/* cos (cosine) function with 'long double' argument. Copyright (C) 2003-2024 Free Software Foundation, Inc. This file is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ /* s_cosl.c -- long double version of s_sin.c. * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #include /* Specification. */ #include #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE long double cosl (long double x) { return cos (x); } #else /* Code based on glibc/sysdeps/ieee754/ldbl-128/s_cosl.c. */ /* cosl(x) * Return cosine function of x. * * kernel function: * __kernel_sinl ... sine function on [-pi/4,pi/4] * __kernel_cosl ... cosine function on [-pi/4,pi/4] * __ieee754_rem_pio2l ... argument reduction routine * * Method. * Let S,C and T denote the sin, cos and tan respectively on * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 * in [-pi/4 , +pi/4], and let n = k mod 4. * We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C T * 1 C -S -1/T * 2 -S -C T * 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded */ # include "trigl.h" long double cosl (long double x) { long double y[2],z=0.0L; int n; /* cosl(NaN) is NaN */ if (isnanl (x)) return x; /* |x| ~< pi/4 */ if (x >= -0.7853981633974483096156608458198757210492 && x <= 0.7853981633974483096156608458198757210492) return kernel_cosl(x, z); /* cosl(Inf) is NaN, cosl(0) is 1 */ else if (x + x == x && x != 0.0) return x - x; /* NaN */ /* argument reduction needed */ else { n = ieee754_rem_pio2l (x, y); switch (n & 3) { case 0: return kernel_cosl (y[0], y[1]); case 1: return -kernel_sinl (y[0], y[1], 1); case 2: return -kernel_cosl (y[0], y[1]); default: return kernel_sinl (y[0], y[1], 1); } } } #endif #if 0 int main (void) { printf ("%.16Lg\n", cosl (0.7853981633974483096156608458198757210492)); printf ("%.16Lg\n", cosl (0.7853981633974483096156608458198757210492 *29)); printf ("%.16Lg\n", cosl (0.7853981633974483096156608458198757210492 *2)); printf ("%.16Lg\n", cosl (0.7853981633974483096156608458198757210492 *30)); printf ("%.16Lg\n", cosl (0.7853981633974483096156608458198757210492 *4)); printf ("%.16Lg\n", cosl (0.7853981633974483096156608458198757210492 *32)); printf ("%.16Lg\n", cosl (0.7853981633974483096156608458198757210492 *2/3)); printf ("%.16Lg\n", cosl (0.7853981633974483096156608458198757210492 *4/3)); } #endif