/* mpfr_cosh -- hyperbolic cosine Copyright 2001-2002, 2004-2023 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computation of cosh is done by * * cosh= 1/2[e^(x)+e^(-x)] */ int mpfr_cosh (mpfr_ptr y, mpfr_srcptr xt, mpfr_rnd_t rnd_mode) { mpfr_t x; int inexact; MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC ( ("x[%Pd]=%.*Rg rnd=%d", mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode), ("y[%Pd]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact)); if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(xt))) { if (MPFR_IS_NAN(xt)) { MPFR_SET_NAN(y); MPFR_RET_NAN; } else if (MPFR_IS_INF(xt)) { MPFR_SET_INF(y); MPFR_SET_POS(y); MPFR_RET(0); } else { MPFR_ASSERTD(MPFR_IS_ZERO(xt)); return mpfr_set_ui (y, 1, rnd_mode); /* cosh(0) = 1 */ } } MPFR_SAVE_EXPO_MARK (expo); /* cosh(x) = 1+x^2/2 + ... <= 1+x^2 for x <= 2.9828..., thus the error < 2^(2*EXP(x)). If x >= 1, then EXP(x) >= 1, thus the following will always fail. */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, __gmpfr_one, -2 * MPFR_GET_EXP (xt), 0, 1, rnd_mode, inexact = _inexact; goto end); MPFR_TMP_INIT_ABS(x, xt); /* General case */ { /* Declaration of the intermediary variable */ mpfr_t t, te; /* Declaration of the size variable */ mpfr_prec_t Ny = MPFR_PREC(y); /* Precision of output variable */ mpfr_prec_t Nt; /* Precision of the intermediary variable */ long int err; /* Precision of error */ MPFR_ZIV_DECL (loop); MPFR_GROUP_DECL (group); /* compute the precision of intermediary variable */ /* The optimal number of bits : see algorithms.tex */ Nt = Ny + 3 + MPFR_INT_CEIL_LOG2 (Ny); /* initialize of intermediary variables */ MPFR_GROUP_INIT_2 (group, Nt, t, te); /* First computation of cosh */ MPFR_ZIV_INIT (loop, Nt); for (;;) { MPFR_BLOCK_DECL (flags); /* Compute cosh */ MPFR_BLOCK (flags, mpfr_exp (te, x, MPFR_RNDD)); /* exp(x) */ /* exp can overflow (but not underflow since x>0) */ if (MPFR_OVERFLOW (flags)) /* cosh(x) > exp(x), cosh(x) underflows too */ { inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN_POS); MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW); break; } mpfr_ui_div (t, 1, te, MPFR_RNDU); /* 1/exp(x) */ mpfr_add (t, te, t, MPFR_RNDU); /* exp(x) + 1/exp(x)*/ mpfr_div_2ui (t, t, 1, MPFR_RNDN); /* 1/2(exp(x) + 1/exp(x))*/ /* Estimation of the error */ err = Nt - 3; /* Check if we can round */ if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) { inexact = mpfr_set (y, t, rnd_mode); break; } /* Actualisation of the precision */ MPFR_ZIV_NEXT (loop, Nt); MPFR_GROUP_REPREC_2 (group, Nt, t, te); } MPFR_ZIV_FREE (loop); MPFR_GROUP_CLEAR (group); } end: MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }