/* Exponential function minus one. Copyright (C) 2012-2024 Free Software Foundation, Inc. This file is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include /* Specification. */ #include #include /* A value slightly larger than log(2). */ #define LOG2_PLUS_EPSILON 0.6931471805599454 /* Best possible approximation of log(2) as a 'double'. */ #define LOG2 0.693147180559945309417232121458176568075 /* Best possible approximation of 1/log(2) as a 'double'. */ #define LOG2_INVERSE 1.44269504088896340735992468100189213743 /* Best possible approximation of log(2)/256 as a 'double'. */ #define LOG2_BY_256 0.00270760617406228636491106297444600221904 /* Best possible approximation of 256/log(2) as a 'double'. */ #define LOG2_BY_256_INVERSE 369.329930467574632284140718336484387181 /* The upper 32 bits of log(2)/256. */ #define LOG2_BY_256_HI_PART 0.0027076061733168899081647396087646484375 /* log(2)/256 - LOG2_HI_PART. */ #define LOG2_BY_256_LO_PART \ 0.000000000000745396456746323365681353781544922399845 double expm1 (double x) { if (isnand (x)) return x; if (x >= (double) DBL_MAX_EXP * LOG2_PLUS_EPSILON) /* x > DBL_MAX_EXP * log(2) hence exp(x) > 2^DBL_MAX_EXP, overflows to Infinity. */ return HUGE_VAL; if (x <= (double) (- DBL_MANT_DIG) * LOG2_PLUS_EPSILON) /* x < (- DBL_MANT_DIG) * log(2) hence 0 < exp(x) < 2^-DBL_MANT_DIG, hence -1 < exp(x)-1 < -1 + 2^-DBL_MANT_DIG rounds to -1. */ return -1.0; if (x <= - LOG2_PLUS_EPSILON) /* 0 < exp(x) < 1/2. Just compute exp(x), then subtract 1. */ return exp (x) - 1.0; if (x == 0.0) /* Return a zero with the same sign as x. */ return x; /* Decompose x into x = n * log(2) + m * log(2)/256 + y where n is an integer, n >= -1, m is an integer, -128 <= m <= 128, y is a number, |y| <= log(2)/512 + epsilon = 0.00135... Then exp(x) = 2^n * exp(m * log(2)/256) * exp(y) Compute each factor minus one, then combine them through the formula (1+a)*(1+b) = 1 + (a+b*(1+a)), that is (1+a)*(1+b) - 1 = a + b*(1+a). The first factor is an ldexpl() call. The second factor is a table lookup. The third factor minus one is computed - either as sinh(y) + sinh(y)^2 / (cosh(y) + 1) where sinh(y) is computed through the power series: sinh(y) = y + y^3/3! + y^5/5! + ... and cosh(y) is computed as hypot(1, sinh(y)), - or as exp(2*z) - 1 = 2 * tanh(z) / (1 - tanh(z)) where z = y/2 and tanh(z) is computed through its power series: tanh(z) = z - 1/3 * z^3 + 2/15 * z^5 - 17/315 * z^7 + 62/2835 * z^9 - 1382/155925 * z^11 + 21844/6081075 * z^13 - 929569/638512875 * z^15 + ... Since |z| <= log(2)/1024 < 0.0007, the relative contribution of the z^7 term is < 0.0007^6 < 2^-60 <= 2^-DBL_MANT_DIG, therefore we can truncate the series after the z^5 term. Given the usual bounds DBL_MAX_EXP <= 16384, DBL_MANT_DIG <= 120, we can estimate x: -84 <= x <= 11357. This means, when dividing x by log(2), where we want x mod log(2) to be precise to DBL_MANT_DIG bits, we have to use an approximation to log(2) that has 14+DBL_MANT_DIG bits. */ { double nm = round (x * LOG2_BY_256_INVERSE); /* = 256 * n + m */ /* n has at most 15 bits, nm therefore has at most 23 bits, therefore n * LOG2_HI_PART is computed exactly, and n * LOG2_LO_PART is computed with an absolute error < 2^15 * 2e-10 * 2^-DBL_MANT_DIG. */ double y_tmp = x - nm * LOG2_BY_256_HI_PART; double y = y_tmp - nm * LOG2_BY_256_LO_PART; double z = 0.5L * y; /* Coefficients of the power series for tanh(z). */ #define TANH_COEFF_1 1.0 #define TANH_COEFF_3 -0.333333333333333333333333333333333333334 #define TANH_COEFF_5 0.133333333333333333333333333333333333334 #define TANH_COEFF_7 -0.053968253968253968253968253968253968254 #define TANH_COEFF_9 0.0218694885361552028218694885361552028218 #define TANH_COEFF_11 -0.00886323552990219656886323552990219656886 #define TANH_COEFF_13 0.00359212803657248101692546136990581435026 #define TANH_COEFF_15 -0.00145583438705131826824948518070211191904 double z2 = z * z; double tanh_z = ((TANH_COEFF_5 * z2 + TANH_COEFF_3) * z2 + TANH_COEFF_1) * z; double exp_y_minus_1 = 2.0 * tanh_z / (1.0 - tanh_z); int n = (int) round (nm * (1.0 / 256.0)); int m = (int) nm - 256 * n; /* expm1_table[i] = exp((i - 128) * log(2)/256) - 1. Computed in GNU clisp through (setf (long-float-digits) 128) (setq a 0L0) (setf (long-float-digits) 256) (dotimes (i 257) (format t " ~D,~%" (float (- (exp (* (/ (- i 128) 256) (log 2L0))) 1) a))) */ static const double expm1_table[257] = { -0.292893218813452475599155637895150960716, -0.290976057839792401079436677742323809165, -0.289053698915417220095325702647879950038, -0.287126127947252846596498423285616993819, -0.285193330804014994382467110862430046956, -0.283255293316105578740250215722626632811, -0.281312001275508837198386957752147486471, -0.279363440435687168635744042695052413926, -0.277409596511476689981496879264164547161, -0.275450455178982509740597294512888729286, -0.273486002075473717576963754157712706214, -0.271516222799278089184548475181393238264, -0.269541102909676505674348554844689233423, -0.267560627926797086703335317887720824384, -0.265574783331509036569177486867109287348, -0.263583554565316202492529493866889713058, -0.261586927030250344306546259812975038038, -0.259584886088764114771170054844048746036, -0.257577417063623749727613604135596844722, -0.255564505237801467306336402685726757248, -0.253546135854367575399678234256663229163, -0.251522294116382286608175138287279137577, -0.2494929651867872398674385184702356751864, -0.247458134188296727960327722100283867508, -0.24541778620328863011699022448340323429, -0.243371906273695048903181511842366886387, -0.24132047940089265059510885341281062657, -0.239263490545592708236869372901757573532, -0.237200924627730846574373155241529522695, -0.23513276652635648805745654063657412692, -0.233059001079521999099699248246140670544, -0.230979613084171535783261520405692115669, -0.228894587296029588193854068954632579346, -0.226803908429489222568744221853864674729, -0.224707561157500020438486294646580877171, -0.222605530111455713940842831198332609562, -0.2204977998810815164831359552625710592544, -0.218384355014321147927034632426122058645, -0.2162651800172235534675441445217774245016, -0.214140259353829315375718509234297186439, -0.212009577446056756772364919909047495547, -0.209873118673587736597751517992039478005, -0.2077308673737531349400659265343210916196, -0.205582807841418027883101951185666435317, -0.2034289243288665510313756784404656320656, -0.201269201045686450868589852895683430425, -0.199103622158653323103076879204523186316, -0.196932171791614537151556053482436428417, -0.19475483402537284591023966632129970827, -0.192571592897569679960015418424270885733, -0.190382432402568125350119133273631796029, -0.188187336491335584102392022226559177731, -0.185986289071326116575890738992992661386, -0.183779274006362464829286135533230759947, -0.181566275116517756116147982921992768975, -0.17934727617799688564586793151548689933, -0.1771222609230175777406216376370887771665, -0.1748912130396911245164132617275148983224, -0.1726541161719028012138814282020908791644, -0.170410953919191957302175212789218768074, -0.168161709836631782476831771511804777363, -0.165906367434708746670203829291463807099, -0.1636449101792017131905953879307692887046, -0.161377321491060724103867675441291294819, -0.15910358474628545696887452376678510496, -0.15682368327580335203567701228614769857, -0.154537600365347409013071332406381692911, -0.152245319255333652509541396360635796882, -0.149946823140738265249318713251248832456, -0.147642095170974388162796469615281683674, -0.145331118449768586448102562484668501975, -0.143013876035036980698187522160833990549, -0.140690350938761042185327811771843747742, -0.138360526126863051392482883127641270248, -0.136024384519081218878475585385633792948, -0.133681908988844467561490046485836530346, -0.131333082363146875502898959063916619876, -0.128977887422421778270943284404535317759, -0.126616306900415529961291721709773157771, -0.1242483234840609219490048572320697039866, -0.121873919813350258443919690312343389353, -0.1194930784812080879189542126763637438278, -0.11710578203336358947830887503073906297, -0.1147120129682226132300120925687579825894, -0.1123117537367393737247203999003383961205, -0.1099049867422877955201404475637647649574, -0.1074916943405325099278897180135900838485, -0.1050718588392995019970556101123417014993, -0.102645462498446406786148378936109092823, -0.1002124875297324539725723033374854302454, -0.097772916096688059846161368344495155786, -0.0953267303144840657307406742107731280055, -0.092873912249800621875082699818829828767, -0.0904144439206957158520284361718212536293, -0.0879483072964733445019372468353990225585, -0.0854754842975513284540160873038416459095, -0.0829959567953287682564584052058555719614, -0.080509706612053141143695628825336081184, -0.078016715520687037466429613329061550362, -0.075516965244774535807472733052603963221, -0.073010437458307215803773464831151680239, -0.070497113785589807692349282254427317595, -0.067976975801105477595185454402763710658, -0.0654500050293807475554878955602008567352, -0.06291618294485004933500052502277673278, -0.0603754909717199109794126487955155117284, -0.0578279104838327751561896480162548451191, -0.055273422804530448266460732621318468453, -0.0527120092065171793298906732865376926237, -0.0501436509117223676387482401930039000769, -0.0475683290911628981746625337821392744829, -0.044986024864805103778829470427200864833, -0.0423967193014263530636943648520845560749, -0.0398003934184762630513928111129293882558, -0.0371970281819375355214808849088086316225, -0.0345866045061864160477270517354652168038, -0.0319691032538527747009720477166542375817, -0.0293445052356798073922893825624102948152, -0.0267127912103833568278979766786970786276, -0.0240739418845108520444897665995250062307, -0.0214279379122998654908388741865642544049, -0.018774759895536286618755114942929674984, -0.016114388383412110943633198761985316073, -0.01344680387238284353202993186779328685225, -0.0107719868060245158708750409344163322253, -0.00808991757489031507008688867384418356197, -0.00540057651636682434752231377783368554176, -0.00270394391452987374234008615207739887604, 0.0, 0.00271127505020248543074558845036204047301, 0.0054299011128028213513839559347998147001, 0.00815589811841751578309489081720103927357, 0.0108892860517004600204097905618605243881, 0.01363008495148943884025892906393992959584, 0.0163783149109530379404931137862940627635, 0.0191339960777379496848780958207928793998, 0.0218971486541166782344801347832994397821, 0.0246677928971356451482890762708149276281, 0.0274459491187636965388611939222137814994, 0.0302316376860410128717079024539045670944, 0.0330248790212284225001082839704609180866, 0.0358256936019571200299832090180813718441, 0.0386341019613787906124366979546397325796, 0.0414501246883161412645460790118931264803, 0.0442737824274138403219664787399290087847, 0.0471050958792898661299072502271122405627, 0.049944085800687266082038126515907909062, 0.0527907730046263271198912029807463031904, 0.05564517836055715880834132515293865216, 0.0585073227945126901057721096837166450754, 0.0613772272892620809505676780038837262945, 0.0642549128844645497886112570015802206798, 0.0671404006768236181695211209928091626068, 0.070033711820241773542411936757623568504, 0.0729348675259755513850354508738275853402, 0.0758438890627910378032286484760570740623, 0.0787607977571197937406800374384829584908, 0.081685614993215201942115594422531125645, 0.0846183622133092378161051719066143416095, 0.0875590609177696653467978309440397078697, 0.090507732665257659207010655760707978993, 0.0934643990728858542282201462504471620805, 0.096429081816376823386138295859248481766, 0.099401802630221985463696968238829904039, 0.1023825833078409435564142094256468575113, 0.1053714457017412555882746962569503110404, 0.1083684117236786380094236494266198501387, 0.111373503344817603850149254228916637444, 0.1143867425958925363088129569196030678004, 0.1174081515673691990545799630857802666544, 0.120437752409606684429003879866313012766, 0.1234755673330198007337297397753214319548, 0.1265216186082418997947986437870347776336, 0.12957592856628814599726498884024982591, 0.1326385195987192279870737236776230843835, 0.135709414157805514240390330676117013429, 0.1387886347566916537038302838415112547204, 0.14187620396956162271229760828788093894, 0.144972144431804219394413888222915895793, 0.148076478840179006778799662697342680031, 0.15118922995298270581775963520198253612, 0.154310420590216039548221528724806960684, 0.157440073633751029613085766293796821108, 0.160578212027498746369459472576090986253, 0.163724858777577513813573599092185312343, 0.166880036952481570555516298414089287832, 0.1700437696832501880802590357927385730016, 0.1732160801636372475348043545132453888896, 0.176396991650281276284645728483848641053, 0.1795865274628759454861005667694405189764, 0.182784710984341029924457204693850757963, 0.185991565660993831371265649534215563735, 0.189207115002721066717499970560475915293, 0.192431382583151222142727558145431011481, 0.1956643920398273745838370498654519757025, 0.1989061670743804817703025579763002069494, 0.202156731452703142096396957497765876, 0.205416109005123825604211432558411335666, 0.208684323626581577354792255889216998483, 0.211961399276801194468168917732493045449, 0.2152473599804688781165202513387984576236, 0.218542229827408361758207148117394510722, 0.221846032972757516903891841911570785834, 0.225158793637145437709464594384845353705, 0.2284805361068700056940089577927818403626, 0.231811284734075935884556653212794816605, 0.235151063936933305692912507415415760296, 0.238499898199816567833368865859612431546, 0.241857812073484048593677468726595605511, 0.245224830175257932775204967486152674173, 0.248600977189204736621766097302495545187, 0.251986277866316270060206031789203597321, 0.255380757024691089579390657442301194598, 0.258784439549716443077860441815162618762, 0.262197350394250708014010258518416459672, 0.265619514578806324196273999873453036297, 0.269050957191733222554419081032338004715, 0.272491703389402751236692044184602176772, 0.27594177839639210038120243475928938891, 0.279401207505669226913587970027852545961, 0.282870016078778280726669781021514051111, 0.286348229546025533601482208069738348358, 0.289835873406665812232747295491552189677, 0.293332973229089436725559789048704304684, 0.296839554651009665933754117792451159835, 0.300355643379650651014140567070917791291, 0.303881265191935898574523648951997368331, 0.30741644593467724479715157747196172848, 0.310961211524764341922991786330755849366, 0.314515587949354658485983613383997794966, 0.318079601266063994690185647066116617661, 0.321653277603157514326511812330609226158, 0.325236643159741294629537095498721674113, 0.32882972420595439547865089632866510792, 0.33243254708316144935164337949073577407, 0.336045138204145773442627904371869759286, 0.339667524053303005360030669724352576023, 0.343299731186835263824217146181630875424, 0.346941786232945835788173713229537282073, 0.350593715892034391408522196060133960038, 0.354255546936892728298014740140702804344, 0.357927306212901046494536695671766697444, 0.361609020638224755585535938831941474643, 0.365300717204011815430698360337542855432, 0.369002422974590611929601132982192832168, 0.372714165087668369284997857144717215791, 0.376435970754530100216322805518686960261, 0.380167867260238095581945274358283464698, 0.383909881963831954872659527265192818003, 0.387662042298529159042861017950775988895, 0.391424375771926187149835529566243446678, 0.395196909966200178275574599249220994717, 0.398979672538311140209528136715194969206, 0.402772691220204706374713524333378817108, 0.40657599381901544248361973255451684411, 0.410389608217270704414375128268675481146, 0.414213562373095048801688724209698078569 }; double t = expm1_table[128 + m]; /* (1+t) * (1+exp_y_minus_1) - 1 = t + (1+t)*exp_y_minus_1 */ double p_minus_1 = t + (1.0 + t) * exp_y_minus_1; double s = ldexp (1.0, n) - 1.0; /* (1+s) * (1+p_minus_1) - 1 = s + (1+s)*p_minus_1 */ return s + (1.0 + s) * p_minus_1; } }