix = b->prefix; return true; } bool cidr_network6(struct cidr *a) { uint8_t i; struct cidr *n = cidr_clone(a); for (i = 0; i < (128 - n->prefix) / 8; i++) n->addr.v6.s6_addr[15-i] = 0; if ((128 - n->prefix) % 8) n->addr.v6.s6_addr[15-i] &= ~((1 << ((128 - n->prefix) % 8)) - 1); return true; } bool cidr_contains6(struct cidr *a, struct cidr *b) { struct in6_addr *x = &a->addr.v6; struct in6_addr *y = &b->addr.v6; uint8_t i = ((128 - a->prefix) / 8) % 16; uint8_t m = ~((1 << ((128 - a->prefix) % 8)) - 1); uint8_t net1 = x->s6_addr[15-i] & m; uint8_t net2 = y->s6_addr[15-i] & m; if (printed) qprintf(" "); if ((a->prefix == 0) || ((b->prefix >= a->prefix) && (net1 == net2) && ((i == 15) || !memcmp(&x->s6_addr, &y->s6_addr, 15-i)))) { qprintf("1"); return true; } else { qprintf("0"); return false; } } bool cidr_linklocal6(struct cidr *a) { if (printed) qprintf(" "); if ((a->addr.v6.s6_addr[0] == 0xFE) && (a->addr.v6.s6_addr[1] >= 0x80) && (a->addr.v6.s6_addr[1] <= 0xBF)) { qprintf("1"); return true; } else { qprintf("0"); return false; } } bool cidr_ula6(struct cidr *a) { if (printed) qprintf(" "); if ((a->addr.v6.s6_addr[0] >= 0xFC) && (a->addr.v6.s6_addr[0] <= 0xFD)) { qprintf("1"); return true; } else { qprintf("0"); return false; } } bool cidr_print6(struct cidr *a) { char *p; if (!a || (a->family != AF_INET6)) return NULL; if (!(p = (char *)inet_ntop(AF_INET6, &a->addr.v6, a->buf.v6, sizeof(a->buf.v6)))) return false; if (printed) qprintf(" "); qprintf("%s", p); if (a->prefix < 128) qprintf("/%u", a->prefix); cidr_pop(a); return true; } struct cidr * cidr_parse(const char *op, const char *s, int af_hint) { char *r; struct cidr *a; uint8_t i; uint32_t sum = strtoul(s, &r, 0); if ((r > s) && (*r == 0)) { a = malloc(sizeof(struct cidr)); if (!a) return NULL; if (af_hint == AF_INET) { a->family = AF_INET; a->prefix = sum; a->addr.v4.s_addr = htonl(sum); } else { a->family = AF_INET6; a->prefix = sum; for (i = 0; i <= 15; i++) { a->addr.v6.s6_addr[15-i] = sum % 256; sum >>= 8; } } return a; } if (strchr(s, ':')) a = cidr_parse6(s); else a = cidr_parse4(s); if (!a) return NULL; if (a->family != af_hint) { fprintf(stderr, "attempt to '%s' %s with %s address\n", op, (af_hint == AF_INET) ? "ipv4" : "ipv6", (af_hint != AF_INET) ? "ipv4" : "ipv6"); exit(4); } return a; } bool cidr_howmany(struct cidr *a, struct cidr *b) { if (printed) qprintf(" "); if (b->prefix < a->prefix) qprintf("0"); else qprintf("%u", 1 << (b->prefix - a->prefix)); return true; } bool cidr_prefix(struct cidr *a, struct cidr *b) { a->prefix = b->prefix; return true; } bool cidr_quiet(struct cidr *a) { quiet = true; return true; }