/* des.c --- DES and Triple-DES encryption/decryption Algorithm * Copyright (C) 1998-1999, 2001-2007, 2009-2024 Free Software Foundation, Inc. * * This file is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of the * License, or (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * */ /* Adapted for gnulib by Simon Josefsson, based on Libgcrypt. */ /* * For a description of triple encryption, see: * Bruce Schneier: Applied Cryptography. Second Edition. * John Wiley & Sons, 1996. ISBN 0-471-12845-7. Pages 358 ff. * This implementation is according to the definition of DES in FIPS * PUB 46-2 from December 1993. * * Written by Michael Roth , September 1998 */ /* * U S A G E * =========== * * For DES or Triple-DES encryption/decryption you must initialize a proper * encryption context with a key. * * A DES key is 64bit wide but only 56bits of the key are used. The remaining * bits are parity bits and they will _not_ checked in this implementation, but * simply ignored. * * For Triple-DES you could use either two 64bit keys or three 64bit keys. * The parity bits will _not_ checked, too. * * After initializing a context with a key you could use this context to * encrypt or decrypt data in 64bit blocks in Electronic Codebook Mode. * * DES Example * ----------- * unsigned char key[8]; * unsigned char plaintext[8]; * unsigned char ciphertext[8]; * unsigned char recovered[8]; * gl_des_ctx context; * * // Fill 'key' and 'plaintext' with some data * .... * * // Set up the DES encryption context * gl_des_setkey(&context, key); * * // Encrypt the plaintext * des_ecb_encrypt(&context, plaintext, ciphertext); * * // To recover the original plaintext from ciphertext use: * des_ecb_decrypt(&context, ciphertext, recovered); * * * Triple-DES Example * ------------------ * unsigned char key1[8]; * unsigned char key2[8]; * unsigned char key3[8]; * unsigned char plaintext[8]; * unsigned char ciphertext[8]; * unsigned char recovered[8]; * gl_3des_ctx context; * * // If you would like to use two 64bit keys, fill 'key1' and 'key2' * // then setup the encryption context: * gl_3des_set2keys(&context, key1, key2); * * // To use three 64bit keys with Triple-DES use: * gl_3des_set3keys(&context, key1, key2, key3); * * // Encrypting plaintext with Triple-DES * gl_3des_ecb_encrypt(&context, plaintext, ciphertext); * * // Decrypting ciphertext to recover the plaintext with Triple-DES * gl_3des_ecb_decrypt(&context, ciphertext, recovered); */ #include #include "des.h" #include #include /* memcpy, memcmp */ /* * The s-box values are permuted according to the 'primitive function P' * and are rotated one bit to the left. */ static const uint32_t sbox1[64] = { 0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404, 0x00000004, 0x00010000, 0x00000400, 0x01010400, 0x01010404, 0x00000400, 0x01000404, 0x01010004, 0x01000000, 0x00000004, 0x00000404, 0x01000400, 0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404, 0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404, 0x00010404, 0x01000000, 0x00010000, 0x01010404, 0x00000004, 0x01010000, 0x01010400, 0x01000000, 0x01000000, 0x00000400, 0x01010004, 0x00010000, 0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404, 0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404, 0x00010404, 0x01010400, 0x00000404, 0x01000400, 0x01000400, 0x00000000, 0x00010004, 0x00010400, 0x00000000, 0x01010004 }; static const uint32_t sbox2[64] = { 0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020, 0x80100020, 0x80008020, 0x80000020, 0x80108020, 0x80108000, 0x80000000, 0x80008000, 0x00100000, 0x00000020, 0x80100020, 0x00108000, 0x00100020, 0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000, 0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000, 0x80100000, 0x00008020, 0x00000000, 0x00108020, 0x80100020, 0x00100000, 0x80008020, 0x80100000, 0x80108000, 0x00008000, 0x80100000, 0x80008000, 0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000, 0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020, 0x80000020, 0x00100020, 0x00108000, 0x00000000, 0x80008000, 0x00008020, 0x80000000, 0x80100020, 0x80108020, 0x00108000 }; static const uint32_t sbox3[64] = { 0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000, 0x00020208, 0x08000200, 0x00020008, 0x08000008, 0x08000008, 0x00020000, 0x08020208, 0x00020008, 0x08020000, 0x00000208, 0x08000000, 0x00000008, 0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208, 0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208, 0x00000200, 0x08000000, 0x08020200, 0x08000000, 0x00020008, 0x00000208, 0x00020000, 0x08020200, 0x08000200, 0x00000000, 0x00000200, 0x00020008, 0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008, 0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208, 0x00020200, 0x08000008, 0x08020000, 0x08000208, 0x00000208, 0x08020000, 0x00020208, 0x00000008, 0x08020008, 0x00020200 }; static const uint32_t sbox4[64] = { 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081, 0x00800001, 0x00002001, 0x00000000, 0x00802000, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00800080, 0x00800001, 0x00000001, 0x00002000, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080, 0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080, 0x00802081, 0x00000081, 0x00800080, 0x00800001, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00000000, 0x00802000, 0x00002080, 0x00800080, 0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001, 0x00802080, 0x00800081, 0x00002001, 0x00002080, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002000, 0x00802080 }; static const uint32_t sbox5[64] = { 0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100, 0x40000000, 0x02080000, 0x40080100, 0x00080000, 0x02000100, 0x40080100, 0x42000100, 0x42080000, 0x00080100, 0x40000000, 0x02000000, 0x40080000, 0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100, 0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000, 0x42000000, 0x00080100, 0x00080000, 0x42000100, 0x00000100, 0x02000000, 0x40000000, 0x02080000, 0x42000100, 0x40080100, 0x02000100, 0x40000000, 0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000, 0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000, 0x40080000, 0x42000000, 0x00080100, 0x02000100, 0x40000100, 0x00080000, 0x00000000, 0x40080000, 0x02080100, 0x40000100 }; static const uint32_t sbox6[64] = { 0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010, 0x20404010, 0x00400000, 0x20004000, 0x00404010, 0x00400000, 0x20000010, 0x00400010, 0x20004000, 0x20000000, 0x00004010, 0x00000000, 0x00400010, 0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010, 0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000, 0x20404000, 0x20000000, 0x20004000, 0x00000010, 0x20400010, 0x00404000, 0x20404010, 0x00400000, 0x00004010, 0x20000010, 0x00400000, 0x20004000, 0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000, 0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000, 0x20400000, 0x00404010, 0x00004000, 0x00400010, 0x20004010, 0x00000000, 0x20404000, 0x20000000, 0x00400010, 0x20004010 }; static const uint32_t sbox7[64] = { 0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802, 0x00200802, 0x04200800, 0x04200802, 0x00200000, 0x00000000, 0x04000002, 0x00000002, 0x04000000, 0x04200002, 0x00000802, 0x04000800, 0x00200802, 0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002, 0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002, 0x04000000, 0x00200800, 0x04000000, 0x00200800, 0x00200000, 0x04000802, 0x04000802, 0x04200002, 0x04200002, 0x00000002, 0x00200002, 0x04000000, 0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800, 0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000, 0x00000002, 0x04200802, 0x00000000, 0x00200802, 0x04200000, 0x00000800, 0x04000002, 0x04000800, 0x00000800, 0x00200002 }; static const uint32_t sbox8[64] = { 0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040, 0x00000040, 0x10000000, 0x00040040, 0x10040000, 0x10041040, 0x00041000, 0x10041000, 0x00041040, 0x00001000, 0x00000040, 0x10040000, 0x10000040, 0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000, 0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000, 0x00041040, 0x00040000, 0x00041040, 0x00040000, 0x10041000, 0x00001000, 0x00000040, 0x10040040, 0x00001000, 0x00041040, 0x10001000, 0x00000040, 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040, 0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000, 0x10001040, 0x00000000, 0x10041040, 0x00041000, 0x00041000, 0x00001040, 0x00001040, 0x00040040, 0x10000000, 0x10041000 }; /* * These two tables are part of the 'permuted choice 1' function. * In this implementation several speed improvements are done. */ static const uint32_t leftkey_swap[16] = { 0x00000000, 0x00000001, 0x00000100, 0x00000101, 0x00010000, 0x00010001, 0x00010100, 0x00010101, 0x01000000, 0x01000001, 0x01000100, 0x01000101, 0x01010000, 0x01010001, 0x01010100, 0x01010101 }; static const uint32_t rightkey_swap[16] = { 0x00000000, 0x01000000, 0x00010000, 0x01010000, 0x00000100, 0x01000100, 0x00010100, 0x01010100, 0x00000001, 0x01000001, 0x00010001, 0x01010001, 0x00000101, 0x01000101, 0x00010101, 0x01010101, }; /* * Numbers of left shifts per round for encryption subkeys. To * calculate the decryption subkeys we just reverse the ordering of * the calculated encryption subkeys, so there is no need for a * decryption rotate tab. */ static const unsigned char encrypt_rotate_tab[16] = { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 }; /* * Table with weak DES keys sorted in ascending order. In DES there * are 64 known keys which are weak. They are weak because they * produce only one, two or four different subkeys in the subkey * scheduling process. The keys in this table have all their parity * bits cleared. */ static const unsigned char weak_keys[64][8] = { {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*w */ {0x00, 0x00, 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e}, {0x00, 0x00, 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0}, {0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe}, {0x00, 0x1e, 0x00, 0x1e, 0x00, 0x0e, 0x00, 0x0e}, /*sw */ {0x00, 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e, 0x00}, {0x00, 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0, 0xfe}, {0x00, 0x1e, 0xfe, 0xe0, 0x00, 0x0e, 0xfe, 0xf0}, {0x00, 0xe0, 0x00, 0xe0, 0x00, 0xf0, 0x00, 0xf0}, /*sw */ {0x00, 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e, 0xfe}, {0x00, 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0, 0x00}, {0x00, 0xe0, 0xfe, 0x1e, 0x00, 0xf0, 0xfe, 0x0e}, {0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe}, /*sw */ {0x00, 0xfe, 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0}, {0x00, 0xfe, 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e}, {0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00}, {0x1e, 0x00, 0x00, 0x1e, 0x0e, 0x00, 0x00, 0x0e}, {0x1e, 0x00, 0x1e, 0x00, 0x0e, 0x00, 0x0e, 0x00}, /*sw */ {0x1e, 0x00, 0xe0, 0xfe, 0x0e, 0x00, 0xf0, 0xfe}, {0x1e, 0x00, 0xfe, 0xe0, 0x0e, 0x00, 0xfe, 0xf0}, {0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e, 0x00, 0x00}, {0x1e, 0x1e, 0x1e, 0x1e, 0x0e, 0x0e, 0x0e, 0x0e}, /*w */ {0x1e, 0x1e, 0xe0, 0xe0, 0x0e, 0x0e, 0xf0, 0xf0}, {0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e, 0xfe, 0xfe}, {0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0, 0x00, 0xfe}, {0x1e, 0xe0, 0x1e, 0xe0, 0x0e, 0xf0, 0x0e, 0xf0}, /*sw */ {0x1e, 0xe0, 0xe0, 0x1e, 0x0e, 0xf0, 0xf0, 0x0e}, {0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0, 0xfe, 0x00}, {0x1e, 0xfe, 0x00, 0xe0, 0x0e, 0xfe, 0x00, 0xf0}, {0x1e, 0xfe, 0x1e, 0xfe, 0x0e, 0xfe, 0x0e, 0xfe}, /*sw */ {0x1e, 0xfe, 0xe0, 0x00, 0x0e, 0xfe, 0xf0, 0x00}, {0x1e, 0xfe, 0xfe, 0x1e, 0x0e, 0xfe, 0xfe, 0x0e}, {0xe0, 0x00, 0x00, 0xe0, 0xf0, 0x00, 0x00, 0xf0}, {0xe0, 0x00, 0x1e, 0xfe, 0xf0, 0x00, 0x0e, 0xfe}, {0xe0, 0x00, 0xe0, 0x00, 0xf0, 0x00, 0xf0, 0x00}, /*sw */ {0xe0, 0x00, 0xfe, 0x1e, 0xf0, 0x00, 0xfe, 0x0e}, {0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e, 0x00, 0xfe}, {0xe0, 0x1e, 0x1e, 0xe0, 0xf0, 0x0e, 0x0e, 0xf0}, {0xe0, 0x1e, 0xe0, 0x1e, 0xf0, 0x0e, 0xf0, 0x0e}, /*sw */ {0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e, 0xfe, 0x00}, {0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0, 0x00, 0x00}, {0xe0, 0xe0, 0x1e, 0x1e, 0xf0, 0xf0, 0x0e, 0x0e}, {0xe0, 0xe0, 0xe0, 0xe0, 0xf0, 0xf0, 0xf0, 0xf0}, /*w */ {0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0, 0xfe, 0xfe}, {0xe0, 0xfe, 0x00, 0x1e, 0xf0, 0xfe, 0x00, 0x0e}, {0xe0, 0xfe, 0x1e, 0x00, 0xf0, 0xfe, 0x0e, 0x00}, {0xe0, 0xfe, 0xe0, 0xfe, 0xf0, 0xfe, 0xf0, 0xfe}, /*sw */ {0xe0, 0xfe, 0xfe, 0xe0, 0xf0, 0xfe, 0xfe, 0xf0}, {0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe}, {0xfe, 0x00, 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0}, {0xfe, 0x00, 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e}, {0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00}, /*sw */ {0xfe, 0x1e, 0x00, 0xe0, 0xfe, 0x0e, 0x00, 0xf0}, {0xfe, 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e, 0xfe}, {0xfe, 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0, 0x00}, {0xfe, 0x1e, 0xfe, 0x1e, 0xfe, 0x0e, 0xfe, 0x0e}, /*sw */ {0xfe, 0xe0, 0x00, 0x1e, 0xfe, 0xf0, 0x00, 0x0e}, {0xfe, 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e, 0x00}, {0xfe, 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0, 0xfe}, {0xfe, 0xe0, 0xfe, 0xe0, 0xfe, 0xf0, 0xfe, 0xf0}, /*sw */ {0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00}, {0xfe, 0xfe, 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e}, {0xfe, 0xfe, 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0}, {0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe} /*w */ }; bool gl_des_is_weak_key (const char * key) { char work[8]; int i, left, right, middle, cmp_result; /* clear parity bits */ for (i = 0; i < 8; ++i) work[i] = ((unsigned char)key[i]) & 0xfe; /* binary search in the weak key table */ left = 0; right = 63; while (left <= right) { middle = (left + right) / 2; if (!(cmp_result = memcmp (work, weak_keys[middle], 8))) return -1; if (cmp_result > 0) left = middle + 1; else right = middle - 1; } return 0; } /* * Macro to swap bits across two words. */ #define DO_PERMUTATION(a, temp, b, offset, mask) \ temp = ((a>>offset) ^ b) & mask; \ b ^= temp; \ a ^= temp<> 31); \ temp = (left ^ right) & 0xaaaaaaaa; \ right ^= temp; \ left ^= temp; \ left = (left << 1) | (left >> 31); /* * The 'inverse initial permutation'. */ #define FINAL_PERMUTATION(left, temp, right) \ left = (left << 31) | (left >> 1); \ temp = (left ^ right) & 0xaaaaaaaa; \ left ^= temp; \ right ^= temp; \ right = (right << 31) | (right >> 1); \ DO_PERMUTATION(right, temp, left, 8, 0x00ff00ff) \ DO_PERMUTATION(right, temp, left, 2, 0x33333333) \ DO_PERMUTATION(left, temp, right, 16, 0x0000ffff) \ DO_PERMUTATION(left, temp, right, 4, 0x0f0f0f0f) /* * A full DES round including 'expansion function', 'sbox substitution' * and 'primitive function P' but without swapping the left and right word. * Please note: The data in 'from' and 'to' is already rotated one bit to * the left, done in the initial permutation. */ #define DES_ROUND(from, to, work, subkey) \ work = from ^ *subkey++; \ to ^= sbox8[ work & 0x3f ]; \ to ^= sbox6[ (work>>8) & 0x3f ]; \ to ^= sbox4[ (work>>16) & 0x3f ]; \ to ^= sbox2[ (work>>24) & 0x3f ]; \ work = ((from << 28) | (from >> 4)) ^ *subkey++; \ to ^= sbox7[ work & 0x3f ]; \ to ^= sbox5[ (work>>8) & 0x3f ]; \ to ^= sbox3[ (work>>16) & 0x3f ]; \ to ^= sbox1[ (work>>24) & 0x3f ]; /* * Macros to convert 8 bytes from/to 32bit words. */ #define READ_64BIT_DATA(data, left, right) \ left = ((uint32_t) data[0] << 24) \ | ((uint32_t) data[1] << 16) \ | ((uint32_t) data[2] << 8) \ | (uint32_t) data[3]; \ right = ((uint32_t) data[4] << 24) \ | ((uint32_t) data[5] << 16) \ | ((uint32_t) data[6] << 8) \ | (uint32_t) data[7]; #define WRITE_64BIT_DATA(data, left, right) \ data[0] = (left >> 24) &0xff; data[1] = (left >> 16) &0xff; \ data[2] = (left >> 8) &0xff; data[3] = left &0xff; \ data[4] = (right >> 24) &0xff; data[5] = (right >> 16) &0xff; \ data[6] = (right >> 8) &0xff; data[7] = right &0xff; /* * des_key_schedule(): Calculate 16 subkeys pairs (even/odd) for * 16 encryption rounds. * To calculate subkeys for decryption the caller * have to reorder the generated subkeys. * * rawkey: 8 Bytes of key data * subkey: Array of at least 32 uint32_ts. Will be filled * with calculated subkeys. * */ static void des_key_schedule (const char * _rawkey, uint32_t * subkey) { const unsigned char *rawkey = (const unsigned char *) _rawkey; uint32_t left, right, work; int round; READ_64BIT_DATA (rawkey, left, right) DO_PERMUTATION (right, work, left, 4, 0x0f0f0f0f) DO_PERMUTATION (right, work, left, 0, 0x10101010) left = ((leftkey_swap[(left >> 0) & 0xf] << 3) | (leftkey_swap[(left >> 8) & 0xf] << 2) | (leftkey_swap[(left >> 16) & 0xf] << 1) | (leftkey_swap[(left >> 24) & 0xf]) | (leftkey_swap[(left >> 5) & 0xf] << 7) | (leftkey_swap[(left >> 13) & 0xf] << 6) | (leftkey_swap[(left >> 21) & 0xf] << 5) | (leftkey_swap[(left >> 29) & 0xf] << 4)); left &= 0x0fffffff; right = ((rightkey_swap[(right >> 1) & 0xf] << 3) | (rightkey_swap[(right >> 9) & 0xf] << 2) | (rightkey_swap[(right >> 17) & 0xf] << 1) | (rightkey_swap[(right >> 25) & 0xf]) | (rightkey_swap[(right >> 4) & 0xf] << 7) | (rightkey_swap[(right >> 12) & 0xf] << 6) | (rightkey_swap[(right >> 20) & 0xf] << 5) | (rightkey_swap[(right >> 28) & 0xf] << 4)); right &= 0x0fffffff; for (round = 0; round < 16; ++round) { left = ((left << encrypt_rotate_tab[round]) | (left >> (28 - encrypt_rotate_tab[round]))) & 0x0fffffff; right = ((right << encrypt_rotate_tab[round]) | (right >> (28 - encrypt_rotate_tab[round]))) & 0x0fffffff; *subkey++ = (((left << 4) & 0x24000000) | ((left << 28) & 0x10000000) | ((left << 14) & 0x08000000) | ((left << 18) & 0x02080000) | ((left << 6) & 0x01000000) | ((left << 9) & 0x00200000) | ((left >> 1) & 0x00100000) | ((left << 10) & 0x00040000) | ((left << 2) & 0x00020000) | ((left >> 10) & 0x00010000) | ((right >> 13) & 0x00002000) | ((right >> 4) & 0x00001000) | ((right << 6) & 0x00000800) | ((right >> 1) & 0x00000400) | ((right >> 14) & 0x00000200) | (right & 0x00000100) | ((right >> 5) & 0x00000020) | ((right >> 10) & 0x00000010) | ((right >> 3) & 0x00000008) | ((right >> 18) & 0x00000004) | ((right >> 26) & 0x00000002) | ((right >> 24) & 0x00000001)); *subkey++ = (((left << 15) & 0x20000000) | ((left << 17) & 0x10000000) | ((left << 10) & 0x08000000) | ((left << 22) & 0x04000000) | ((left >> 2) & 0x02000000) | ((left << 1) & 0x01000000) | ((left << 16) & 0x00200000) | ((left << 11) & 0x00100000) | ((left << 3) & 0x00080000) | ((left >> 6) & 0x00040000) | ((left << 15) & 0x00020000) | ((left >> 4) & 0x00010000) | ((right >> 2) & 0x00002000) | ((right << 8) & 0x00001000) | ((right >> 14) & 0x00000808) | ((right >> 9) & 0x00000400) | ((right) & 0x00000200) | ((right << 7) & 0x00000100) | ((right >> 7) & 0x00000020) | ((right >> 3) & 0x00000011) | ((right << 2) & 0x00000004) | ((right >> 21) & 0x00000002)); } } void gl_des_setkey (gl_des_ctx *ctx, const char * key) { int i; des_key_schedule (key, ctx->encrypt_subkeys); for (i = 0; i < 32; i += 2) { ctx->decrypt_subkeys[i] = ctx->encrypt_subkeys[30 - i]; ctx->decrypt_subkeys[i + 1] = ctx->encrypt_subkeys[31 - i]; } } bool gl_des_makekey (gl_des_ctx *ctx, const char * key, size_t keylen) { if (keylen != 8) return false; gl_des_setkey (ctx, key); return !gl_des_is_weak_key (key); } void gl_des_ecb_crypt (gl_des_ctx *ctx, const char * _from, char * _to, int mode) { const unsigned char *from = (const unsigned char *) _from; unsigned char *to = (unsigned char *) _to; uint32_t left, right, work; uint32_t *keys; keys = mode ? ctx->decrypt_subkeys : ctx->encrypt_subkeys; READ_64BIT_DATA (from, left, right) INITIAL_PERMUTATION (left, work, right) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) FINAL_PERMUTATION (right, work, left) WRITE_64BIT_DATA (to, right, left) } void gl_3des_set2keys (gl_3des_ctx *ctx, const char * key1, const char * key2) { int i; des_key_schedule (key1, ctx->encrypt_subkeys); des_key_schedule (key2, &(ctx->decrypt_subkeys[32])); for (i = 0; i < 32; i += 2) { ctx->decrypt_subkeys[i] = ctx->encrypt_subkeys[30 - i]; ctx->decrypt_subkeys[i + 1] = ctx->encrypt_subkeys[31 - i]; ctx->encrypt_subkeys[i + 32] = ctx->decrypt_subkeys[62 - i]; ctx->encrypt_subkeys[i + 33] = ctx->decrypt_subkeys[63 - i]; ctx->encrypt_subkeys[i + 64] = ctx->encrypt_subkeys[i]; ctx->encrypt_subkeys[i + 65] = ctx->encrypt_subkeys[i + 1]; ctx->decrypt_subkeys[i + 64] = ctx->decrypt_subkeys[i]; ctx->decrypt_subkeys[i + 65] = ctx->decrypt_subkeys[i + 1]; } } void gl_3des_set3keys (gl_3des_ctx *ctx, const char * key1, const char * key2, const char * key3) { int i; des_key_schedule (key1, ctx->encrypt_subkeys); des_key_schedule (key2, &(ctx->decrypt_subkeys[32])); des_key_schedule (key3, &(ctx->encrypt_subkeys[64])); for (i = 0; i < 32; i += 2) { ctx->decrypt_subkeys[i] = ctx->encrypt_subkeys[94 - i]; ctx->decrypt_subkeys[i + 1] = ctx->encrypt_subkeys[95 - i]; ctx->encrypt_subkeys[i + 32] = ctx->decrypt_subkeys[62 - i]; ctx->encrypt_subkeys[i + 33] = ctx->decrypt_subkeys[63 - i]; ctx->decrypt_subkeys[i + 64] = ctx->encrypt_subkeys[30 - i]; ctx->decrypt_subkeys[i + 65] = ctx->encrypt_subkeys[31 - i]; } } void gl_3des_ecb_crypt (gl_3des_ctx *ctx, const char * _from, char * _to, int mode) { const unsigned char *from = (const unsigned char *) _from; unsigned char *to = (unsigned char *) _to; uint32_t left, right, work; uint32_t *keys; keys = mode ? ctx->decrypt_subkeys : ctx->encrypt_subkeys; READ_64BIT_DATA (from, left, right) INITIAL_PERMUTATION (left, work, right) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys) FINAL_PERMUTATION (right, work, left) WRITE_64BIT_DATA (to, right, left) } bool gl_3des_makekey (gl_3des_ctx *ctx, const char * key, size_t keylen) { if (keylen != 24) return false; gl_3des_set3keys (ctx, key, key + 8, key + 16); return !(gl_des_is_weak_key (key) || gl_des_is_weak_key (key + 8) || gl_des_is_weak_key (key + 16)); }