/*
* interface dc to the bc numeric routines
*
* Copyright (C) 1994, 1997, 1998, 2000, 2005, 2008, 2013, 2017
* Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
/* This should be the only module that knows the internals of type dc_num */
/* In this particular implementation we just slather out some glue and
* make use of bc's numeric routines.
*/
/* make all the header files see that these are really the same thing;
* this is acceptable because everywhere else dc_number is just referenced
* as a pointer-to-incomplete-structure type
*/
#define dc_number bc_struct
#include "config.h"
#include
#include
#ifdef HAVE_LIMITS_H
# include
#endif
#ifndef UCHAR_MAX
# define UCHAR_MAX ((unsigned char)~0)
#endif
#ifdef HAVE_STDLIB_H
# include
#endif
#ifdef HAVE_ERRNO_H
# include
#else
extern int errno;
#endif
#include "number.h"
#include "dc.h"
#include "dc-proto.h"
#ifdef __GNUC__
# if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__-0 >= 7)
# define ATTRIB(x) __attribute__(x)
# endif
#endif
#ifndef ATTRIB
# define ATTRIB(x)
#endif
/* Forward prototype */
static void out_char (int);
/* there is no POSIX standard for dc, so we'll take the GNU definitions */
int std_only = FALSE;
/* convert an opaque dc_num into a real bc_num */
/* by a freak accident, these are now no-op mappings,
* but leave the notation here in case that changes later
* */
#define CastNum(x) (x)
#define CastNumPtr(x) (x)
/* add two dc_nums, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_add DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale ATTRIB((unused)) DC_DECLSEP
dc_num *result DC_DECLEND
{
bc_init_num(CastNumPtr(result));
bc_add(CastNum(a), CastNum(b), CastNumPtr(result), 0);
return DC_SUCCESS;
}
/* subtract two dc_nums, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_sub DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale ATTRIB((unused)) DC_DECLSEP
dc_num *result DC_DECLEND
{
bc_init_num(CastNumPtr(result));
bc_sub(CastNum(a), CastNum(b), CastNumPtr(result), 0);
return DC_SUCCESS;
}
/* multiply two dc_nums, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_mul DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
bc_init_num(CastNumPtr(result));
bc_multiply(CastNum(a), CastNum(b), CastNumPtr(result), kscale);
return DC_SUCCESS;
}
/* divide two dc_nums, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_div DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
bc_init_num(CastNumPtr(result));
if (bc_divide(CastNum(a), CastNum(b), CastNumPtr(result), kscale)){
fprintf(stderr, "%s: divide by zero\n", progname);
return DC_DOMAIN_ERROR;
}
return DC_SUCCESS;
}
/* divide two dc_nums, place quotient into *quotient and remainder
* into *remainder;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_divrem DC_DECLARG((a, b, kscale, quotient, remainder))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *quotient DC_DECLSEP
dc_num *remainder DC_DECLEND
{
bc_init_num(CastNumPtr(quotient));
bc_init_num(CastNumPtr(remainder));
if (bc_divmod(CastNum(a), CastNum(b),
CastNumPtr(quotient), CastNumPtr(remainder), kscale)){
fprintf(stderr, "%s: divide by zero\n", progname);
return DC_DOMAIN_ERROR;
}
return DC_SUCCESS;
}
/* place the reminder of dividing a by b into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_rem DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
bc_init_num(CastNumPtr(result));
if (bc_modulo(CastNum(a), CastNum(b), CastNumPtr(result), kscale)){
fprintf(stderr, "%s: remainder by zero\n", progname);
return DC_DOMAIN_ERROR;
}
return DC_SUCCESS;
}
int
dc_modexp DC_DECLARG((base, expo, mod, kscale, result))
dc_num base DC_DECLSEP
dc_num expo DC_DECLSEP
dc_num mod DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
bc_init_num(CastNumPtr(result));
if (bc_raisemod(CastNum(base), CastNum(expo), CastNum(mod),
CastNumPtr(result), kscale)){
if (bc_is_zero(CastNum(mod)))
fprintf(stderr, "%s: remainder by zero\n", progname);
return DC_DOMAIN_ERROR;
}
return DC_SUCCESS;
}
/* place the result of exponentiationg a by b into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_exp DC_DECLARG((a, b, kscale, result))
dc_num a DC_DECLSEP
dc_num b DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
bc_init_num(CastNumPtr(result));
bc_raise(CastNum(a), CastNum(b), CastNumPtr(result), kscale);
return DC_SUCCESS;
}
/* take the square root of the value, place into *result;
* return DC_SUCCESS on success, DC_DOMAIN_ERROR on domain error
*/
int
dc_sqrt DC_DECLARG((value, kscale, result))
dc_num value DC_DECLSEP
int kscale DC_DECLSEP
dc_num *result DC_DECLEND
{
bc_num tmp;
tmp = bc_copy_num(CastNum(value));
if (!bc_sqrt(&tmp, kscale)){
fprintf(stderr, "%s: square root of negative number\n", progname);
bc_free_num(&tmp);
return DC_DOMAIN_ERROR;
}
*(CastNumPtr(result)) = tmp;
return DC_SUCCESS;
}
/* compare dc_nums a and b;
* return a negative value if a < b;
* return a positive value if a > b;
* return zero value if a == b
*/
int
dc_compare DC_DECLARG((a, b))
dc_num a DC_DECLSEP
dc_num b DC_DECLEND
{
return bc_compare(CastNum(a), CastNum(b));
}
/* attempt to convert a dc_num to its corresponding int value
* If discard_p is DC_TOSS then deallocate the value after use.
*/
int
dc_num2int DC_DECLARG((value, discard_p))
dc_num value DC_DECLSEP
dc_discard discard_p DC_DECLEND
{
long result;
result = bc_num2long(CastNum(value));
if (result == 0 && !bc_is_zero(CastNum(value))) {
fprintf(stderr, "%s: value overflows simple integer; punting...\n",
progname);
result = -1; /* more appropriate for dc's purposes */
}
if (discard_p == DC_TOSS)
dc_free_num(&value);
return (int)result;
}
/* convert a C integer value into a dc_num */
/* For convenience of the caller, package the dc_num
* into a dc_data result.
*/
dc_data
dc_int2data DC_DECLARG((value))
int value DC_DECLEND
{
dc_data result;
bc_init_num(CastNumPtr(&result.v.number));
bc_int2num(CastNumPtr(&result.v.number), value);
result.dc_type = DC_NUMBER;
return result;
}
/* get a dc_num from some input stream;
* input is a function which knows how to read the desired input stream
* ibase is the input base (2<=ibase<=DC_IBASE_MAX)
* *readahead will be set to the readahead character consumed while
* looking for the end-of-number
*/
/* For convenience of the caller, package the dc_num
* into a dc_data result.
*/
dc_data
dc_getnum DC_DECLARG((input, ibase, readahead))
int (*input) DC_PROTO((void)) DC_DECLSEP
int ibase DC_DECLSEP
int *readahead DC_DECLEND
{
bc_num base;
bc_num result;
bc_num build;
bc_num tmp;
bc_num divisor;
dc_data full_result;
int negative = 0;
int digit;
int decimal;
int c;
bc_init_num(&tmp);
bc_init_num(&build);
bc_init_num(&base);
result = bc_copy_num(_zero_);
bc_int2num(&base, ibase);
c = (*input)();
while (isspace(c))
c = (*input)();
if (c == '_' || c == '-'){
negative = c;
c = (*input)();
}else if (c == '+'){
c = (*input)();
}
while (isspace(c))
c = (*input)();
for (;;){
if (isdigit(c))
digit = c - '0';
else if ('A' <= c && c <= 'F')
digit = 10 + c - 'A';
else
break;
c = (*input)();
bc_int2num(&tmp, digit);
bc_multiply(result, base, &result, 0);
bc_add(result, tmp, &result, 0);
}
if (c == '.'){
bc_free_num(&build);
bc_free_num(&tmp);
divisor = bc_copy_num(_one_);
build = bc_copy_num(_zero_);
decimal = 0;
for (;;){
c = (*input)();
if (isdigit(c))
digit = c - '0';
else if ('A' <= c && c <= 'F')
digit = 10 + c - 'A';
else
break;
bc_int2num(&tmp, digit);
bc_multiply(build, base, &build, 0);
bc_add(build, tmp, &build, 0);
bc_multiply(divisor, base, &divisor, 0);
++decimal;
}
bc_divide(build, divisor, &build, decimal);
bc_add(result, build, &result, 0);
}
/* Final work. */
if (negative)
bc_sub(_zero_, result, &result, 0);
bc_free_num(&tmp);
bc_free_num(&build);
bc_free_num(&base);
if (readahead)
*readahead = c;
*CastNumPtr(&full_result.v.number) = result;
full_result.dc_type = DC_NUMBER;
return full_result;
}
/* Return the "length" of the number, ignoring *all* leading zeros,
* (including those to the right of the radix point!)
*/
int
dc_numlen DC_DECLARG((value))
dc_num value DC_DECLEND
{
/* XXX warning: unholy coziness with the internals of a bc_num! */
bc_num num = CastNum(value);
char *p = num->n_value;
int i = num->n_len + num->n_scale;
while (1n_scale;
if (discard_p == DC_TOSS)
dc_free_num(&value);
return kscale;
}
/* initialize the math subsystem */
void
dc_math_init DC_DECLVOID()
{
bc_init_numbers();
}
/* print out a dc_num in output base obase to stdout;
* if discard_p is DC_TOSS then deallocate the value after use
*/
void
dc_out_num DC_DECLARG((value, obase, discard_p))
dc_num value DC_DECLSEP
int obase DC_DECLSEP
dc_discard discard_p DC_DECLEND
{
out_char('\0'); /* clear the column counter */
bc_out_num(CastNum(value), obase, out_char, 0);
if (discard_p == DC_TOSS)
dc_free_num(&value);
}
/* dump out the absolute value of the integer part of a
* dc_num as a byte stream, without any line wrapping;
* if discard_p is DC_TOSS then deallocate the value after use
*/
void
dc_dump_num DC_DECLARG((dcvalue, discard_p))
dc_num dcvalue DC_DECLSEP
dc_discard discard_p DC_DECLEND
{
struct digit_stack { int digit; struct digit_stack *link;};
struct digit_stack *top_of_stack = NULL;
struct digit_stack *cur;
struct digit_stack *next;
bc_num value;
bc_num obase;
bc_num digit;
bc_init_num(&value);
bc_init_num(&obase);
bc_init_num(&digit);
/* we only handle the integer portion: */
bc_divide(CastNum(dcvalue), _one_, &value, 0);
/* we only handle the absolute value: */
value->n_sign = PLUS;
/* we're done with the dcvalue parameter: */
if (discard_p == DC_TOSS)
dc_free_num(&dcvalue);
bc_int2num(&obase, 1+UCHAR_MAX);
do {
(void) bc_divmod(value, obase, &value, &digit, 0);
cur = dc_malloc(sizeof *cur);
cur->digit = (int)bc_num2long(digit);
cur->link = top_of_stack;
top_of_stack = cur;
} while (!bc_is_zero(value));
for (cur=top_of_stack; cur; cur=next) {
putchar(cur->digit);
next = cur->link;
free(cur);
}
bc_free_num(&digit);
bc_free_num(&obase);
bc_free_num(&value);
}
/* deallocate an instance of a dc_num */
void
dc_free_num DC_DECLARG((value))
dc_num *value DC_DECLEND
{
bc_free_num(CastNumPtr(value));
}
/* return a duplicate of the number in the passed value */
/* The mismatched data types forces the caller to deal with
* bad dc_type'd dc_data values, and makes it more convenient
* for the caller to not have to do the grunge work of setting
* up a dc_type result.
*/
dc_data
dc_dup_num DC_DECLARG((value))
dc_num value DC_DECLEND
{
dc_data result;
++CastNum(value)->n_refs;
result.v.number = value;
result.dc_type = DC_NUMBER;
return result;
}
/*---------------------------------------------------------------------------\
| The rest of this file consists of stubs for bc routines called by numeric.c|
| so as to minimize the amount of bc code needed to build dc. |
| The bulk of the code was just lifted straight out of the bc source. |
\---------------------------------------------------------------------------*/
#ifdef HAVE_STDARG_H
# include
#else
# include
#endif
#ifndef HAVE_STRTOL
/* Maintain some of the error checking of a real strtol() on
* ancient systems that lack one, but punting on the niceties
* of supporting bases other than 10 and overflow checking.
*/
long
strtol(const char *s, char **end, int base)
{
int sign = 1;
long result = 0;
for (;; ++s) {
if (*s == '-')
sign = -sign;
else if (*s != '+' && !isspace(*(const unsigned char *)s))
break;
}
while (isdigit(*(const unsigned char *)s))
result = 10*result + (*s++ - '0');
*end = s;
return result * sign;
}
#endif /*!HAVE_STRTOL*/
static int out_col = 0;
static int line_max = -1; /* negative means "need to check environment" */
#define DEFAULT_LINE_MAX 70
static void
set_line_max_from_environment(void)
{
const char *env_line_len = getenv("DC_LINE_LENGTH");
line_max = DEFAULT_LINE_MAX;
errno = 0;
if (env_line_len) {
char *endptr;
long proposed_line_len = strtol(env_line_len, &endptr, 0);
line_max = (int)proposed_line_len;
/* silently enforce sanity */
while (isspace(*(const unsigned char *)endptr))
++endptr;
if (*endptr || errno || line_max != proposed_line_len
|| line_max < 0 || line_max == 1)
line_max = DEFAULT_LINE_MAX;
}
}
/* Output routines: Write a character CH to the standard output.
It keeps track of the number of characters output and may
break the output with a "\". */
static void
out_char (ch)
int ch;
{
if (ch == '\0') {
out_col = 0;
} else {
if (line_max < 0)
set_line_max_from_environment();
if (++out_col >= line_max && line_max != 0) {
putchar ('\\');
putchar ('\n');
out_col = 1;
}
putchar(ch);
}
}
/* Malloc could not get enough memory. */
void
out_of_memory()
{
dc_memfail();
}
/* Runtime error --- will print a message and stop the machine. */
#ifdef HAVE_STDARG_H
#ifdef __STDC__
void
rt_error (char *mesg, ...)
#else
void
rt_error (mesg)
char *mesg;
#endif
#else
void
rt_error (mesg, va_alist)
char *mesg;
#endif
{
va_list args;
fprintf (stderr, "Runtime error: ");
#ifdef HAVE_STDARG_H
va_start (args, mesg);
#else
va_start (args);
#endif
vfprintf (stderr, mesg, args);
va_end (args);
fprintf (stderr, "\n");
}
/* A runtime warning tells of some action taken by the processor that
may change the program execution but was not enough of a problem
to stop the execution. */
#ifdef HAVE_STDARG_H
#ifdef __STDC__
void
rt_warn (char *mesg, ...)
#else
void
rt_warn (mesg)
char *mesg;
#endif
#else
void
rt_warn (mesg, va_alist)
char *mesg;
#endif
{
va_list args;
fprintf (stderr, "Runtime warning: ");
#ifdef HAVE_STDARG_H
va_start (args, mesg);
#else
va_start (args);
#endif
vfprintf (stderr, mesg, args);
va_end (args);
fprintf (stderr, "\n");
}
/*
* Local Variables:
* mode: C
* tab-width: 4
* End:
* vi: set ts=4 :
*/