/* Traverse a file hierarchy. Copyright (C) 2004-2024 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /*- * Copyright (c) 1990, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #if defined LIBC_SCCS && !defined GCC_LINT && !defined lint static char sccsid[] = "@(#)fts.c 8.6 (Berkeley) 8/14/94"; #endif #include "fts_.h" #if HAVE_SYS_PARAM_H || defined _LIBC # include #endif #ifdef _LIBC # include #else # include #endif #include #include #include #include #include #include #include #if ! _LIBC # include "attribute.h" # include "fcntl--.h" # include "flexmember.h" # include "openat.h" # include "opendirat.h" # include "same-inode.h" #endif #include #ifndef _D_EXACT_NAMLEN # define _D_EXACT_NAMLEN(dirent) strlen ((dirent)->d_name) #endif #if HAVE_STRUCT_DIRENT_D_TYPE /* True if the type of the directory entry D is known. */ # define DT_IS_KNOWN(d) ((d)->d_type != DT_UNKNOWN) /* True if the type of the directory entry D must be T. */ # define DT_MUST_BE(d, t) ((d)->d_type == (t)) # define D_TYPE(d) ((d)->d_type) #else # define DT_IS_KNOWN(d) false # define DT_MUST_BE(d, t) false # define D_TYPE(d) DT_UNKNOWN # undef DT_UNKNOWN # define DT_UNKNOWN 0 /* Any nonzero values will do here, so long as they're distinct. Undef any existing macros out of the way. */ # undef DT_BLK # undef DT_CHR # undef DT_DIR # undef DT_FIFO # undef DT_LNK # undef DT_REG # undef DT_SOCK # define DT_BLK 1 # define DT_CHR 2 # define DT_DIR 3 # define DT_FIFO 4 # define DT_LNK 5 # define DT_REG 6 # define DT_SOCK 7 #endif #ifndef S_IFBLK # define S_IFBLK 0 #endif #ifndef S_IFLNK # define S_IFLNK 0 #endif #ifndef S_IFSOCK # define S_IFSOCK 0 #endif enum { NOT_AN_INODE_NUMBER = 0 }; #ifdef D_INO_IN_DIRENT # define D_INO(dp) (dp)->d_ino #else /* Some systems don't have inodes, so fake them to avoid lots of ifdefs. */ # define D_INO(dp) NOT_AN_INODE_NUMBER #endif /* If possible (see max_entries, below), read no more than this many directory entries at a time. Without this limit (i.e., when using non-NULL fts_compar), processing a directory with 4,000,000 entries requires ~1GiB of memory, and handling 64M entries would require 16GiB of memory. */ #ifndef FTS_MAX_READDIR_ENTRIES # define FTS_MAX_READDIR_ENTRIES 100000 #endif /* If there are more than this many entries in a directory, and the conditions mentioned below are satisfied, then sort the entries on inode number before any further processing. */ #ifndef FTS_INODE_SORT_DIR_ENTRIES_THRESHOLD # define FTS_INODE_SORT_DIR_ENTRIES_THRESHOLD 10000 #endif enum { _FTS_INODE_SORT_DIR_ENTRIES_THRESHOLD = FTS_INODE_SORT_DIR_ENTRIES_THRESHOLD }; enum Fts_stat { FTS_NO_STAT_REQUIRED = 1, FTS_STAT_REQUIRED = 2 }; #ifdef _LIBC # undef close # define close __close # undef closedir # define closedir __closedir # undef fchdir # define fchdir __fchdir # undef open # define open __open # undef readdir # define readdir __readdir #else # undef internal_function # define internal_function /* empty */ #endif #ifndef __set_errno # define __set_errno(Val) errno = (Val) #endif /* If this host provides the openat function, then we can avoid attempting to open "." in some initialization code below. */ #ifdef HAVE_OPENAT # define HAVE_OPENAT_SUPPORT 1 #else # define HAVE_OPENAT_SUPPORT 0 #endif #ifdef NDEBUG # define fts_assert(expr) ((void) (0 && (expr))) #else # define fts_assert(expr) \ do \ { \ if (!(expr)) \ abort (); \ } \ while (false) #endif #ifdef _LIBC # if __glibc_has_attribute (__fallthrough__) # define FALLTHROUGH __attribute__ ((__fallthrough__)) # else # define FALLTHROUGH ((void) 0) # endif #endif static FTSENT *fts_alloc (FTS *, const char *, size_t) internal_function; static FTSENT *fts_build (FTS *, int) internal_function; static void fts_lfree (FTSENT *) internal_function; static void fts_load (FTS *, FTSENT *) internal_function; static size_t fts_maxarglen (char * const *) internal_function; static void fts_padjust (FTS *, FTSENT *) internal_function; static bool fts_palloc (FTS *, size_t) internal_function; static FTSENT *fts_sort (FTS *, FTSENT *, size_t) internal_function; static unsigned short int fts_stat (FTS *, FTSENT *, bool) internal_function; static int fts_safe_changedir (FTS *, FTSENT *, int, const char *) internal_function; #include "fts-cycle.c" #ifndef MAX # define MAX(a,b) ((a) > (b) ? (a) : (b)) #endif #ifndef SIZE_MAX # define SIZE_MAX ((size_t) -1) #endif #define ISDOT(a) (a[0] == '.' && (!a[1] || (a[1] == '.' && !a[2]))) #define STREQ(a, b) (strcmp (a, b) == 0) #define CLR(opt) (sp->fts_options &= ~(opt)) #define ISSET(opt) ((sp->fts_options & (opt)) != 0) #define SET(opt) (sp->fts_options |= (opt)) /* FIXME: FTS_NOCHDIR is now misnamed. Call it FTS_USE_FULL_RELATIVE_FILE_NAMES instead. */ #define FCHDIR(sp, fd) \ (!ISSET(FTS_NOCHDIR) && (ISSET(FTS_CWDFD) \ ? (cwd_advance_fd ((sp), (fd), true), 0) \ : fchdir (fd))) /* fts_build flags */ /* FIXME: make this an enum */ #define BCHILD 1 /* fts_children */ #define BNAMES 2 /* fts_children, names only */ #define BREAD 3 /* fts_read */ #if GNULIB_FTS_DEBUG # include # include bool fts_debug = false; # define Dprintf(x) do { if (fts_debug) printf x; } while (false) static void fd_ring_check (FTS const *); static void fd_ring_print (FTS const *, FILE *, char const *); #else # define Dprintf(x) # define fd_ring_check(x) # define fd_ring_print(a, b, c) #endif #define LEAVE_DIR(Fts, Ent, Tag) \ do \ { \ Dprintf ((" %s-leaving: %s\n", Tag, (Ent)->fts_path)); \ leave_dir (Fts, Ent); \ fd_ring_check (Fts); \ } \ while (false) static void fd_ring_clear (I_ring *fd_ring) { while ( ! i_ring_empty (fd_ring)) { int fd = i_ring_pop (fd_ring); if (0 <= fd) close (fd); } } /* Overload the fts_statp->st_size member (otherwise unused, when fts_info is FTS_NSOK) to indicate whether fts_read should stat this entry or not. */ static void fts_set_stat_required (FTSENT *p, bool required) { fts_assert (p->fts_info == FTS_NSOK); p->fts_statp->st_size = (required ? FTS_STAT_REQUIRED : FTS_NO_STAT_REQUIRED); } /* Virtual fchdir. Advance SP's working directory file descriptor, SP->fts_cwd_fd, to FD, and push the previous value onto the fd_ring. CHDIR_DOWN_ONE is true if FD corresponds to an entry in the directory open on sp->fts_cwd_fd; i.e., to move the working directory one level down. */ static void internal_function cwd_advance_fd (FTS *sp, int fd, bool chdir_down_one) { int old = sp->fts_cwd_fd; fts_assert (old != fd || old == AT_FDCWD); if (chdir_down_one) { /* Push "old" onto the ring. If the displaced file descriptor is non-negative, close it. */ int prev_fd_in_slot = i_ring_push (&sp->fts_fd_ring, old); fd_ring_print (sp, stderr, "post-push"); if (0 <= prev_fd_in_slot) close (prev_fd_in_slot); /* ignore any close failure */ } else if ( ! ISSET (FTS_NOCHDIR)) { if (0 <= old) close (old); /* ignore any close failure */ } sp->fts_cwd_fd = fd; } /* Restore the initial, pre-traversal, "working directory". In FTS_CWDFD mode, we merely call cwd_advance_fd, otherwise, we may actually change the working directory. Return 0 upon success. Upon failure, set errno and return nonzero. */ static int restore_initial_cwd (FTS *sp) { int fail = FCHDIR (sp, ISSET (FTS_CWDFD) ? AT_FDCWD : sp->fts_rfd); fd_ring_clear (&(sp->fts_fd_ring)); return fail; } /* Open the directory DIR if possible, and return a file descriptor. Return -1 and set errno on failure. It doesn't matter whether the file descriptor has read or write access. */ static int internal_function diropen (FTS const *sp, char const *dir) { int open_flags = (O_SEARCH | O_CLOEXEC | O_DIRECTORY | O_NOCTTY | O_NONBLOCK | (ISSET (FTS_PHYSICAL) ? O_NOFOLLOW : 0)); int fd = (ISSET (FTS_CWDFD) ? openat (sp->fts_cwd_fd, dir, open_flags) : open (dir, open_flags)); return fd; } FTS * fts_open (char * const *argv, register int options, int (*compar) (FTSENT const **, FTSENT const **)) { register FTS *sp; register FTSENT *p, *root; register size_t nitems; FTSENT *parent = NULL; FTSENT *tmp = NULL; /* pacify gcc */ bool defer_stat; /* Options check. */ if (options & ~FTS_OPTIONMASK) { __set_errno (EINVAL); return (NULL); } if ((options & FTS_NOCHDIR) && (options & FTS_CWDFD)) { __set_errno (EINVAL); return (NULL); } if ( ! (options & (FTS_LOGICAL | FTS_PHYSICAL))) { __set_errno (EINVAL); return (NULL); } /* Allocate/initialize the stream */ sp = calloc (1, sizeof *sp); if (sp == NULL) return (NULL); sp->fts_compar = compar; sp->fts_options = options; /* Logical walks turn on NOCHDIR; symbolic links are too hard. */ if (ISSET(FTS_LOGICAL)) { SET(FTS_NOCHDIR); CLR(FTS_CWDFD); } /* Initialize fts_cwd_fd. */ sp->fts_cwd_fd = AT_FDCWD; if ( ISSET(FTS_CWDFD) && ! HAVE_OPENAT_SUPPORT) { /* While it isn't technically necessary to open "." this early, doing it here saves us the trouble of ensuring later (where it'd be messier) that "." can in fact be opened. If not, revert to FTS_NOCHDIR mode. */ int fd = open (".", O_SEARCH | O_CLOEXEC); if (fd < 0) { /* Even if "." is unreadable, don't revert to FTS_NOCHDIR mode on systems like Linux+PROC_FS, where our openat emulation is good enough. Note: on a system that emulates openat via /proc, this technique can still fail, but only in extreme conditions, e.g., when the working directory cannot be saved (i.e. save_cwd fails) -- and that happens on Linux only when "." is unreadable and the CWD would be longer than PATH_MAX. FIXME: once Linux kernel openat support is well established, replace the above open call and this entire if/else block with the body of the if-block below. */ if ( openat_needs_fchdir ()) { SET(FTS_NOCHDIR); CLR(FTS_CWDFD); } } else { close (fd); } } /* * Start out with 1K of file name space, and enough, in any case, * to hold the user's file names. */ #ifndef MAXPATHLEN # define MAXPATHLEN 1024 #endif { size_t maxarglen = fts_maxarglen(argv); if (! fts_palloc(sp, MAX(maxarglen, MAXPATHLEN))) goto mem1; } /* Allocate/initialize root's parent. */ if (*argv != NULL) { if ((parent = fts_alloc(sp, "", 0)) == NULL) goto mem2; parent->fts_level = FTS_ROOTPARENTLEVEL; } /* The classic fts implementation would call fts_stat with a new entry for each iteration of the loop below. If the comparison function is not specified or if the FTS_DEFER_STAT option is in effect, don't stat any entry in this loop. This is an attempt to minimize the interval between the initial stat/lstat/fstatat and the point at which a directory argument is first opened. This matters for any directory command line argument that resides on a file system without genuine i-nodes. If you specify FTS_DEFER_STAT along with a comparison function, that function must not access any data via the fts_statp pointer. */ defer_stat = (compar == NULL || ISSET(FTS_DEFER_STAT)); /* Allocate/initialize root(s). */ for (root = NULL, nitems = 0; *argv != NULL; ++argv, ++nitems) { /* *Do* allow zero-length file names. */ size_t len = strlen(*argv); if ( ! (options & FTS_VERBATIM)) { /* If there are two or more trailing slashes, trim all but one, but don't change "//" to "/", and do map "///" to "/". */ char const *v = *argv; if (2 < len && v[len - 1] == '/') while (1 < len && v[len - 2] == '/') --len; } if ((p = fts_alloc(sp, *argv, len)) == NULL) goto mem3; p->fts_level = FTS_ROOTLEVEL; p->fts_parent = parent; p->fts_accpath = p->fts_name; /* Even when defer_stat is true, be sure to stat the first command line argument, since fts_read (at least with FTS_XDEV) requires that. */ if (defer_stat && root != NULL) { p->fts_info = FTS_NSOK; fts_set_stat_required(p, true); } else { p->fts_info = fts_stat(sp, p, false); } /* * If comparison routine supplied, traverse in sorted * order; otherwise traverse in the order specified. */ if (compar) { p->fts_link = root; root = p; } else { p->fts_link = NULL; if (root == NULL) tmp = root = p; else { tmp->fts_link = p; tmp = p; } } } if (compar && nitems > 1) root = fts_sort(sp, root, nitems); /* * Allocate a dummy pointer and make fts_read think that we've just * finished the node before the root(s); set p->fts_info to FTS_INIT * so that everything about the "current" node is ignored. */ if ((sp->fts_cur = fts_alloc(sp, "", 0)) == NULL) goto mem3; sp->fts_cur->fts_link = root; sp->fts_cur->fts_info = FTS_INIT; sp->fts_cur->fts_level = 1; if (! setup_dir (sp)) goto mem3; /* * If using chdir(2), grab a file descriptor pointing to dot to ensure * that we can get back here; this could be avoided for some file names, * but almost certainly not worth the effort. Slashes, symbolic links, * and ".." are all fairly nasty problems. Note, if we can't get the * descriptor we run anyway, just more slowly. */ if (!ISSET(FTS_NOCHDIR) && !ISSET(FTS_CWDFD) && (sp->fts_rfd = diropen (sp, ".")) < 0) SET(FTS_NOCHDIR); i_ring_init (&sp->fts_fd_ring, -1); return (sp); mem3: fts_lfree(root); free(parent); mem2: free(sp->fts_path); mem1: free(sp); return (NULL); } static void internal_function fts_load (FTS *sp, register FTSENT *p) { register size_t len; register char *cp; /* * Load the stream structure for the next traversal. Since we don't * actually enter the directory until after the preorder visit, set * the fts_accpath field specially so the chdir gets done to the right * place and the user can access the first node. From fts_open it's * known that the file name will fit. */ len = p->fts_pathlen = p->fts_namelen; memmove(sp->fts_path, p->fts_name, len + 1); if ((cp = strrchr(p->fts_name, '/')) && (cp != p->fts_name || cp[1])) { len = strlen(++cp); memmove(p->fts_name, cp, len + 1); p->fts_namelen = len; } p->fts_accpath = p->fts_path = sp->fts_path; } int fts_close (FTS *sp) { register FTSENT *freep, *p; int saved_errno = 0; /* * This still works if we haven't read anything -- the dummy structure * points to the root list, so we step through to the end of the root * list which has a valid parent pointer. */ if (sp->fts_cur) { for (p = sp->fts_cur; p->fts_level >= FTS_ROOTLEVEL;) { freep = p; p = p->fts_link != NULL ? p->fts_link : p->fts_parent; free(freep); } free(p); } /* Free up child linked list, sort array, file name buffer. */ if (sp->fts_child) fts_lfree(sp->fts_child); free(sp->fts_array); free(sp->fts_path); if (ISSET(FTS_CWDFD)) { if (0 <= sp->fts_cwd_fd) if (close (sp->fts_cwd_fd)) saved_errno = errno; } else if (!ISSET(FTS_NOCHDIR)) { /* Return to original directory, save errno if necessary. */ if (fchdir(sp->fts_rfd)) saved_errno = errno; /* If close fails, record errno only if saved_errno is zero, so that we report the probably-more-meaningful fchdir errno. */ if (close (sp->fts_rfd)) if (saved_errno == 0) saved_errno = errno; } fd_ring_clear (&sp->fts_fd_ring); if (sp->fts_leaf_optimization_works_ht) hash_free (sp->fts_leaf_optimization_works_ht); free_dir (sp); /* Free up the stream pointer. */ free(sp); /* Set errno and return. */ if (saved_errno) { __set_errno (saved_errno); return (-1); } return (0); } /* Minimum link count of a traditional Unix directory. When leaf optimization is OK and a directory's st_nlink == MIN_DIR_NLINK, then the directory has no subdirectories. */ enum { MIN_DIR_NLINK = 2 }; /* Whether leaf optimization is OK for a directory. */ enum leaf_optimization { /* st_nlink is not reliable for this directory's subdirectories. */ NO_LEAF_OPTIMIZATION, /* st_nlink == 2 means the directory lacks subdirectories. */ OK_LEAF_OPTIMIZATION }; #if (defined __linux__ || defined __ANDROID__) \ && HAVE_SYS_VFS_H && HAVE_FSTATFS && HAVE_STRUCT_STATFS_F_TYPE # include /* Linux-specific constants from coreutils' src/fs.h */ # define S_MAGIC_AFS 0x5346414F # define S_MAGIC_CIFS 0xFF534D42 # define S_MAGIC_NFS 0x6969 # define S_MAGIC_PROC 0x9FA0 # define S_MAGIC_TMPFS 0x1021994 # ifdef HAVE___FSWORD_T typedef __fsword_t fsword; # else typedef long int fsword; # endif /* Map a stat.st_dev number to a file system type number f_ftype. */ struct dev_type { dev_t st_dev; fsword f_type; }; /* Use a tiny initial size. If a traversal encounters more than a few devices, the cost of growing/rehashing this table will be rendered negligible by the number of inodes processed. */ enum { DEV_TYPE_HT_INITIAL_SIZE = 13 }; static size_t dev_type_hash (void const *x, size_t table_size) { struct dev_type const *ax = x; uintmax_t dev = ax->st_dev; return dev % table_size; } static bool dev_type_compare (void const *x, void const *y) { struct dev_type const *ax = x; struct dev_type const *ay = y; return ax->st_dev == ay->st_dev; } /* Return the file system type of P with file descriptor FD, or 0 if not known. If FD is negative, P's file descriptor is unavailable. Try to cache known values. */ static fsword filesystem_type (FTSENT const *p, int fd) { FTS *sp = p->fts_fts; Hash_table *h = sp->fts_leaf_optimization_works_ht; struct dev_type *ent; struct statfs fs_buf; /* If we're not in CWDFD mode, don't bother with this optimization, since the caller is not serious about performance. */ if (!ISSET (FTS_CWDFD)) return 0; if (! h) h = sp->fts_leaf_optimization_works_ht = hash_initialize (DEV_TYPE_HT_INITIAL_SIZE, NULL, dev_type_hash, dev_type_compare, free); if (h) { struct dev_type tmp; tmp.st_dev = p->fts_statp->st_dev; ent = hash_lookup (h, &tmp); if (ent) return ent->f_type; } /* Look-up failed. Query directly and cache the result. */ if (fd < 0 || fstatfs (fd, &fs_buf) != 0) return 0; if (h) { struct dev_type *t2 = malloc (sizeof *t2); if (t2) { t2->st_dev = p->fts_statp->st_dev; t2->f_type = fs_buf.f_type; ent = hash_insert (h, t2); if (ent) fts_assert (ent == t2); else free (t2); } } return fs_buf.f_type; } /* Return true if sorting dirents on inode numbers is known to improve traversal performance for the directory P with descriptor DIR_FD. Return false otherwise. When in doubt, return true. DIR_FD is negative if unavailable. */ static bool dirent_inode_sort_may_be_useful (FTSENT const *p, int dir_fd) { /* Skip the sort only if we can determine efficiently that skipping it is the right thing to do. The cost of performing an unnecessary sort is negligible, while the cost of *not* performing it can be O(N^2) with a very large constant. */ switch (filesystem_type (p, dir_fd)) { case S_MAGIC_CIFS: case S_MAGIC_NFS: case S_MAGIC_TMPFS: /* On a file system of any of these types, sorting is unnecessary, and hence wasteful. */ return false; default: return true; } } /* Given an FTS entry P for a directory with descriptor DIR_FD, return whether it is valid to apply leaf optimization. The optimization is valid if a directory's st_nlink value equal to MIN_DIR_NLINK means the directory has no subdirectories. DIR_FD is negative if unavailable. */ static enum leaf_optimization leaf_optimization (FTSENT const *p, int dir_fd) { switch (filesystem_type (p, dir_fd)) { case 0: /* Leaf optimization is unsafe if the file system type is unknown. */ FALLTHROUGH; case S_MAGIC_AFS: /* Although AFS mount points are not counted in st_nlink, they act like directories. See . */ FALLTHROUGH; case S_MAGIC_CIFS: /* Leaf optimization causes 'find' to abort. See . */ FALLTHROUGH; case S_MAGIC_NFS: /* NFS provides usable dirent.d_type but not necessarily for all entries of large directories, so as per NFS should return true. However st_nlink values are not accurate on all implementations as per . */ FALLTHROUGH; case S_MAGIC_PROC: /* Per /proc may have bogus stat.st_nlink values. */ return NO_LEAF_OPTIMIZATION; default: return OK_LEAF_OPTIMIZATION; } } #else static bool dirent_inode_sort_may_be_useful (_GL_UNUSED FTSENT const *p, _GL_UNUSED int dir_fd) { return true; } static enum leaf_optimization leaf_optimization (_GL_UNUSED FTSENT const *p, _GL_UNUSED int dir_fd) { return NO_LEAF_OPTIMIZATION; } #endif /* * Special case of "/" at the end of the file name so that slashes aren't * appended which would cause file names to be written as "....//foo". */ #define NAPPEND(p) \ (p->fts_path[p->fts_pathlen - 1] == '/' \ ? p->fts_pathlen - 1 : p->fts_pathlen) FTSENT * fts_read (register FTS *sp) { register FTSENT *p, *tmp; register unsigned short int instr; register char *t; /* If finished or unrecoverable error, return NULL. */ if (sp->fts_cur == NULL || ISSET(FTS_STOP)) return (NULL); /* Set current node pointer. */ p = sp->fts_cur; /* Save and zero out user instructions. */ instr = p->fts_instr; p->fts_instr = FTS_NOINSTR; /* Any type of file may be re-visited; re-stat and re-turn. */ if (instr == FTS_AGAIN) { p->fts_info = fts_stat(sp, p, false); return (p); } Dprintf (("fts_read: p=%s\n", p->fts_info == FTS_INIT ? "" : p->fts_path)); /* * Following a symlink -- SLNONE test allows application to see * SLNONE and recover. If indirecting through a symlink, have * keep a pointer to current location. If unable to get that * pointer, follow fails. */ if (instr == FTS_FOLLOW && (p->fts_info == FTS_SL || p->fts_info == FTS_SLNONE)) { p->fts_info = fts_stat(sp, p, true); if (p->fts_info == FTS_D && !ISSET(FTS_NOCHDIR)) { if ((p->fts_symfd = diropen (sp, ".")) < 0) { p->fts_errno = errno; p->fts_info = FTS_ERR; } else p->fts_flags |= FTS_SYMFOLLOW; } goto check_for_dir; } /* Directory in pre-order. */ if (p->fts_info == FTS_D) { /* If skipped or crossed mount point, do post-order visit. */ if (instr == FTS_SKIP || (ISSET(FTS_XDEV) && p->fts_statp->st_dev != sp->fts_dev)) { if (p->fts_flags & FTS_SYMFOLLOW) (void)close(p->fts_symfd); if (sp->fts_child) { fts_lfree(sp->fts_child); sp->fts_child = NULL; } p->fts_info = FTS_DP; LEAVE_DIR (sp, p, "1"); return (p); } /* Rebuild if only read the names and now traversing. */ if (sp->fts_child != NULL && ISSET(FTS_NAMEONLY)) { CLR(FTS_NAMEONLY); fts_lfree(sp->fts_child); sp->fts_child = NULL; } /* * Cd to the subdirectory. * * If have already read and now fail to chdir, whack the list * to make the names come out right, and set the parent errno * so the application will eventually get an error condition. * Set the FTS_DONTCHDIR flag so that when we logically change * directories back to the parent we don't do a chdir. * * If haven't read do so. If the read fails, fts_build sets * FTS_STOP or the fts_info field of the node. */ if (sp->fts_child != NULL) { if (fts_safe_changedir(sp, p, -1, p->fts_accpath)) { p->fts_errno = errno; p->fts_flags |= FTS_DONTCHDIR; for (p = sp->fts_child; p != NULL; p = p->fts_link) p->fts_accpath = p->fts_parent->fts_accpath; } } else if ((sp->fts_child = fts_build(sp, BREAD)) == NULL) { if (ISSET(FTS_STOP)) return (NULL); /* If fts_build's call to fts_safe_changedir failed because it was not able to fchdir into a subdirectory, tell the caller. */ if (p->fts_errno && p->fts_info != FTS_DNR) p->fts_info = FTS_ERR; LEAVE_DIR (sp, p, "2"); return (p); } p = sp->fts_child; sp->fts_child = NULL; goto name; } /* Move to the next node on this level. */ next: tmp = p; /* If we have so many directory entries that we're reading them in batches, and we've reached the end of the current batch, read in a new batch. */ if (p->fts_link == NULL && p->fts_parent->fts_dirp) { p = tmp->fts_parent; sp->fts_cur = p; sp->fts_path[p->fts_pathlen] = '\0'; if ((p = fts_build (sp, BREAD)) == NULL) { if (ISSET(FTS_STOP)) return NULL; goto cd_dot_dot; } free(tmp); goto name; } if ((p = p->fts_link) != NULL) { sp->fts_cur = p; free(tmp); /* * If reached the top, return to the original directory (or * the root of the tree), and load the file names for the next * root. */ if (p->fts_level == FTS_ROOTLEVEL) { if (restore_initial_cwd(sp)) { SET(FTS_STOP); return (NULL); } free_dir(sp); fts_load(sp, p); if (! setup_dir(sp)) { free_dir(sp); return (NULL); } goto check_for_dir; } /* * User may have called fts_set on the node. If skipped, * ignore. If followed, get a file descriptor so we can * get back if necessary. */ if (p->fts_instr == FTS_SKIP) goto next; if (p->fts_instr == FTS_FOLLOW) { p->fts_info = fts_stat(sp, p, true); if (p->fts_info == FTS_D && !ISSET(FTS_NOCHDIR)) { if ((p->fts_symfd = diropen (sp, ".")) < 0) { p->fts_errno = errno; p->fts_info = FTS_ERR; } else p->fts_flags |= FTS_SYMFOLLOW; } p->fts_instr = FTS_NOINSTR; } name: t = sp->fts_path + NAPPEND(p->fts_parent); *t++ = '/'; memmove(t, p->fts_name, p->fts_namelen + 1); check_for_dir: sp->fts_cur = p; if (p->fts_info == FTS_NSOK) { if (p->fts_statp->st_size == FTS_STAT_REQUIRED) p->fts_info = fts_stat(sp, p, false); else fts_assert (p->fts_statp->st_size == FTS_NO_STAT_REQUIRED); } if (p->fts_info == FTS_D) { /* Now that P->fts_statp is guaranteed to be valid, if this is a command-line directory, record its device number, to be used for FTS_XDEV. */ if (p->fts_level == FTS_ROOTLEVEL) sp->fts_dev = p->fts_statp->st_dev; Dprintf ((" entering: %s\n", p->fts_path)); if (! enter_dir (sp, p)) return NULL; } return p; } cd_dot_dot: /* Move up to the parent node. */ p = tmp->fts_parent; sp->fts_cur = p; free(tmp); if (p->fts_level == FTS_ROOTPARENTLEVEL) { /* * Done; free everything up and set errno to 0 so the user * can distinguish between error and EOF. */ free(p); __set_errno (0); return (sp->fts_cur = NULL); } fts_assert (p->fts_info != FTS_NSOK); /* NUL terminate the file name. */ sp->fts_path[p->fts_pathlen] = '\0'; /* * Return to the parent directory. If at a root node, restore * the initial working directory. If we came through a symlink, * go back through the file descriptor. Otherwise, move up * one level, via "..". */ if (p->fts_level == FTS_ROOTLEVEL) { if (restore_initial_cwd(sp)) { p->fts_errno = errno; SET(FTS_STOP); } } else if (p->fts_flags & FTS_SYMFOLLOW) { if (FCHDIR(sp, p->fts_symfd)) { p->fts_errno = errno; SET(FTS_STOP); } (void)close(p->fts_symfd); } else if (!(p->fts_flags & FTS_DONTCHDIR) && fts_safe_changedir(sp, p->fts_parent, -1, "..")) { p->fts_errno = errno; SET(FTS_STOP); } /* If the directory causes a cycle, preserve the FTS_DC flag and keep the corresponding dev/ino pair in the hash table. It is going to be removed when leaving the original directory. */ if (p->fts_info != FTS_DC) { p->fts_info = p->fts_errno ? FTS_ERR : FTS_DP; if (p->fts_errno == 0) LEAVE_DIR (sp, p, "3"); } return ISSET(FTS_STOP) ? NULL : p; } /* * Fts_set takes the stream as an argument although it's not used in this * implementation; it would be necessary if anyone wanted to add global * semantics to fts using fts_set. An error return is allowed for similar * reasons. */ /* ARGSUSED */ int fts_set(_GL_UNUSED FTS *sp, FTSENT *p, int instr) { if (instr != 0 && instr != FTS_AGAIN && instr != FTS_FOLLOW && instr != FTS_NOINSTR && instr != FTS_SKIP) { __set_errno (EINVAL); return (1); } p->fts_instr = instr; return (0); } FTSENT * fts_children (register FTS *sp, int instr) { register FTSENT *p; int fd; if (instr != 0 && instr != FTS_NAMEONLY) { __set_errno (EINVAL); return (NULL); } /* Set current node pointer. */ p = sp->fts_cur; /* * Errno set to 0 so user can distinguish empty directory from * an error. */ __set_errno (0); /* Fatal errors stop here. */ if (ISSET(FTS_STOP)) return (NULL); /* Return logical hierarchy of user's arguments. */ if (p->fts_info == FTS_INIT) return (p->fts_link); /* * If not a directory being visited in pre-order, stop here. Could * allow FTS_DNR, assuming the user has fixed the problem, but the * same effect is available with FTS_AGAIN. */ if (p->fts_info != FTS_D /* && p->fts_info != FTS_DNR */) return (NULL); /* Free up any previous child list. */ if (sp->fts_child != NULL) fts_lfree(sp->fts_child); if (instr == FTS_NAMEONLY) { SET(FTS_NAMEONLY); instr = BNAMES; } else instr = BCHILD; /* * If using chdir on a relative file name and called BEFORE fts_read * does its chdir to the root of a traversal, we can lose -- we need to * chdir into the subdirectory, and we don't know where the current * directory is, so we can't get back so that the upcoming chdir by * fts_read will work. */ if (p->fts_level != FTS_ROOTLEVEL || p->fts_accpath[0] == '/' || ISSET(FTS_NOCHDIR)) return (sp->fts_child = fts_build(sp, instr)); if ((fd = diropen (sp, ".")) < 0) return (sp->fts_child = NULL); sp->fts_child = fts_build(sp, instr); if (ISSET(FTS_CWDFD)) { cwd_advance_fd (sp, fd, true); } else { if (fchdir(fd)) { int saved_errno = errno; close (fd); __set_errno (saved_errno); return NULL; } close (fd); } return (sp->fts_child); } /* A comparison function to sort on increasing inode number. For some file system types, sorting either way makes a huge performance difference for a directory with very many entries, but sorting on increasing values is slightly better than sorting on decreasing values. The difference is in the 5% range. */ static int fts_compare_ino (struct _ftsent const **a, struct _ftsent const **b) { return _GL_CMP (a[0]->fts_statp->st_ino, b[0]->fts_statp->st_ino); } /* Map the dirent.d_type value, DTYPE, to the corresponding stat.st_mode S_IF* bit and set ST.st_mode, thus clearing all other bits in that field. */ static void set_stat_type (struct stat *st, unsigned int dtype) { mode_t type; switch (dtype) { case DT_BLK: type = S_IFBLK; break; case DT_CHR: type = S_IFCHR; break; case DT_DIR: type = S_IFDIR; break; case DT_FIFO: type = S_IFIFO; break; case DT_LNK: type = S_IFLNK; break; case DT_REG: type = S_IFREG; break; case DT_SOCK: type = S_IFSOCK; break; default: type = 0; } st->st_mode = type; } #define closedir_and_clear(dirp) \ do \ { \ closedir (dirp); \ dirp = NULL; \ } \ while (0) #define fts_opendir(file, Pdir_fd) \ opendirat((! ISSET(FTS_NOCHDIR) && ISSET(FTS_CWDFD) \ ? sp->fts_cwd_fd : AT_FDCWD), \ file, \ (((ISSET(FTS_PHYSICAL) \ && ! (ISSET(FTS_COMFOLLOW) \ && cur->fts_level == FTS_ROOTLEVEL)) \ ? O_NOFOLLOW : 0)), \ Pdir_fd) /* * This is the tricky part -- do not casually change *anything* in here. The * idea is to build the linked list of entries that are used by fts_children * and fts_read. There are lots of special cases. * * The real slowdown in walking the tree is the stat calls. If FTS_NOSTAT is * set and it's a physical walk (so that symbolic links can't be directories), * we can do things quickly. First, if it's a 4.4BSD file system, the type * of the file is in the directory entry. Otherwise, we assume that the number * of subdirectories in a node is equal to the number of links to the parent. * The former skips all stat calls. The latter skips stat calls in any leaf * directories and for any files after the subdirectories in the directory have * been found, cutting the stat calls by about 2/3. */ static FTSENT * internal_function fts_build (register FTS *sp, int type) { register FTSENT *p, *head; register size_t nitems; FTSENT *tail; int saved_errno; bool descend; bool doadjust; ptrdiff_t level; size_t len, maxlen, new_len; char *cp; int dir_fd; FTSENT *cur = sp->fts_cur; bool continue_readdir = !!cur->fts_dirp; bool sort_by_inode = false; size_t max_entries; /* When cur->fts_dirp is non-NULL, that means we should continue calling readdir on that existing DIR* pointer rather than opening a new one. */ if (continue_readdir) { DIR *dp = cur->fts_dirp; dir_fd = dirfd (dp); if (dir_fd < 0) { int dirfd_errno = errno; closedir_and_clear (cur->fts_dirp); if (type == BREAD) { cur->fts_info = FTS_DNR; cur->fts_errno = dirfd_errno; } return NULL; } } else { /* Open the directory for reading. If this fails, we're done. If being called from fts_read, set the fts_info field. */ if ((cur->fts_dirp = fts_opendir(cur->fts_accpath, &dir_fd)) == NULL) { if (type == BREAD) { cur->fts_info = FTS_DNR; cur->fts_errno = errno; } return NULL; } /* Rather than calling fts_stat for each and every entry encountered in the readdir loop (below), stat each directory only right after opening it. */ bool stat_optimization = cur->fts_info == FTS_NSOK; if (stat_optimization /* Also read the stat info again after opening a directory to reveal eventual changes caused by a submount triggered by the traversal. But do it only for utilities which use FTS_TIGHT_CYCLE_CHECK. Therefore, only find and du benefit/suffer from this feature for now. */ || ISSET (FTS_TIGHT_CYCLE_CHECK)) { if (!stat_optimization) LEAVE_DIR (sp, cur, "4"); if (fstat (dir_fd, cur->fts_statp) != 0) { int fstat_errno = errno; closedir_and_clear (cur->fts_dirp); if (type == BREAD) { cur->fts_errno = fstat_errno; cur->fts_info = FTS_NS; } __set_errno (fstat_errno); return NULL; } if (stat_optimization) cur->fts_info = FTS_D; else if (! enter_dir (sp, cur)) { int err = errno; closedir_and_clear (cur->fts_dirp); __set_errno (err); return NULL; } } } /* Maximum number of readdir entries to read at one time. This limitation is to avoid reading millions of entries into memory at once. When an fts_compar function is specified, we have no choice: we must read all entries into memory before calling that function. But when no such function is specified, we can read entries in batches that are large enough to help us with inode- sorting, yet not so large that we risk exhausting memory. */ max_entries = sp->fts_compar ? SIZE_MAX : FTS_MAX_READDIR_ENTRIES; /* * If we're going to need to stat anything or we want to descend * and stay in the directory, chdir. If this fails we keep going, * but set a flag so we don't chdir after the post-order visit. * We won't be able to stat anything, but we can still return the * names themselves. Note, that since fts_read won't be able to * chdir into the directory, it will have to return different file * names than before, i.e. "a/b" instead of "b". Since the node * has already been visited in pre-order, have to wait until the * post-order visit to return the error. There is a special case * here, if there was nothing to stat then it's not an error to * not be able to stat. This is all fairly nasty. If a program * needed sorted entries or stat information, they had better be * checking FTS_NS on the returned nodes. */ if (continue_readdir) { /* When resuming a short readdir run, we already have the required dirp and dir_fd. */ descend = true; } else { /* Try to descend unless it is a names-only fts_children, or the directory is known to lack subdirectories. */ descend = (type != BNAMES && ! (ISSET (FTS_NOSTAT) && ISSET (FTS_PHYSICAL) && ! ISSET (FTS_SEEDOT) && cur->fts_statp->st_nlink == MIN_DIR_NLINK && (leaf_optimization (cur, dir_fd) != NO_LEAF_OPTIMIZATION))); if (descend || type == BREAD) { if (ISSET(FTS_CWDFD)) dir_fd = fcntl (dir_fd, F_DUPFD_CLOEXEC, STDERR_FILENO + 1); if (dir_fd < 0 || fts_safe_changedir(sp, cur, dir_fd, NULL)) { if (descend && type == BREAD) cur->fts_errno = errno; cur->fts_flags |= FTS_DONTCHDIR; descend = false; closedir_and_clear(cur->fts_dirp); if (ISSET(FTS_CWDFD) && 0 <= dir_fd) close (dir_fd); cur->fts_dirp = NULL; } else descend = true; } } /* * Figure out the max file name length that can be stored in the * current buffer -- the inner loop allocates more space as necessary. * We really wouldn't have to do the maxlen calculations here, we * could do them in fts_read before returning the name, but it's a * lot easier here since the length is part of the dirent structure. * * If not changing directories set a pointer so that can just append * each new component into the file name. */ len = NAPPEND(cur); if (ISSET(FTS_NOCHDIR)) { cp = sp->fts_path + len; *cp++ = '/'; } else { /* GCC, you're too verbose. */ cp = NULL; } len++; maxlen = sp->fts_pathlen - len; level = cur->fts_level + 1; /* Read the directory, attaching each entry to the "link" pointer. */ doadjust = false; head = NULL; tail = NULL; nitems = 0; while (cur->fts_dirp) { size_t d_namelen; __set_errno (0); struct dirent *dp = readdir(cur->fts_dirp); if (dp == NULL) { if (errno) { cur->fts_errno = errno; /* If we've not read any items yet, treat the error as if we can't access the dir. */ cur->fts_info = (continue_readdir || nitems) ? FTS_ERR : FTS_DNR; } closedir_and_clear(cur->fts_dirp); break; } if (!ISSET(FTS_SEEDOT) && ISDOT(dp->d_name)) continue; d_namelen = _D_EXACT_NAMLEN (dp); p = fts_alloc (sp, dp->d_name, d_namelen); if (!p) goto mem1; if (d_namelen >= maxlen) { /* include space for NUL */ uintptr_t oldaddr = (uintptr_t) sp->fts_path; if (! fts_palloc(sp, d_namelen + len + 1)) { /* * No more memory. Save * errno, free up the current structure and the * structures already allocated. */ mem1: saved_errno = errno; free(p); fts_lfree(head); closedir_and_clear(cur->fts_dirp); cur->fts_info = FTS_ERR; SET(FTS_STOP); __set_errno (saved_errno); return (NULL); } /* Did realloc() change the pointer? */ if (oldaddr != (uintptr_t) sp->fts_path) { doadjust = true; if (ISSET(FTS_NOCHDIR)) cp = sp->fts_path + len; } maxlen = sp->fts_pathlen - len; } new_len = len + d_namelen; if (new_len < len) { /* * In the unlikely event that we would end up * with a file name longer than SIZE_MAX, free up * the current structure and the structures already * allocated, then error out with ENAMETOOLONG. */ free(p); fts_lfree(head); closedir_and_clear(cur->fts_dirp); cur->fts_info = FTS_ERR; SET(FTS_STOP); __set_errno (ENAMETOOLONG); return (NULL); } p->fts_level = level; p->fts_parent = sp->fts_cur; p->fts_pathlen = new_len; /* Store dirent.d_ino, in case we need to sort entries before processing them. */ p->fts_statp->st_ino = D_INO (dp); /* Build a file name for fts_stat to stat. */ if (ISSET(FTS_NOCHDIR)) { p->fts_accpath = p->fts_path; memmove(cp, p->fts_name, p->fts_namelen + 1); } else p->fts_accpath = p->fts_name; if (sp->fts_compar == NULL || ISSET(FTS_DEFER_STAT)) { /* Record what fts_read will have to do with this entry. In many cases, it will simply fts_stat it, but we can take advantage of any d_type information to optimize away the unnecessary stat calls. I.e., if FTS_NOSTAT is in effect and we're not following symlinks (FTS_PHYSICAL) and d_type indicates this is *not* a directory, then we won't have to stat it at all. If it *is* a directory, then (currently) we stat it regardless, in order to get device and inode numbers. Some day we might optimize that away, too, for directories where d_ino is known to be valid. */ bool skip_stat = (ISSET(FTS_NOSTAT) && DT_IS_KNOWN(dp) && ! DT_MUST_BE(dp, DT_DIR) && (ISSET(FTS_PHYSICAL) || ! DT_MUST_BE(dp, DT_LNK))); p->fts_info = FTS_NSOK; /* Propagate dirent.d_type information back to caller, when possible. */ set_stat_type (p->fts_statp, D_TYPE (dp)); fts_set_stat_required(p, !skip_stat); } else { p->fts_info = fts_stat(sp, p, false); } /* We walk in directory order so "ls -f" doesn't get upset. */ p->fts_link = NULL; if (head == NULL) head = tail = p; else { tail->fts_link = p; tail = p; } /* If there are many entries, no sorting function has been specified, and this file system is of a type that may be slow with a large number of entries, arrange to sort the directory entries on increasing inode numbers. The NITEMS comparison uses ==, not >, because the test needs to be tried at most once once, and NITEMS will exceed the threshold after it is incremented below. */ if (nitems == _FTS_INODE_SORT_DIR_ENTRIES_THRESHOLD && !sp->fts_compar) sort_by_inode = dirent_inode_sort_may_be_useful (cur, dir_fd); ++nitems; if (max_entries <= nitems) { /* When there are too many dir entries, leave fts_dirp open, so that a subsequent fts_read can take up where we leave off. */ break; } } /* * If realloc() changed the address of the file name, adjust the * addresses for the rest of the tree and the dir list. */ if (doadjust) fts_padjust(sp, head); /* * If not changing directories, reset the file name back to original * state. */ if (ISSET(FTS_NOCHDIR)) { if (len == sp->fts_pathlen || nitems == 0) --cp; *cp = '\0'; } /* * If descended after called from fts_children or after called from * fts_read and nothing found, get back. At the root level we use * the saved fd; if one of fts_open()'s arguments is a relative name * to an empty directory, we wind up here with no other way back. If * can't get back, we're done. */ if (!continue_readdir && descend && (type == BCHILD || !nitems) && (cur->fts_level == FTS_ROOTLEVEL ? restore_initial_cwd(sp) : fts_safe_changedir(sp, cur->fts_parent, -1, ".."))) { cur->fts_info = FTS_ERR; SET(FTS_STOP); fts_lfree(head); return (NULL); } /* If didn't find anything, return NULL. */ if (!nitems) { if (type == BREAD && cur->fts_info != FTS_DNR && cur->fts_info != FTS_ERR) cur->fts_info = FTS_DP; fts_lfree(head); return (NULL); } if (sort_by_inode) { sp->fts_compar = fts_compare_ino; head = fts_sort (sp, head, nitems); sp->fts_compar = NULL; } /* Sort the entries. */ if (sp->fts_compar && nitems > 1) head = fts_sort(sp, head, nitems); return (head); } #if GNULIB_FTS_DEBUG struct devino { intmax_t dev, ino; }; #define PRINT_DEVINO "(%jd,%jd)" static struct devino getdevino (int fd) { struct stat st; return (fd == AT_FDCWD ? (struct devino) { -1, 0 } : fstat (fd, &st) == 0 ? (struct devino) { st.st_dev, st.st_ino } : (struct devino) { -1, errno }); } /* Walk ->fts_parent links starting at E_CURR, until the root of the current hierarchy. There should be a directory with dev/inode matching those of AD. If not, print a lot of diagnostics. */ static void find_matching_ancestor (FTSENT const *e_curr, struct Active_dir const *ad) { FTSENT const *ent; for (ent = e_curr; ent->fts_level >= FTS_ROOTLEVEL; ent = ent->fts_parent) { if (ad->ino == ent->fts_statp->st_ino && ad->dev == ent->fts_statp->st_dev) return; } printf ("ERROR: tree dir, %s, not active\n", ad->fts_ent->fts_accpath); printf ("active dirs:\n"); for (ent = e_curr; ent->fts_level >= FTS_ROOTLEVEL; ent = ent->fts_parent) printf (" %s(%"PRIuMAX"/%"PRIuMAX") to %s(%"PRIuMAX"/%"PRIuMAX")...\n", ad->fts_ent->fts_accpath, (uintmax_t) ad->dev, (uintmax_t) ad->ino, ent->fts_accpath, (uintmax_t) ent->fts_statp->st_dev, (uintmax_t) ent->fts_statp->st_ino); } void fts_cross_check (FTS const *sp) { FTSENT const *ent = sp->fts_cur; FTSENT const *t; if ( ! ISSET (FTS_TIGHT_CYCLE_CHECK)) return; Dprintf (("fts-cross-check cur=%s\n", ent->fts_path)); /* Make sure every parent dir is in the tree. */ for (t = ent->fts_parent; t->fts_level >= FTS_ROOTLEVEL; t = t->fts_parent) { struct Active_dir ad; ad.ino = t->fts_statp->st_ino; ad.dev = t->fts_statp->st_dev; if ( ! hash_lookup (sp->fts_cycle.ht, &ad)) printf ("ERROR: active dir, %s, not in tree\n", t->fts_path); } /* Make sure every dir in the tree is an active dir. But ENT is not necessarily a directory. If so, just skip this part. */ if (ent->fts_parent->fts_level >= FTS_ROOTLEVEL && (ent->fts_info == FTS_DP || ent->fts_info == FTS_D)) { struct Active_dir *ad; for (ad = hash_get_first (sp->fts_cycle.ht); ad != NULL; ad = hash_get_next (sp->fts_cycle.ht, ad)) { find_matching_ancestor (ent, ad); } } } static bool same_fd (int fd1, int fd2) { struct stat sb1, sb2; return (fstat (fd1, &sb1) == 0 && fstat (fd2, &sb2) == 0 && psame_inode (&sb1, &sb2)); } static void fd_ring_print (FTS const *sp, FILE *stream, char const *msg) { if (!fts_debug) return; I_ring const *fd_ring = &sp->fts_fd_ring; unsigned int i = fd_ring->ir_front; struct devino cwd = getdevino (sp->fts_cwd_fd); fprintf (stream, "=== %s ========== "PRINT_DEVINO"\n", msg, cwd.dev, cwd.ino); if (i_ring_empty (fd_ring)) return; while (true) { int fd = fd_ring->ir_data[i]; if (fd < 0) fprintf (stream, "%u: %d:\n", i, fd); else { struct devino wd = getdevino (fd); fprintf (stream, "%u: %d: "PRINT_DEVINO"\n", i, fd, wd.dev, wd.ino); } if (i == fd_ring->ir_back) break; i = (i + I_RING_SIZE - 1) % I_RING_SIZE; } } /* Ensure that each file descriptor on the fd_ring matches a parent, grandparent, etc. of the current working directory. */ static void fd_ring_check (FTS const *sp) { if (!fts_debug) return; /* Make a writable copy. */ I_ring fd_w = sp->fts_fd_ring; int cwd_fd = sp->fts_cwd_fd; cwd_fd = fcntl (cwd_fd, F_DUPFD_CLOEXEC, STDERR_FILENO + 1); struct devino dot = getdevino (cwd_fd); fprintf (stderr, "===== check ===== cwd: "PRINT_DEVINO"\n", dot.dev, dot.ino); while ( ! i_ring_empty (&fd_w)) { int fd = i_ring_pop (&fd_w); if (0 <= fd) { int open_flags = O_SEARCH | O_CLOEXEC; int parent_fd = openat (cwd_fd, "..", open_flags); if (parent_fd < 0) { // Warn? break; } if (!same_fd (fd, parent_fd)) { struct devino cwd = getdevino (fd); fprintf (stderr, "ring : "PRINT_DEVINO"\n", cwd.dev, cwd.ino); struct devino c2 = getdevino (parent_fd); fprintf (stderr, "parent: "PRINT_DEVINO"\n", c2.dev, c2.ino); fts_assert (0); } close (cwd_fd); cwd_fd = parent_fd; } } close (cwd_fd); } #endif static unsigned short int internal_function fts_stat(FTS *sp, register FTSENT *p, bool follow) { struct stat *sbp = p->fts_statp; if (ISSET (FTS_LOGICAL) || (ISSET (FTS_COMFOLLOW) && p->fts_level == FTS_ROOTLEVEL)) follow = true; /* * If doing a logical walk, or application requested FTS_FOLLOW, do * a stat(2). If that fails, check for a nonexistent symlink. If * fail, set the errno from the stat call. */ int flags = follow ? 0 : AT_SYMLINK_NOFOLLOW; if (fstatat (sp->fts_cwd_fd, p->fts_accpath, sbp, flags) < 0) { if (follow && errno == ENOENT && 0 <= fstatat (sp->fts_cwd_fd, p->fts_accpath, sbp, AT_SYMLINK_NOFOLLOW)) { __set_errno (0); return FTS_SLNONE; } p->fts_errno = errno; memset (sbp, 0, sizeof *sbp); return FTS_NS; } if (S_ISDIR(sbp->st_mode)) { if (ISDOT(p->fts_name)) { /* Command-line "." and ".." are real directories. */ return (p->fts_level == FTS_ROOTLEVEL ? FTS_D : FTS_DOT); } return (FTS_D); } if (S_ISLNK(sbp->st_mode)) return (FTS_SL); if (S_ISREG(sbp->st_mode)) return (FTS_F); return (FTS_DEFAULT); } static int fts_compar (void const *a, void const *b) { /* Convert A and B to the correct types, to pacify the compiler, and for portability to bizarre hosts where "void const *" and "FTSENT const **" differ in runtime representation. The comparison function cannot modify *a and *b, but there is no compile-time check for this. */ FTSENT const **pa = (FTSENT const **) a; FTSENT const **pb = (FTSENT const **) b; return pa[0]->fts_fts->fts_compar (pa, pb); } static FTSENT * internal_function fts_sort (FTS *sp, FTSENT *head, register size_t nitems) { register FTSENT **ap, *p; /* On most modern hosts, void * and FTSENT ** have the same run-time representation, and one can convert sp->fts_compar to the type qsort expects without problem. Use the heuristic that this is OK if the two pointer types are the same size, and if converting FTSENT ** to long int is the same as converting FTSENT ** to void * and then to long int. This heuristic isn't valid in general but we don't know of any counterexamples. */ FTSENT *dummy; int (*compare) (void const *, void const *) = ((sizeof &dummy == sizeof (void *) && (long int) &dummy == (long int) (void *) &dummy) ? (int (*) (void const *, void const *)) sp->fts_compar : fts_compar); /* * Construct an array of pointers to the structures and call qsort(3). * Reassemble the array in the order returned by qsort. If unable to * sort for memory reasons, return the directory entries in their * current order. Allocate enough space for the current needs plus * 40 so don't realloc one entry at a time. */ if (nitems > sp->fts_nitems) { FTSENT **a; sp->fts_nitems = nitems + 40; if (SIZE_MAX / sizeof *a < sp->fts_nitems || ! (a = realloc (sp->fts_array, sp->fts_nitems * sizeof *a))) { free(sp->fts_array); sp->fts_array = NULL; sp->fts_nitems = 0; return (head); } sp->fts_array = a; } for (ap = sp->fts_array, p = head; p; p = p->fts_link) *ap++ = p; qsort((void *)sp->fts_array, nitems, sizeof(FTSENT *), compare); for (head = *(ap = sp->fts_array); --nitems; ++ap) ap[0]->fts_link = ap[1]; ap[0]->fts_link = NULL; return (head); } static FTSENT * internal_function fts_alloc (FTS *sp, const char *name, register size_t namelen) { register FTSENT *p; size_t len; /* * The file name is a variable length array. Allocate the FTSENT * structure and the file name in one chunk. */ len = FLEXSIZEOF(FTSENT, fts_name, namelen + 1); if ((p = malloc(len)) == NULL) return (NULL); /* Copy the name and guarantee NUL termination. */ memcpy(p->fts_name, name, namelen); p->fts_name[namelen] = '\0'; p->fts_namelen = namelen; p->fts_fts = sp; p->fts_path = sp->fts_path; p->fts_errno = 0; p->fts_dirp = NULL; p->fts_flags = 0; p->fts_instr = FTS_NOINSTR; p->fts_number = 0; p->fts_pointer = NULL; return (p); } static void internal_function fts_lfree (register FTSENT *head) { register FTSENT *p; int err = errno; /* Free a linked list of structures. */ while ((p = head)) { head = head->fts_link; if (p->fts_dirp) closedir (p->fts_dirp); free(p); } __set_errno (err); } /* * Allow essentially unlimited file name lengths; find, rm, ls should * all work on any tree. Most systems will allow creation of file * names much longer than MAXPATHLEN, even though the kernel won't * resolve them. Add the size (not just what's needed) plus 256 bytes * so don't realloc the file name 2 bytes at a time. */ static bool internal_function fts_palloc (FTS *sp, size_t more) { char *p; size_t new_len = sp->fts_pathlen + more + 256; /* * See if fts_pathlen would overflow. */ if (new_len < sp->fts_pathlen) { free(sp->fts_path); sp->fts_path = NULL; __set_errno (ENAMETOOLONG); return false; } sp->fts_pathlen = new_len; p = realloc(sp->fts_path, sp->fts_pathlen); if (p == NULL) { free(sp->fts_path); sp->fts_path = NULL; return false; } sp->fts_path = p; return true; } /* * When the file name is realloc'd, have to fix all of the pointers in * structures already returned. */ static void internal_function fts_padjust (FTS *sp, FTSENT *head) { FTSENT *p; char *addr = sp->fts_path; /* This code looks at bit-patterns of freed pointers to relocate them, so it relies on undefined behavior. If this trick does not work on your platform, please report a bug. */ #define ADJUST(p) do { \ uintptr_t old_accpath = (uintptr_t) (p)->fts_accpath; \ if (old_accpath != (uintptr_t) (p)->fts_name) { \ (p)->fts_accpath = \ addr + (old_accpath - (uintptr_t) (p)->fts_path); \ } \ (p)->fts_path = addr; \ } while (0) /* Adjust the current set of children. */ for (p = sp->fts_child; p; p = p->fts_link) ADJUST(p); /* Adjust the rest of the tree, including the current level. */ for (p = head; p->fts_level >= FTS_ROOTLEVEL;) { ADJUST(p); p = p->fts_link ? p->fts_link : p->fts_parent; } } static size_t internal_function _GL_ATTRIBUTE_PURE fts_maxarglen (char * const *argv) { size_t len, max; for (max = 0; *argv; ++argv) if ((len = strlen(*argv)) > max) max = len; return (max + 1); } /* * Change to dir specified by fd or file name without getting * tricked by someone changing the world out from underneath us. * Assumes p->fts_statp->st_dev and p->fts_statp->st_ino are filled in. * If FD is non-negative, expect it to be used after this function returns, * and to be closed eventually. So don't pass e.g., 'dirfd(dirp)' and then * do closedir(dirp), because that would invalidate the saved FD. * Upon failure, close FD immediately and return nonzero. */ static int internal_function fts_safe_changedir (FTS *sp, FTSENT *p, int fd, char const *dir) { int ret; bool is_dotdot = dir && STREQ (dir, ".."); int newfd; /* This clause handles the unusual case in which FTS_NOCHDIR is specified, along with FTS_CWDFD. In that case, there is no need to change even the virtual cwd file descriptor. However, if FD is non-negative, we do close it here. */ if (ISSET (FTS_NOCHDIR)) { if (ISSET (FTS_CWDFD) && 0 <= fd) close (fd); return 0; } if (fd < 0 && is_dotdot && ISSET (FTS_CWDFD)) { /* When possible, skip the diropen and subsequent fstat+dev/ino comparison. I.e., when changing to parent directory (chdir ("..")), use a file descriptor from the ring and save the overhead of diropen+fstat, as well as avoiding failure when we lack "x" access to the virtual cwd. */ if ( ! i_ring_empty (&sp->fts_fd_ring)) { int parent_fd; fd_ring_print (sp, stderr, "pre-pop"); parent_fd = i_ring_pop (&sp->fts_fd_ring); if (0 <= parent_fd) { fd = parent_fd; dir = NULL; } } } newfd = fd; if (fd < 0 && (newfd = diropen (sp, dir)) < 0) return -1; /* The following dev/inode check is necessary if we're doing a "logical" traversal (through symlinks, a la chown -L), if the system lacks O_NOFOLLOW support, or if we're changing to ".." (but not via a popped file descriptor). When changing to the name "..", O_NOFOLLOW can't help. In general, when the target is not "..", diropen's use of O_NOFOLLOW ensures we don't mistakenly follow a symlink, so we can avoid the expense of this fstat. */ if (ISSET(FTS_LOGICAL) || ! HAVE_WORKING_O_NOFOLLOW || (dir && STREQ (dir, ".."))) { struct stat sb; if (fstat(newfd, &sb)) { ret = -1; goto bail; } if (p->fts_statp->st_dev != sb.st_dev || p->fts_statp->st_ino != sb.st_ino) { __set_errno (ENOENT); /* disinformation */ ret = -1; goto bail; } } if (ISSET(FTS_CWDFD)) { cwd_advance_fd (sp, newfd, ! is_dotdot); return 0; } ret = fchdir(newfd); bail: if (fd < 0) { int oerrno = errno; (void)close(newfd); __set_errno (oerrno); } return ret; }