/* Exponential base 2 function. Copyright (C) 2011-2024 Free Software Foundation, Inc. This file is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include /* Specification. */ #include #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE long double exp2l (long double x) { return exp2 (x); } #else # include /* gl_expl_table[i] = exp((i - 128) * log(2)/256). */ extern const long double gl_expl_table[257]; /* Best possible approximation of log(2) as a 'long double'. */ #define LOG2 0.693147180559945309417232121458176568075L /* Best possible approximation of 1/log(2) as a 'long double'. */ #define LOG2_INVERSE 1.44269504088896340735992468100189213743L /* Best possible approximation of log(2)/256 as a 'long double'. */ #define LOG2_BY_256 0.00270760617406228636491106297444600221904L /* Best possible approximation of 256/log(2) as a 'long double'. */ #define LOG2_BY_256_INVERSE 369.329930467574632284140718336484387181L long double exp2l (long double x) { /* exp2(x) = exp(x*log(2)). If we would compute it like this, there would be rounding errors for integer or near-integer values of x. To avoid these, we inline the algorithm for exp(), and the multiplication with log(2) cancels a division by log(2). */ if (isnanl (x)) return x; if (x > (long double) LDBL_MAX_EXP) /* x > LDBL_MAX_EXP hence exp2(x) > 2^LDBL_MAX_EXP, overflows to Infinity. */ return HUGE_VALL; if (x < (long double) (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG)) /* x < (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG) hence exp2(x) < 2^(LDBL_MIN_EXP-1-LDBL_MANT_DIG), underflows to zero. */ return 0.0L; /* Decompose x into x = n + m/256 + y/log(2) where n is an integer, m is an integer, -128 <= m <= 128, y is a number, |y| <= log(2)/512 + epsilon = 0.00135... Then exp2(x) = 2^n * exp(m * log(2)/256) * exp(y) The first factor is an ldexpl() call. The second factor is a table lookup. The third factor is computed - either as sinh(y) + cosh(y) where sinh(y) is computed through the power series: sinh(y) = y + y^3/3! + y^5/5! + ... and cosh(y) is computed as hypot(1, sinh(y)), - or as exp(2*z) = (1 + tanh(z)) / (1 - tanh(z)) where z = y/2 and tanh(z) is computed through its power series: tanh(z) = z - 1/3 * z^3 + 2/15 * z^5 - 17/315 * z^7 + 62/2835 * z^9 - 1382/155925 * z^11 + 21844/6081075 * z^13 - 929569/638512875 * z^15 + ... Since |z| <= log(2)/1024 < 0.0007, the relative contribution of the z^13 term is < 0.0007^12 < 2^-120 <= 2^-LDBL_MANT_DIG, therefore we can truncate the series after the z^11 term. */ { long double nm = roundl (x * 256.0L); /* = 256 * n + m */ long double z = (x * 256.0L - nm) * (LOG2_BY_256 * 0.5L); /* Coefficients of the power series for tanh(z). */ #define TANH_COEFF_1 1.0L #define TANH_COEFF_3 -0.333333333333333333333333333333333333334L #define TANH_COEFF_5 0.133333333333333333333333333333333333334L #define TANH_COEFF_7 -0.053968253968253968253968253968253968254L #define TANH_COEFF_9 0.0218694885361552028218694885361552028218L #define TANH_COEFF_11 -0.00886323552990219656886323552990219656886L #define TANH_COEFF_13 0.00359212803657248101692546136990581435026L #define TANH_COEFF_15 -0.00145583438705131826824948518070211191904L long double z2 = z * z; long double tanh_z = (((((TANH_COEFF_11 * z2 + TANH_COEFF_9) * z2 + TANH_COEFF_7) * z2 + TANH_COEFF_5) * z2 + TANH_COEFF_3) * z2 + TANH_COEFF_1) * z; long double exp_y = (1.0L + tanh_z) / (1.0L - tanh_z); int n = (int) roundl (nm * (1.0L / 256.0L)); int m = (int) nm - 256 * n; return ldexpl (gl_expl_table[128 + m] * exp_y, n); } } #endif