/* mpfr_round_p -- check if an approximation is roundable. Copyright 2005-2023 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpfr-impl.h" /* Check against mpfr_can_round? */ #if MPFR_WANT_ASSERT >= 2 int mpfr_round_p_2 (mp_limb_t *, mp_size_t, mpfr_exp_t, mpfr_prec_t); int mpfr_round_p (mp_limb_t *bp, mp_size_t bn, mpfr_exp_t err0, mpfr_prec_t prec) { int i1, i2; MPFR_ASSERTN(bp[bn - 1] & MPFR_LIMB_HIGHBIT); i1 = mpfr_round_p_2 (bp, bn, err0, prec); /* Note: since revision 10747, mpfr_can_round_raw is supposed to be always correct, whereas mpfr_round_p_2 might return 0 in some cases where one could round, for example with err0=67 and prec=54: b = 1111101101010001100011111011100010100011101111011011101111111111 thus we cannot compare i1 and i2, we only can check that we don't have i1 <> 0 and i2 = 0. */ i2 = mpfr_can_round_raw (bp, bn, MPFR_SIGN_POS, err0, MPFR_RNDN, MPFR_RNDZ, prec); if (i1 && (i2 == 0)) { fprintf (stderr, "mpfr_round_p(%d) != mpfr_can_round(%d)!\n" "bn = %lu, err0 = %ld, prec = %lu\nbp = ", i1, i2, (unsigned long) bn, (long) err0, (unsigned long) prec); #ifndef MPFR_USE_MINI_GMP gmp_fprintf (stderr, "%NX\n", bp, bn); #endif MPFR_ASSERTN (0); } return i1; } # define mpfr_round_p mpfr_round_p_2 #endif /* MPFR_WANT_ASSERT >= 2 */ /* * Assuming {bp, bn} is an approximation of a non-singular number * with error at most equal to 2^(EXP(b)-err0) (`err0' bits of b are known) * of direction unknown, check if we can round b toward zero with * precision prec. */ int mpfr_round_p (mp_limb_t *bp, mp_size_t bn, mpfr_exp_t err0, mpfr_prec_t prec) { mpfr_prec_t err; mp_size_t k, n; mp_limb_t tmp, mask; int s; MPFR_ASSERTD(bp[bn - 1] & MPFR_LIMB_HIGHBIT); err = (mpfr_prec_t) bn * GMP_NUMB_BITS; if (MPFR_UNLIKELY (err0 <= 0 || (mpfr_uexp_t) err0 <= prec || prec >= err)) return 0; /* can't round */ err = MIN (err, (mpfr_uexp_t) err0); k = prec / GMP_NUMB_BITS; s = GMP_NUMB_BITS - prec % GMP_NUMB_BITS; n = err / GMP_NUMB_BITS - k; MPFR_ASSERTD (n >= 0); MPFR_ASSERTD (bn > k); /* Check first limb */ bp += bn - 1 - k; tmp = *bp--; mask = s == GMP_NUMB_BITS ? MPFR_LIMB_MAX : MPFR_LIMB_MASK (s); tmp &= mask; if (MPFR_LIKELY (n == 0)) { /* prec and error are in the same limb */ s = GMP_NUMB_BITS - err % GMP_NUMB_BITS; MPFR_ASSERTD (s < GMP_NUMB_BITS); tmp >>= s; mask >>= s; return tmp != 0 && tmp != mask; } else if (MPFR_UNLIKELY (tmp == 0)) { /* Check if all (n-1) limbs are 0 */ while (--n) if (*bp-- != 0) return 1; /* Check if final error limb is 0 */ s = GMP_NUMB_BITS - err % GMP_NUMB_BITS; if (s == GMP_NUMB_BITS) return 0; tmp = *bp >> s; return tmp != 0; } else if (MPFR_UNLIKELY (tmp == mask)) { /* Check if all (n-1) limbs are 11111111111111111 */ while (--n) if (*bp-- != MPFR_LIMB_MAX) return 1; /* Check if final error limb is 0 */ s = GMP_NUMB_BITS - err % GMP_NUMB_BITS; if (s == GMP_NUMB_BITS) return 0; tmp = *bp >> s; return tmp != (MPFR_LIMB_MAX >> s); } else { /* First limb is different from 000000 or 1111111 */ return 1; } }