/* Sequential list data type implemented by a hash table with a binary tree. Copyright (C) 2006, 2008-2024 Free Software Foundation, Inc. Written by Bruno Haible , 2006. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include /* Specification. */ #include "gl_rbtreehash_list.h" #include /* for uintptr_t, SIZE_MAX */ #include #include "gl_rbtree_oset.h" #include "xsize.h" #define WITH_HASHTABLE 1 /* Which kind of binary trees to use for ordered sets. Quite arbitrary. */ #define OSET_TREE_FLAVOR GL_RBTREE_OSET /* -------------------------- gl_list_t Data Type -------------------------- */ /* Generic hash-table code: Type definitions. */ #include "gl_anyhash1.h" /* Generic red-black tree code: Type definitions. */ #include "gl_anyrbtree_list1.h" /* Generic hash-table code: Low-level code. */ #define CONTAINER_T gl_list_t #define CONTAINER_COUNT(list) \ ((list)->root != NULL ? (list)->root->branch_size : 0) #include "gl_anyhash2.h" /* Generic binary tree code: Type definitions. */ #include "gl_anytree_list1.h" /* Hash-table with binary tree code: Handling of hash buckets. */ #include "gl_anytreehash_list1.h" /* Generic red-black tree code: Insertion/deletion algorithms. */ #include "gl_anyrbtree_list2.h" /* Generic binary tree code: Functions taking advantage of the hash table. */ #include "gl_anytreehash_list2.h" /* Generic binary tree code: All other functions. */ #include "gl_anytree_list2.h" /* For debugging. */ static unsigned int check_invariants (gl_list_node_t node, gl_list_node_t parent) { unsigned int left_blackheight = (node->left != NULL ? check_invariants (node->left, node) : 0); unsigned int right_blackheight = (node->right != NULL ? check_invariants (node->right, node) : 0); if (!(node->parent == parent)) abort (); if (!(node->branch_size == (node->left != NULL ? node->left->branch_size : 0) + 1 + (node->right != NULL ? node->right->branch_size : 0))) abort (); if (!(node->color == BLACK || node->color == RED)) abort (); if (parent == NULL && !(node->color == BLACK)) abort (); if (!(left_blackheight == right_blackheight)) abort (); return left_blackheight + (node->color == BLACK ? 1 : 0); } extern void gl_rbtreehash_list_check_invariants (gl_list_t); void gl_rbtreehash_list_check_invariants (gl_list_t list) { if (list->root != NULL) check_invariants (list->root, NULL); } const struct gl_list_implementation gl_rbtreehash_list_implementation = { gl_tree_nx_create_empty, gl_tree_nx_create, gl_tree_size, gl_tree_node_value, gl_tree_node_nx_set_value, gl_tree_next_node, gl_tree_previous_node, gl_tree_first_node, gl_tree_last_node, gl_tree_get_at, gl_tree_nx_set_at, gl_tree_search_from_to, gl_tree_indexof_from_to, gl_tree_nx_add_first, gl_tree_nx_add_last, gl_tree_nx_add_before, gl_tree_nx_add_after, gl_tree_nx_add_at, gl_tree_remove_node, gl_tree_remove_at, gl_tree_remove, gl_tree_list_free, gl_tree_iterator, gl_tree_iterator_from_to, gl_tree_iterator_next, gl_tree_iterator_free, gl_tree_sortedlist_search, gl_tree_sortedlist_search_from_to, gl_tree_sortedlist_indexof, gl_tree_sortedlist_indexof_from_to, gl_tree_sortedlist_nx_add, gl_tree_sortedlist_remove };