/* mpfr_sin_cos -- sine and cosine of a floating-point number Copyright 2002-2023 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* (y, z) <- (sin(x), cos(x)), return value is 0 iff both results are exact ie, iff x = 0 */ int mpfr_sin_cos (mpfr_ptr y, mpfr_ptr z, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_prec_t prec, m; int neg, reduce; mpfr_t c, xr; mpfr_srcptr xx; mpfr_exp_t err, expx; int inexy, inexz; MPFR_ZIV_DECL (loop); MPFR_SAVE_EXPO_DECL (expo); MPFR_ASSERTN (y != z); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN(x) || MPFR_IS_INF(x)) { MPFR_SET_NAN (y); MPFR_SET_NAN (z); MPFR_RET_NAN; } else /* x is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (y); MPFR_SET_SAME_SIGN (y, x); /* y = 0, thus exact, but z is inexact in case of underflow or overflow */ inexy = 0; /* y is exact */ inexz = mpfr_set_ui (z, 1, rnd_mode); return INEX(inexy,inexz); } } MPFR_LOG_FUNC (("x[%Pd]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode), ("sin[%Pd]=%.*Rg cos[%Pd]=%.*Rg", mpfr_get_prec(y), mpfr_log_prec, y, mpfr_get_prec (z), mpfr_log_prec, z)); MPFR_SAVE_EXPO_MARK (expo); prec = MAX (MPFR_PREC (y), MPFR_PREC (z)); m = prec + MPFR_INT_CEIL_LOG2 (prec) + 13; expx = MPFR_GET_EXP (x); /* When x is close to 0, say 2^(-k), then there is a cancellation of about 2k bits in 1-cos(x)^2. FIXME: in that case, it would be more efficient to compute sin(x) directly. VL: This is partly done by using MPFR_FAST_COMPUTE_IF_SMALL_INPUT from the mpfr_sin and mpfr_cos functions. Moreover, any overflow on m is avoided. */ if (expx < 0) { /* Warning: in case y = x, and the first call to MPFR_FAST_COMPUTE_IF_SMALL_INPUT succeeds but the second fails, we will have clobbered the original value of x. The workaround is to first compute z = cos(x) in that case, since y and z are different. */ if (y != x) /* y and x differ, thus we can safely try to compute y first */ { MPFR_FAST_COMPUTE_IF_SMALL_INPUT ( y, x, -2 * expx, 2, 0, rnd_mode, { inexy = _inexact; goto small_input; }); if (0) { small_input: /* we can go here only if we can round sin(x) */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT ( z, __gmpfr_one, -2 * expx, 1, 0, rnd_mode, { inexz = _inexact; MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags); goto end; }); } /* if we go here, one of the two MPFR_FAST_COMPUTE_IF_SMALL_INPUT calls failed */ } else /* y and x are the same variable: try to compute z first, which necessarily differs */ { MPFR_FAST_COMPUTE_IF_SMALL_INPUT ( z, __gmpfr_one, -2 * expx, 1, 0, rnd_mode, { inexz = _inexact; goto small_input2; }); if (0) { small_input2: /* we can go here only if we can round cos(x) */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT ( y, x, -2 * expx, 2, 0, rnd_mode, { inexy = _inexact; MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags); goto end; }); } } m += 2 * (-expx); } if (prec >= MPFR_SINCOS_THRESHOLD) { MPFR_SAVE_EXPO_FREE (expo); return mpfr_sincos_fast (y, z, x, rnd_mode); } mpfr_init2 (c, m); mpfr_init2 (xr, m); MPFR_ZIV_INIT (loop, m); for (;;) { /* the following is copied from sin.c */ if (expx >= 2) /* reduce the argument */ { reduce = 1; MPFR_ASSERTN (expx + m - 1 <= MPFR_PREC_MAX); mpfr_set_prec (c, expx + m - 1); mpfr_set_prec (xr, m); mpfr_const_pi (c, MPFR_RNDN); mpfr_mul_2ui (c, c, 1, MPFR_RNDN); mpfr_remainder (xr, x, c, MPFR_RNDN); mpfr_div_2ui (c, c, 1, MPFR_RNDN); if (MPFR_IS_POS (xr)) mpfr_sub (c, c, xr, MPFR_RNDZ); else mpfr_add (c, c, xr, MPFR_RNDZ); if (MPFR_IS_ZERO(xr) || MPFR_EXP(xr) < (mpfr_exp_t) 3 - (mpfr_exp_t) m || MPFR_EXP(c) < (mpfr_exp_t) 3 - (mpfr_exp_t) m) goto next_step; xx = xr; } else /* the input argument is already reduced */ { reduce = 0; xx = x; } neg = MPFR_IS_NEG (xx); /* gives sign of sin(x) */ mpfr_set_prec (c, m); mpfr_cos (c, xx, MPFR_RNDZ); /* If no argument reduction was performed, the error is at most ulp(c), otherwise it is at most ulp(c) + 2^(2-m). Since |c| < 1, we have ulp(c) <= 2^(-m), thus the error is bounded by 2^(3-m) in that later case. */ if (reduce == 0) err = m; else err = MPFR_GET_EXP (c) + (mpfr_exp_t) (m - 3); if (!MPFR_CAN_ROUND (c, err, MPFR_PREC (z), rnd_mode)) goto next_step; /* We can't set z now, because in case z = x, and the MPFR_CAN_ROUND() call below fails, we will have clobbered the input. Note: m below is the precision of c; see above. */ mpfr_set_prec (xr, m); mpfr_swap (xr, c); /* save the approximation of the cosine in xr */ mpfr_sqr (c, xr, MPFR_RNDU); /* the absolute error is bounded by 2^(5-m) if reduce=1, and by 2^(2-m) otherwise */ mpfr_ui_sub (c, 1, c, MPFR_RNDN); /* error bounded by 2^(6-m) if reduce is 1, and 2^(3-m) otherwise */ mpfr_sqrt (c, c, MPFR_RNDN); /* the absolute error is bounded by 2^(6-m-Exp(c)) if reduce=1, and 2^(3-m-Exp(c)) otherwise */ err = 3 + 3 * reduce - MPFR_GET_EXP (c); if (neg) MPFR_CHANGE_SIGN (c); /* the absolute error on c is at most 2^(err-m), which we must put in the form 2^(EXP(c)-err). */ err = MPFR_GET_EXP (c) + (mpfr_exp_t) m - err; if (MPFR_CAN_ROUND (c, err, MPFR_PREC (y), rnd_mode)) break; /* check for huge cancellation */ if (err < (mpfr_exp_t) MPFR_PREC (y)) m += MPFR_PREC (y) - err; /* Check if near 1 */ if (MPFR_GET_EXP (c) == 1 && MPFR_MANT (c)[MPFR_LIMB_SIZE (c)-1] == MPFR_LIMB_HIGHBIT) m += m; next_step: MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (c, m); } MPFR_ZIV_FREE (loop); inexy = mpfr_set (y, c, rnd_mode); inexz = mpfr_set (z, xr, rnd_mode); mpfr_clear (c); mpfr_clear (xr); end: MPFR_SAVE_EXPO_FREE (expo); /* FIXME: add a test for bug before revision 7355 */ inexy = mpfr_check_range (y, inexy, rnd_mode); inexz = mpfr_check_range (z, inexz, rnd_mode); MPFR_RET (INEX(inexy,inexz)); } /*************** asymptotically fast implementation below ********************/ /* truncate Q from R to at most prec bits. Return the number of truncated bits. */ static mpfr_prec_t reduce (mpz_t Q, mpz_srcptr R, mpfr_prec_t prec) { mpfr_prec_t l; MPFR_MPZ_SIZEINBASE2(l, R); l = (l > prec) ? l - prec : 0; mpz_fdiv_q_2exp (Q, R, l); return l; } /* truncate S and C so that the smaller has prec bits. Return the number of truncated bits. */ static unsigned long reduce2 (mpz_t S, mpz_t C, mpfr_prec_t prec) { unsigned long ls; unsigned long lc; unsigned long l; MPFR_MPZ_SIZEINBASE2(ls, S); MPFR_MPZ_SIZEINBASE2(lc, C); l = (ls < lc) ? ls : lc; /* smaller length */ l = (l > prec) ? l - prec : 0; mpz_fdiv_q_2exp (S, S, l); mpz_fdiv_q_2exp (C, C, l); return l; } /* return in S0/Q0 a rational approximation of sin(X) with absolute error bounded by 9*2^(-prec), where 0 <= X=p/2^r <= 1/2, and in C0/Q0 a rational approximation of cos(X), with relative error bounded by 9*2^(-prec) (and also absolute error, since |cos(X)| <= 1). We have sin(X)/X = sum((-1)^i*(p/2^r)^i/(2i+1)!, i=0..infinity). We use the following binary splitting formula: P(a,b) = (-p)^(b-a) Q(a,b) = (2a)*(2a+1)*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise T(a,b) = 1 if a+1=b, Q(c,b)*T(a,c)+P(a,c)*T(c,b) otherwise. Since we use P(a,b) for b-a=2^k only, we compute only p^(2^k). We do not store the factor 2^r in Q(). Then sin(X)/X ~ T(0,i)/Q(0,i) for i so that (p/2^r)^i/i! is small enough. Return l such that Q0 has to be multiplied by 2^l. Assumes prec >= 10. */ #define KMAX 64 static unsigned long sin_bs_aux (mpz_t Q0, mpz_t S0, mpz_t C0, mpz_srcptr p, mpfr_prec_t r, mpfr_prec_t prec) { mpz_t T[KMAX], Q[KMAX], ptoj[KMAX], pp; mpfr_prec_t log2_nb_terms[KMAX], mult[KMAX]; mpfr_prec_t accu[KMAX], size_ptoj[KMAX]; mpfr_prec_t prec_i_have, h, r0 = r, pp_s, p_s; unsigned long i, j, m; int alloc, k, l; if (MPFR_UNLIKELY(mpz_cmp_ui (p, 0) == 0)) /* sin(x)/x -> 1 */ { mpz_set_ui (Q0, 1); mpz_set_ui (S0, 1); mpz_set_ui (C0, 1); return 0; } /* check that X=p/2^r <= 1/2 */ MPFR_ASSERTN(mpz_sizeinbase (p, 2) - (mpfr_exp_t) r <= -1); mpz_init (pp); /* normalize p (non-zero here) */ h = mpz_scan1 (p, 0); mpz_fdiv_q_2exp (pp, p, h); /* p = pp * 2^h */ mpz_mul (pp, pp, pp); r = 2 * (r - h); /* x^2 = (p/2^r0)^2 = pp / 2^r */ /* now p is odd */ alloc = 2; mpz_init_set_ui (T[0], 6); mpz_init_set_ui (Q[0], 6); mpz_init_set (ptoj[0], pp); /* ptoj[i] = pp^(2^i) */ mpz_init (T[1]); mpz_init (Q[1]); mpz_init (ptoj[1]); mpz_mul (ptoj[1], pp, pp); /* ptoj[1] = pp^2 */ MPFR_MPZ_SIZEINBASE2(size_ptoj[1], ptoj[1]); mpz_mul_2exp (T[0], T[0], r); mpz_sub (T[0], T[0], pp); /* 6*2^r - pp = 6*2^r*(1 - x^2/6) */ log2_nb_terms[0] = 1; /* already take into account the factor x=p/2^r in sin(x) = x * (...) */ MPFR_MPZ_SIZEINBASE2(pp_s, pp); MPFR_MPZ_SIZEINBASE2(p_s, p); mult[0] = r - pp_s + r0 - p_s; /* we have x^3 < 1/2^mult[0] */ for (i = 2, k = 0, prec_i_have = mult[0]; prec_i_have < prec; i += 2) { /* i is even here */ /* invariant: Q[0]*Q[1]*...*Q[k] equals (2i-1)!, we have already summed terms of index < i in S[0]/Q[0], ..., S[k]/Q[k] */ k ++; if (k + 1 >= alloc) /* necessarily k + 1 = alloc */ { MPFR_ASSERTD (k + 1 == alloc); alloc ++; MPFR_ASSERTN (k + 1 < KMAX); mpz_init (T[k+1]); mpz_init (Q[k+1]); mpz_init (ptoj[k+1]); mpz_mul (ptoj[k+1], ptoj[k], ptoj[k]); /* pp^(2^(k+1)) */ MPFR_MPZ_SIZEINBASE2(size_ptoj[k+1], ptoj[k+1]); } /* for i even, we have Q[k] = (2*i)*(2*i+1), T[k] = 1, then Q[k+1] = (2*i+2)*(2*i+3), T[k+1] = 1, which reduces to T[k] = (2*i+2)*(2*i+3)*2^r-pp, Q[k] = (2*i)*(2*i+1)*(2*i+2)*(2*i+3). */ MPFR_ASSERTN (k < KMAX); log2_nb_terms[k] = 1; mpz_set_ui (Q[k], 2 * i + 2); mpz_mul_ui (Q[k], Q[k], 2 * i + 3); mpz_mul_2exp (T[k], Q[k], r); mpz_sub (T[k], T[k], pp); mpz_mul_ui (Q[k], Q[k], 2 * i); mpz_mul_ui (Q[k], Q[k], 2 * i + 1); /* the next term of the series is divided by Q[k] and multiplied by pp^2/2^(2r), thus the mult. factor < 1/2^mult[k] */ MPFR_MPZ_SIZEINBASE2(mult[k], Q[k]); mult[k] += 2 * r - size_ptoj[1] - 1; /* the absolute contribution of the next term is 1/2^accu[k] */ accu[k] = (k == 0) ? mult[k] : mult[k] + accu[k-1]; prec_i_have = accu[k]; /* the current term is < 1/2^accu[k] */ j = (i + 2) / 2; l = 1; while ((j & 1) == 0) /* combine and reduce */ { MPFR_ASSERTN (k >= 1); mpz_mul (T[k], T[k], ptoj[l]); mpz_mul (T[k-1], T[k-1], Q[k]); mpz_mul_2exp (T[k-1], T[k-1], r << l); mpz_add (T[k-1], T[k-1], T[k]); mpz_mul (Q[k-1], Q[k-1], Q[k]); log2_nb_terms[k-1] ++; /* number of terms in S[k-1] is a power of 2 by construction */ MPFR_MPZ_SIZEINBASE2(prec_i_have, Q[k]); mult[k-1] += prec_i_have + (r << l) - size_ptoj[l] - 1; accu[k-1] = (k == 1) ? mult[k-1] : mult[k-1] + accu[k-2]; prec_i_have = accu[k-1]; l ++; j >>= 1; k --; } } /* accumulate all products in T[0] and Q[0]. Warning: contrary to above, here we do not have log2_nb_terms[k-1] = log2_nb_terms[k]+1. */ h = 0; /* number of accumulated terms in the right part T[k]/Q[k] */ while (k > 0) { mpz_mul (T[k], T[k], ptoj[log2_nb_terms[k-1]]); mpz_mul (T[k-1], T[k-1], Q[k]); h += (mpfr_prec_t) 1 << log2_nb_terms[k]; mpz_mul_2exp (T[k-1], T[k-1], r * h); mpz_add (T[k-1], T[k-1], T[k]); mpz_mul (Q[k-1], Q[k-1], Q[k]); k--; } m = r0 + r * (i - 1); /* implicit multiplier 2^r for Q0 */ /* at this point T[0]/(2^m*Q[0]) is an approximation of sin(x) where the 1st neglected term has contribution < 1/2^prec, thus since the series has alternate signs, the error is < 1/2^prec */ /* we truncate Q0 to prec bits: the relative error is at most 2^(1-prec), which means that Q0 = Q[0] * (1+theta) with |theta| <= 2^(1-prec) [up to a power of two] */ m += reduce (Q0, Q[0], prec); m -= reduce (T[0], T[0], prec); /* multiply by x = p/2^m */ mpz_mul (S0, T[0], p); m -= reduce (S0, S0, prec); /* S0 = T[0] * (1 + theta)^2 up to power of 2 */ /* sin(X) ~ S0/Q0*(1 + theta)^3 + err with |theta| <= 2^(1-prec) and |err| <= 2^(-prec), thus since |S0/Q0| <= 1: |sin(X) - S0/Q0| <= 4*|theta*S0/Q0| + |err| <= 9*2^(-prec) */ mpz_clear (pp); for (k = 0; k < alloc; k ++) { mpz_clear (T[k]); mpz_clear (Q[k]); mpz_clear (ptoj[k]); } /* compute cos(X) from sin(X): sqrt(1-(S/Q)^2) = sqrt(Q^2-S^2)/Q = sqrt(Q0^2*2^(2m)-S0^2)/Q0. Write S/Q = sin(X) + eps with |eps| <= 9*2^(-prec), then sqrt(Q^2-S^2) = sqrt(Q^2-Q^2*(sin(X)+eps)^2) = sqrt(Q^2*cos(X)^2-Q^2*(2*sin(X)*eps+eps^2)) = sqrt(Q^2*cos(X)^2-Q^2*eps1) with |eps1|<=9*2^(-prec) [using X<=1/2 and eps<=9*2^(-prec) and prec>=10] Since we truncate the square root, we get: sqrt(Q^2*cos(X)^2-Q^2*eps1)+eps2 with |eps2|<1 = Q*sqrt(cos(X)^2-eps1)+eps2 = Q*cos(X)*(1+eps3)+eps2 with |eps3| <= 6*2^(-prec) = Q*cos(X)*(1+eps3+eps2/(Q*cos(X))) = Q*cos(X)*(1+eps4) with |eps4| <= 9*2^(-prec) since |Q| >= 2^(prec-1) */ /* we assume that Q0*2^m >= 2^(prec-1) */ MPFR_ASSERTN(m + mpz_sizeinbase (Q0, 2) >= prec); mpz_mul (C0, Q0, Q0); mpz_mul_2exp (C0, C0, 2 * m); mpz_submul (C0, S0, S0); mpz_sqrt (C0, C0); return m; } /* Put in s and c approximations of sin(x) and cos(x) respectively. Assumes 0 < x < Pi/4 and PREC(s) = PREC(c) >= 10. Return err such that the relative error is bounded by 2^err ulps. */ static int sincos_aux (mpfr_ptr s, mpfr_ptr c, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_prec_t prec_s, sh; mpz_t Q, S, C, Q2, S2, C2, y; mpfr_t x2; unsigned long l, l2, j, err; MPFR_ASSERTD(MPFR_PREC(s) == MPFR_PREC(c)); prec_s = MPFR_PREC(s); mpfr_init2 (x2, MPFR_PREC(x)); mpz_init (Q); mpz_init (S); mpz_init (C); mpz_init (Q2); mpz_init (S2); mpz_init (C2); mpz_init (y); mpfr_set (x2, x, MPFR_RNDN); /* exact */ mpz_set_ui (Q, 1); l = 0; mpz_set_ui (S, 0); /* sin(0) = S/(2^l*Q), exact */ mpz_set_ui (C, 1); /* cos(0) = C/(2^l*Q), exact */ /* Invariant: x = X + x2/2^(sh-1), where the part X was already treated, S/(2^l*Q) ~ sin(X), C/(2^l*Q) ~ cos(X), and x2/2^(sh-1) < Pi/4. 'sh-1' is the number of already shifted bits in x2. */ for (sh = 1, j = 0; mpfr_cmp_ui (x2, 0) != 0 && sh <= prec_s; sh <<= 1, j++) { if (sh > prec_s / 2) /* sin(x) = x + O(x^3), cos(x) = 1 + O(x^2) */ { l2 = -mpfr_get_z_2exp (S2, x2); /* S2/2^l2 = x2 */ l2 += sh - 1; mpz_set_ui (Q2, 1); mpz_set_ui (C2, 1); mpz_mul_2exp (C2, C2, l2); mpfr_set_ui (x2, 0, MPFR_RNDN); } else { /* y <- trunc(x2 * 2^sh) = trunc(x * 2^(2*sh-1)) */ mpfr_mul_2ui (x2, x2, sh, MPFR_RNDN); /* exact */ mpfr_get_z (y, x2, MPFR_RNDZ); /* round toward zero: now 0 <= x2 < 2^sh, thus 0 <= x2/2^(sh-1) < 2^(1-sh) */ if (mpz_cmp_ui (y, 0) == 0) continue; mpfr_sub_z (x2, x2, y, MPFR_RNDN); /* should be exact */ l2 = sin_bs_aux (Q2, S2, C2, y, 2 * sh - 1, prec_s); /* we now have |S2/Q2/2^l2 - sin(X)| <= 9*2^(prec_s) and |C2/Q2/2^l2 - cos(X)| <= 6*2^(prec_s), with X=y/2^(2sh-1) */ } if (sh == 1) /* S=0, C=1 */ { l = l2; mpz_swap (Q, Q2); mpz_swap (S, S2); mpz_swap (C, C2); } else { /* s <- s*c2+c*s2, c <- c*c2-s*s2, using Karatsuba: a = s+c, b = s2+c2, t = a*b, d = s*s2, e = c*c2, s <- t - d - e, c <- e - d */ mpz_add (y, S, C); /* a */ mpz_mul (C, C, C2); /* e */ mpz_add (C2, C2, S2); /* b */ mpz_mul (S2, S, S2); /* d */ mpz_mul (y, y, C2); /* a*b */ mpz_sub (S, y, S2); /* t - d */ mpz_sub (S, S, C); /* t - d - e */ mpz_sub (C, C, S2); /* e - d */ mpz_mul (Q, Q, Q2); /* after j loops, the error is <= (11j-2)*2^(prec_s) */ l += l2; /* reduce Q to prec_s bits */ l += reduce (Q, Q, prec_s); /* reduce S,C to prec_s bits, error <= 11*j*2^(prec_s) */ l -= reduce2 (S, C, prec_s); } } j = 11 * j; for (err = 0; j > 1; j = (j + 1) / 2, err ++); mpfr_set_z (s, S, MPFR_RNDN); mpfr_div_z (s, s, Q, MPFR_RNDN); mpfr_div_2ui (s, s, l, MPFR_RNDN); mpfr_set_z (c, C, MPFR_RNDN); mpfr_div_z (c, c, Q, MPFR_RNDN); mpfr_div_2ui (c, c, l, MPFR_RNDN); mpz_clear (Q); mpz_clear (S); mpz_clear (C); mpz_clear (Q2); mpz_clear (S2); mpz_clear (C2); mpz_clear (y); mpfr_clear (x2); return err; } /* Assumes x is neither NaN, +/-Inf, nor +/- 0. One of s and c might be NULL, in which case the corresponding value is not computed. Assumes s differs from c. */ int mpfr_sincos_fast (mpfr_ptr s, mpfr_ptr c, mpfr_srcptr x, mpfr_rnd_t rnd) { int inexs, inexc; mpfr_t x_red, ts, tc; mpfr_prec_t w; mpfr_exp_t err, errs, errc; MPFR_GROUP_DECL (group); MPFR_ZIV_DECL (loop); MPFR_ASSERTN(s != c); if (s == NULL) w = MPFR_PREC(c); else if (c == NULL) w = MPFR_PREC(s); else w = MPFR_PREC(s) >= MPFR_PREC(c) ? MPFR_PREC(s) : MPFR_PREC(c); w += MPFR_INT_CEIL_LOG2(w) + 9; /* ensures w >= 10 (needed by sincos_aux) */ MPFR_GROUP_INIT_2(group, w, ts, tc); MPFR_ZIV_INIT (loop, w); for (;;) { /* if 0 < x <= Pi/4, we can call sincos_aux directly */ if (MPFR_IS_POS(x) && mpfr_cmp_ui_2exp (x, 1686629713, -31) <= 0) { err = sincos_aux (ts, tc, x, MPFR_RNDN); } /* if -Pi/4 <= x < 0, use sin(-x)=-sin(x) */ else if (MPFR_IS_NEG(x) && mpfr_cmp_si_2exp (x, -1686629713, -31) >= 0) { MPFR_ALIAS(x_red, x, MPFR_SIGN_POS, MPFR_GET_EXP(x)); err = sincos_aux (ts, tc, x_red, MPFR_RNDN); MPFR_CHANGE_SIGN(ts); } else /* argument reduction is needed */ { long q; mpfr_t pi; int neg = 0; mpfr_init2 (x_red, w); mpfr_init2 (pi, (MPFR_EXP(x) > 0) ? w + MPFR_EXP(x) : w); mpfr_const_pi (pi, MPFR_RNDN); mpfr_div_2ui (pi, pi, 1, MPFR_RNDN); /* Pi/2 */ mpfr_remquo (x_red, &q, x, pi, MPFR_RNDN); /* x = q * (Pi/2 + eps1) + x_red + eps2, where |eps1| <= 1/2*ulp(Pi/2) = 2^(-w-MAX(0,EXP(x))), and eps2 <= 1/2*ulp(x_red) <= 1/2*ulp(Pi/2) = 2^(-w) Since |q| <= x/(Pi/2) <= |x|, we have q*|eps1| <= 2^(-w), thus |x - q * Pi/2 - x_red| <= 2^(1-w) */ /* now -Pi/4 <= x_red <= Pi/4: if x_red < 0, consider -x_red */ if (MPFR_IS_NEG(x_red)) { mpfr_neg (x_red, x_red, MPFR_RNDN); neg = 1; } err = sincos_aux (ts, tc, x_red, MPFR_RNDN); err ++; /* to take into account the argument reduction */ if (neg) /* sin(-x) = -sin(x), cos(-x) = cos(x) */ mpfr_neg (ts, ts, MPFR_RNDN); if (q & 2) /* sin(x+Pi) = -sin(x), cos(x+Pi) = -cos(x) */ { mpfr_neg (ts, ts, MPFR_RNDN); mpfr_neg (tc, tc, MPFR_RNDN); } if (q & 1) /* sin(x+Pi/2) = cos(x), cos(x+Pi/2) = -sin(x) */ { mpfr_neg (ts, ts, MPFR_RNDN); mpfr_swap (ts, tc); } mpfr_clear (x_red); mpfr_clear (pi); } /* adjust errors with respect to absolute values */ errs = err - MPFR_EXP(ts); errc = err - MPFR_EXP(tc); if ((s == NULL || MPFR_CAN_ROUND (ts, w - errs, MPFR_PREC(s), rnd)) && (c == NULL || MPFR_CAN_ROUND (tc, w - errc, MPFR_PREC(c), rnd))) break; MPFR_ZIV_NEXT (loop, w); MPFR_GROUP_REPREC_2(group, w, ts, tc); } MPFR_ZIV_FREE (loop); inexs = (s == NULL) ? 0 : mpfr_set (s, ts, rnd); inexc = (c == NULL) ? 0 : mpfr_set (c, tc, rnd); MPFR_GROUP_CLEAR (group); return INEX(inexs,inexc); }