/* mpfr_acosu -- acosu(x) = acos(x)*u/(2*pi) mpfr_acospi -- acospi(x) = acos(x)/pi Copyright 2021-2023 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* put in y the correctly rounded value of acos(x)*u/(2*pi) */ int mpfr_acosu (mpfr_ptr y, mpfr_srcptr x, unsigned long u, mpfr_rnd_t rnd_mode) { mpfr_t tmp, pi; mpfr_prec_t prec; mpfr_exp_t expx; int compared, inexact; MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC (("x[%Pd]=%.*Rg u=%lu rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, u, rnd_mode), ("y[%Pd]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact)); /* Singular cases */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x) || MPFR_IS_INF (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else /* necessarily x=0 */ { MPFR_ASSERTD(MPFR_IS_ZERO(x)); /* acos(0)=Pi/2 thus acosu(0)=u/4 */ return mpfr_set_ui_2exp (y, u, -2, rnd_mode); } } compared = mpfr_cmpabs_ui (x, 1); if (compared > 0) { /* acosu(x) = NaN for |x| > 1, included for u=0, since NaN*0 = NaN */ MPFR_SET_NAN (y); MPFR_RET_NAN; } if (u == 0) /* return +0 since acos(x)>=0 */ { MPFR_SET_ZERO (y); MPFR_SET_POS (y); MPFR_RET (0); } if (compared == 0) { /* |x| = 1: acosu(1,u) = +0, acosu(-1,u)=u/2 */ if (MPFR_SIGN(x) > 0) /* IEEE-754 2019: acosPi(1) = +0 */ return mpfr_set_ui (y, 0, rnd_mode); else return mpfr_set_ui_2exp (y, u, -1, rnd_mode); } /* acos(1/2) = pi/6 and acos(-1/2) = pi/3, thus in these cases acos(x,u) is exact when u is a multiple of 3 */ if (mpfr_cmp_si_2exp (x, MPFR_SIGN(x), -1) == 0 && (u % 3) == 0) return mpfr_set_si_2exp (y, u / 3, MPFR_IS_NEG (x) ? 0 : -1, rnd_mode); prec = MPFR_PREC (y); MPFR_SAVE_EXPO_MARK (expo); /* For |x|<0.5, we have acos(x) = pi/2 - x*r(x) with |r(x)| < 1.05 thus acosu(x,u) = u/4*(1 - x*s(x)) with 0 <= s(x) < 1. If EXP(x) <= -prec-3, then |u/4*x*s(x)| < u/4*2^(-prec-3) < ulp(u/4)/8 <= ulp(RN(u/4))/4, thus the result will be u/4, nextbelow(u/4) or nextabove(u/4). Warning: when u/4 is a power of two, the difference between u/4 and nextbelow(u/4) is only 1/4*ulp(u/4). We also require x < 2^-64, so that in the case u/4 is not exact, the contribution of x*s(x) is smaller compared to the last bit of u. */ expx = MPFR_GET_EXP(x); if (expx <= -64 && expx <= - (mpfr_exp_t) prec - 3) { prec = (MPFR_PREC(y) <= 63) ? 65 : MPFR_PREC(y) + 2; /* now prec > 64 and prec > MPFR_PREC(y)+1 */ mpfr_init2 (tmp, prec); inexact = mpfr_set_ui (tmp, u, MPFR_RNDN); /* exact since prec >= 64 */ MPFR_ASSERTD(inexact == 0); /* for x>0, we have acos(x) < pi/2; for x<0, we have acos(x) > pi/2 */ if (MPFR_IS_POS(x)) mpfr_nextbelow (tmp); else mpfr_nextabove (tmp); /* Since prec >= 65, the last significant bit of tmp is 1, and since prec > PREC(y), tmp is not representable in the target precision, which ensures we will get a correct ternary value below. */ MPFR_ASSERTD(mpfr_min_prec(tmp) > MPFR_PREC(y)); /* since prec >= PREC(y)+2, the rounding of tmp is correct */ inexact = mpfr_div_2ui (y, tmp, 2, rnd_mode); mpfr_clear (tmp); goto end; } prec += MPFR_INT_CEIL_LOG2(prec) + 10; mpfr_init2 (tmp, prec); mpfr_init2 (pi, prec); MPFR_ZIV_INIT (loop, prec); for (;;) { /* In the error analysis below, each thetax denotes a variable such that |thetax| <= 2^-prec */ mpfr_acos (tmp, x, MPFR_RNDN); /* tmp = acos(x) * (1 + theta1) */ mpfr_const_pi (pi, MPFR_RNDN); /* pi = Pi * (1 + theta2) */ mpfr_div (tmp, tmp, pi, MPFR_RNDN); /* tmp = acos(x)/Pi * (1 + theta3)^3 */ mpfr_mul_ui (tmp, tmp, u, MPFR_RNDN); /* tmp = acos(x)*u/Pi * (1 + theta4)^4 */ mpfr_div_2ui (tmp, tmp, 1, MPFR_RNDN); /* exact */ /* tmp = acos(x)*u/(2*Pi) * (1 + theta4)^4 */ /* since |(1 + theta4)^4 - 1| <= 8*|theta4| for prec >= 2, the relative error is less than 2^(3-prec) */ if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - 3, MPFR_PREC (y), rnd_mode))) break; MPFR_ZIV_NEXT (loop, prec); mpfr_set_prec (tmp, prec); mpfr_set_prec (pi, prec); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, tmp, rnd_mode); mpfr_clear (tmp); mpfr_clear (pi); end: MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } int mpfr_acospi (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { return mpfr_acosu (y, x, 2, rnd_mode); }