/* Remainder. Copyright (C) 2012-2024 Free Software Foundation, Inc. This file is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #if ! (defined USE_LONG_DOUBLE || defined USE_FLOAT) # include #endif /* Specification. */ #include #ifdef USE_LONG_DOUBLE # define REMAINDER remainderl # define DOUBLE long double # define L_(literal) literal##L # define FABS fabsl # define FMOD fmodl # define ISNAN isnanl #elif ! defined USE_FLOAT # define REMAINDER remainder # define DOUBLE double # define L_(literal) literal # define FABS fabs # define FMOD fmod # define ISNAN isnand #else /* defined USE_FLOAT */ # define REMAINDER remainderf # define DOUBLE float # define L_(literal) literal##f # define FABS fabsf # define FMOD fmodf # define ISNAN isnanf #endif #undef NAN #if defined _MSC_VER static DOUBLE zero; # define NAN (zero / zero) #else # define NAN (L_(0.0) / L_(0.0)) #endif DOUBLE REMAINDER (DOUBLE x, DOUBLE y) { if (isfinite (x) && isfinite (y) && y != L_(0.0)) { if (x == L_(0.0)) /* Return x, regardless of the sign of y. */ return x; { int negate = ((!signbit (x)) ^ (!signbit (y))); DOUBLE r; /* Take the absolute value of x and y. */ x = FABS (x); y = FABS (y); /* Trivial case that requires no computation. */ if (x <= L_(0.5) * y) return (negate ? - x : x); /* With a fixed y, the function x -> remainder(x,y) has a period 2*y. Therefore we can reduce the argument x modulo 2*y. And it's no problem if 2*y overflows, since fmod(x,Inf) = x. */ x = FMOD (x, L_(2.0) * y); /* Consider the 3 cases: 0 <= x <= 0.5 * y 0.5 * y < x < 1.5 * y 1.5 * y <= x <= 2.0 * y */ if (x <= L_(0.5) * y) r = x; else { r = x - y; if (r > L_(0.5) * y) r = x - L_(2.0) * y; } return (negate ? - r : r); } } else { if (ISNAN (x) || ISNAN (y)) return x + y; /* NaN */ else if (isinf (y)) return x; else /* x infinite or y zero */ return NAN; } }