/* mpfr_get_flt -- convert a mpfr_t to a machine single precision float Copyright 2009-2023 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include /* for FLT_MIN */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" #include "ieee_floats.h" #define FLT_NEG_ZERO ((float) DBL_NEG_ZERO) #define MPFR_FLT_INFM ((float) MPFR_DBL_INFM) #define MPFR_FLT_INFP ((float) MPFR_DBL_INFP) float mpfr_get_flt (mpfr_srcptr src, mpfr_rnd_t rnd_mode) { int negative; mpfr_exp_t e; float d; /* in case of NaN, +Inf, -Inf, +0, -0, the conversion from double to float is exact */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (src))) { /* for NaN, we don't propagate the sign bit */ return (float) mpfr_get_d (src, rnd_mode); } e = MPFR_GET_EXP (src); negative = MPFR_IS_NEG (src); if (MPFR_UNLIKELY(rnd_mode == MPFR_RNDA)) rnd_mode = negative ? MPFR_RNDD : MPFR_RNDU; /* FIXME: The code below assumes the IEEE-754 binary32 format with subnormal support. Fix it by converting to double, then to float, and in case of binary radix (for which we want correct rounding), handle double-rounding issues somewhere in the code? */ /* the smallest positive normal float number is 2^(-126) = 0.5*2^(-125), and the smallest positive subnormal number is 2^(-149) = 0.5*2^(-148) */ if (MPFR_UNLIKELY (e < -148)) { /* |src| < 2^(-149), i.e., |src| is smaller than the smallest positive subnormal number. In round-to-nearest mode, 2^(-150) is rounded to zero. */ d = negative ? (rnd_mode == MPFR_RNDD || (rnd_mode == MPFR_RNDN && mpfr_cmp_si_2exp (src, -1, -150) < 0) ? -FLT_MIN : FLT_NEG_ZERO) : (rnd_mode == MPFR_RNDU || (rnd_mode == MPFR_RNDN && mpfr_cmp_si_2exp (src, 1, -150) > 0) ? FLT_MIN : 0.0); if (d != 0.0) /* we multiply FLT_MIN = 2^(-126) by FLT_EPSILON = 2^(-23) to get +-2^(-149) */ d *= FLT_EPSILON; } /* the largest normal number is 2^128*(1-2^(-24)) = 0.111...111e128 */ else if (MPFR_UNLIKELY (e > 128)) { d = negative ? (rnd_mode == MPFR_RNDZ || rnd_mode == MPFR_RNDU ? -FLT_MAX : MPFR_FLT_INFM) : (rnd_mode == MPFR_RNDZ || rnd_mode == MPFR_RNDD ? FLT_MAX : MPFR_FLT_INFP); } else /* -148 <= e <= 127 */ { int nbits; mp_limb_t tp[MPFR_LIMBS_PER_FLT]; int carry; double dd; nbits = IEEE_FLT_MANT_DIG; /* 24 */ if (MPFR_UNLIKELY (e < -125)) /*In the subnormal case, compute the exact number of significant bits*/ { nbits += 125 + e; MPFR_ASSERTD (1 <= nbits && nbits < 24); } carry = mpfr_round_raw_4 (tp, MPFR_MANT(src), MPFR_PREC(src), negative, nbits, rnd_mode); /* we perform the reconstruction using the 'double' type here, knowing the result is exactly representable as 'float' */ if (MPFR_UNLIKELY(carry)) dd = 1.0; else { #if MPFR_LIMBS_PER_FLT == 1 dd = (double) tp[0] / MP_BASE_AS_DOUBLE; #else mp_size_t np, i; np = MPFR_PREC2LIMBS (nbits); MPFR_ASSERTD(np <= MPFR_LIMBS_PER_FLT); /* The following computations are exact thanks to the previous mpfr_round_raw. */ dd = (double) tp[0] / MP_BASE_AS_DOUBLE; for (i = 1 ; i < np ; i++) dd = (dd + tp[i]) / MP_BASE_AS_DOUBLE; /* dd is the mantissa (between 1/2 and 1) of the argument rounded to 24 bits */ #endif } dd = mpfr_scale2 (dd, e); if (negative) dd = -dd; /* convert (exactly) to float */ d = (float) dd; } return d; }