// SPDX-License-Identifier: GPL-2.0 /* * MediaTek SD/MMC Card Interface driver * * Copyright (C) 2018 MediaTek Inc. * Author: Weijie Gao */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* MSDC_CFG */ #define MSDC_CFG_HS400_CK_MODE_EXT BIT(22) #define MSDC_CFG_CKMOD_EXT_M 0x300000 #define MSDC_CFG_CKMOD_EXT_S 20 #define MSDC_CFG_CKDIV_EXT_M 0xfff00 #define MSDC_CFG_CKDIV_EXT_S 8 #define MSDC_CFG_HS400_CK_MODE BIT(18) #define MSDC_CFG_CKMOD_M 0x30000 #define MSDC_CFG_CKMOD_S 16 #define MSDC_CFG_CKDIV_M 0xff00 #define MSDC_CFG_CKDIV_S 8 #define MSDC_CFG_CKSTB BIT(7) #define MSDC_CFG_PIO BIT(3) #define MSDC_CFG_RST BIT(2) #define MSDC_CFG_CKPDN BIT(1) #define MSDC_CFG_MODE BIT(0) /* MSDC_IOCON */ #define MSDC_IOCON_W_DSPL BIT(8) #define MSDC_IOCON_DSPL BIT(2) #define MSDC_IOCON_RSPL BIT(1) /* MSDC_PS */ #define MSDC_PS_DAT0 BIT(16) #define MSDC_PS_CDDBCE_M 0xf000 #define MSDC_PS_CDDBCE_S 12 #define MSDC_PS_CDSTS BIT(1) #define MSDC_PS_CDEN BIT(0) /* #define MSDC_INT(EN) */ #define MSDC_INT_ACMDRDY BIT(3) #define MSDC_INT_ACMDTMO BIT(4) #define MSDC_INT_ACMDCRCERR BIT(5) #define MSDC_INT_CMDRDY BIT(8) #define MSDC_INT_CMDTMO BIT(9) #define MSDC_INT_RSPCRCERR BIT(10) #define MSDC_INT_XFER_COMPL BIT(12) #define MSDC_INT_DATTMO BIT(14) #define MSDC_INT_DATCRCERR BIT(15) /* MSDC_FIFOCS */ #define MSDC_FIFOCS_CLR BIT(31) #define MSDC_FIFOCS_TXCNT_M 0xff0000 #define MSDC_FIFOCS_TXCNT_S 16 #define MSDC_FIFOCS_RXCNT_M 0xff #define MSDC_FIFOCS_RXCNT_S 0 /* #define SDC_CFG */ #define SDC_CFG_DTOC_M 0xff000000 #define SDC_CFG_DTOC_S 24 #define SDC_CFG_SDIOIDE BIT(20) #define SDC_CFG_SDIO BIT(19) #define SDC_CFG_BUSWIDTH_M 0x30000 #define SDC_CFG_BUSWIDTH_S 16 /* SDC_CMD */ #define SDC_CMD_BLK_LEN_M 0xfff0000 #define SDC_CMD_BLK_LEN_S 16 #define SDC_CMD_STOP BIT(14) #define SDC_CMD_WR BIT(13) #define SDC_CMD_DTYPE_M 0x1800 #define SDC_CMD_DTYPE_S 11 #define SDC_CMD_RSPTYP_M 0x380 #define SDC_CMD_RSPTYP_S 7 #define SDC_CMD_CMD_M 0x3f #define SDC_CMD_CMD_S 0 /* SDC_STS */ #define SDC_STS_CMDBUSY BIT(1) #define SDC_STS_SDCBUSY BIT(0) /* SDC_ADV_CFG0 */ #define SDC_RX_ENHANCE_EN BIT(20) /* PATCH_BIT0 */ #define MSDC_INT_DAT_LATCH_CK_SEL_M 0x380 #define MSDC_INT_DAT_LATCH_CK_SEL_S 7 /* PATCH_BIT1 */ #define MSDC_PB1_STOP_DLY_M 0xf00 #define MSDC_PB1_STOP_DLY_S 8 /* PATCH_BIT2 */ #define MSDC_PB2_CRCSTSENSEL_M 0xe0000000 #define MSDC_PB2_CRCSTSENSEL_S 29 #define MSDC_PB2_CFGCRCSTS BIT(28) #define MSDC_PB2_RESPSTSENSEL_M 0x70000 #define MSDC_PB2_RESPSTSENSEL_S 16 #define MSDC_PB2_CFGRESP BIT(15) #define MSDC_PB2_RESPWAIT_M 0x0c #define MSDC_PB2_RESPWAIT_S 2 /* MSDC_PAD_CTRL0 */ #define MSDC_PAD_CTRL0_CLKRDSEL_M 0xff000000 #define MSDC_PAD_CTRL0_CLKRDSEL_S 24 #define MSDC_PAD_CTRL0_CLKTDSEL BIT(20) #define MSDC_PAD_CTRL0_CLKIES BIT(19) #define MSDC_PAD_CTRL0_CLKSMT BIT(18) #define MSDC_PAD_CTRL0_CLKPU BIT(17) #define MSDC_PAD_CTRL0_CLKPD BIT(16) #define MSDC_PAD_CTRL0_CLKSR BIT(8) #define MSDC_PAD_CTRL0_CLKDRVP_M 0x70 #define MSDC_PAD_CTRL0_CLKDRVP_S 4 #define MSDC_PAD_CTRL0_CLKDRVN_M 0x7 #define MSDC_PAD_CTRL0_CLKDRVN_S 0 /* MSDC_PAD_CTRL1 */ #define MSDC_PAD_CTRL1_CMDRDSEL_M 0xff000000 #define MSDC_PAD_CTRL1_CMDRDSEL_S 24 #define MSDC_PAD_CTRL1_CMDTDSEL BIT(20) #define MSDC_PAD_CTRL1_CMDIES BIT(19) #define MSDC_PAD_CTRL1_CMDSMT BIT(18) #define MSDC_PAD_CTRL1_CMDPU BIT(17) #define MSDC_PAD_CTRL1_CMDPD BIT(16) #define MSDC_PAD_CTRL1_CMDSR BIT(8) #define MSDC_PAD_CTRL1_CMDDRVP_M 0x70 #define MSDC_PAD_CTRL1_CMDDRVP_S 4 #define MSDC_PAD_CTRL1_CMDDRVN_M 0x7 #define MSDC_PAD_CTRL1_CMDDRVN_S 0 /* MSDC_PAD_CTRL2 */ #define MSDC_PAD_CTRL2_DATRDSEL_M 0xff000000 #define MSDC_PAD_CTRL2_DATRDSEL_S 24 #define MSDC_PAD_CTRL2_DATTDSEL BIT(20) #define MSDC_PAD_CTRL2_DATIES BIT(19) #define MSDC_PAD_CTRL2_DATSMT BIT(18) #define MSDC_PAD_CTRL2_DATPU BIT(17) #define MSDC_PAD_CTRL2_DATPD BIT(16) #define MSDC_PAD_CTRL2_DATSR BIT(8) #define MSDC_PAD_CTRL2_DATDRVP_M 0x70 #define MSDC_PAD_CTRL2_DATDRVP_S 4 #define MSDC_PAD_CTRL2_DATDRVN_M 0x7 #define MSDC_PAD_CTRL2_DATDRVN_S 0 /* PAD_TUNE */ #define MSDC_PAD_TUNE_CLKTDLY_M 0xf8000000 #define MSDC_PAD_TUNE_CLKTDLY_S 27 #define MSDC_PAD_TUNE_CMDRRDLY_M 0x7c00000 #define MSDC_PAD_TUNE_CMDRRDLY_S 22 #define MSDC_PAD_TUNE_CMD_SEL BIT(21) #define MSDC_PAD_TUNE_CMDRDLY_M 0x1f0000 #define MSDC_PAD_TUNE_CMDRDLY_S 16 #define MSDC_PAD_TUNE_RXDLYSEL BIT(15) #define MSDC_PAD_TUNE_RD_SEL BIT(13) #define MSDC_PAD_TUNE_DATRRDLY_M 0x1f00 #define MSDC_PAD_TUNE_DATRRDLY_S 8 #define MSDC_PAD_TUNE_DATWRDLY_M 0x1f #define MSDC_PAD_TUNE_DATWRDLY_S 0 #define PAD_CMD_TUNE_RX_DLY3 0x3E #define PAD_CMD_TUNE_RX_DLY3_S 1 /* PAD_TUNE0 */ #define MSDC_PAD_TUNE0_DAT0RDDLY_M 0x1f000000 #define MSDC_PAD_TUNE0_DAT0RDDLY_S 24 #define MSDC_PAD_TUNE0_DAT1RDDLY_M 0x1f0000 #define MSDC_PAD_TUNE0_DAT1RDDLY_S 16 #define MSDC_PAD_TUNE0_DAT2RDDLY_M 0x1f00 #define MSDC_PAD_TUNE0_DAT2RDDLY_S 8 #define MSDC_PAD_TUNE0_DAT3RDDLY_M 0x1f #define MSDC_PAD_TUNE0_DAT3RDDLY_S 0 /* PAD_TUNE1 */ #define MSDC_PAD_TUNE1_DAT4RDDLY_M 0x1f000000 #define MSDC_PAD_TUNE1_DAT4RDDLY_S 24 #define MSDC_PAD_TUNE1_DAT5RDDLY_M 0x1f0000 #define MSDC_PAD_TUNE1_DAT5RDDLY_S 16 #define MSDC_PAD_TUNE1_DAT6RDDLY_M 0x1f00 #define MSDC_PAD_TUNE1_DAT6RDDLY_S 8 #define MSDC_PAD_TUNE1_DAT7RDDLY_M 0x1f #define MSDC_PAD_TUNE1_DAT7RDDLY_S 0 /* EMMC50_CFG0 */ #define EMMC50_CFG_CFCSTS_SEL BIT(4) /* SDC_FIFO_CFG */ #define SDC_FIFO_CFG_WRVALIDSEL BIT(24) #define SDC_FIFO_CFG_RDVALIDSEL BIT(25) /* EMMC_TOP_CONTROL mask */ #define PAD_RXDLY_SEL BIT(0) #define DELAY_EN BIT(1) #define PAD_DAT_RD_RXDLY2 (0x1f << 2) #define PAD_DAT_RD_RXDLY (0x1f << 7) #define PAD_DAT_RD_RXDLY_S 7 #define PAD_DAT_RD_RXDLY2_SEL BIT(12) #define PAD_DAT_RD_RXDLY_SEL BIT(13) #define DATA_K_VALUE_SEL BIT(14) #define SDC_RX_ENH_EN BIT(15) /* EMMC_TOP_CMD mask */ #define PAD_CMD_RXDLY2 (0x1f << 0) #define PAD_CMD_RXDLY (0x1f << 5) #define PAD_CMD_RXDLY_S 5 #define PAD_CMD_RD_RXDLY2_SEL BIT(10) #define PAD_CMD_RD_RXDLY_SEL BIT(11) #define PAD_CMD_TX_DLY (0x1f << 12) /* SDC_CFG_BUSWIDTH */ #define MSDC_BUS_1BITS 0x0 #define MSDC_BUS_4BITS 0x1 #define MSDC_BUS_8BITS 0x2 #define MSDC_FIFO_SIZE 128 #define PAD_DELAY_MAX 32 #define DEFAULT_CD_DEBOUNCE 8 #define SCLK_CYCLES_SHIFT 20 #define MIN_BUS_CLK 200000 #define CMD_INTS_MASK \ (MSDC_INT_CMDRDY | MSDC_INT_RSPCRCERR | MSDC_INT_CMDTMO) #define DATA_INTS_MASK \ (MSDC_INT_XFER_COMPL | MSDC_INT_DATTMO | MSDC_INT_DATCRCERR) /* Register offset */ struct mtk_sd_regs { u32 msdc_cfg; u32 msdc_iocon; u32 msdc_ps; u32 msdc_int; u32 msdc_inten; u32 msdc_fifocs; u32 msdc_txdata; u32 msdc_rxdata; u32 reserved0[4]; u32 sdc_cfg; u32 sdc_cmd; u32 sdc_arg; u32 sdc_sts; u32 sdc_resp[4]; u32 sdc_blk_num; u32 sdc_vol_chg; u32 sdc_csts; u32 sdc_csts_en; u32 sdc_datcrc_sts; u32 sdc_adv_cfg0; u32 reserved1[2]; u32 emmc_cfg0; u32 emmc_cfg1; u32 emmc_sts; u32 emmc_iocon; u32 sd_acmd_resp; u32 sd_acmd19_trg; u32 sd_acmd19_sts; u32 dma_sa_high4bit; u32 dma_sa; u32 dma_ca; u32 dma_ctrl; u32 dma_cfg; u32 sw_dbg_sel; u32 sw_dbg_out; u32 dma_length; u32 reserved2; u32 patch_bit0; u32 patch_bit1; u32 patch_bit2; u32 reserved3; u32 dat0_tune_crc; u32 dat1_tune_crc; u32 dat2_tune_crc; u32 dat3_tune_crc; u32 cmd_tune_crc; u32 sdio_tune_wind; u32 reserved4[2]; u32 pad_ctrl0; u32 pad_ctrl1; u32 pad_ctrl2; u32 pad_tune; u32 pad_tune0; u32 pad_tune1; u32 dat_rd_dly[4]; u32 reserved5[2]; u32 hw_dbg_sel; u32 main_ver; u32 eco_ver; u32 reserved6[27]; u32 pad_ds_tune; u32 pad_cmd_tune; u32 reserved7[30]; u32 emmc50_cfg0; u32 reserved8[7]; u32 sdc_fifo_cfg; }; struct msdc_top_regs { u32 emmc_top_control; u32 emmc_top_cmd; u32 emmc50_pad_ctl0; u32 emmc50_pad_ds_tune; u32 emmc50_pad_dat0_tune; u32 emmc50_pad_dat1_tune; u32 emmc50_pad_dat2_tune; u32 emmc50_pad_dat3_tune; u32 emmc50_pad_dat4_tune; u32 emmc50_pad_dat5_tune; u32 emmc50_pad_dat6_tune; u32 emmc50_pad_dat7_tune; }; struct msdc_compatible { u8 clk_div_bits; bool pad_tune0; bool async_fifo; bool data_tune; bool busy_check; bool stop_clk_fix; bool enhance_rx; bool builtin_pad_ctrl; bool default_pad_dly; }; struct msdc_delay_phase { u8 maxlen; u8 start; u8 final_phase; }; struct msdc_plat { struct mmc_config cfg; struct mmc mmc; }; struct msdc_tune_para { u32 iocon; u32 pad_tune; u32 pad_cmd_tune; }; struct msdc_host { struct mtk_sd_regs *base; struct msdc_top_regs *top_base; struct mmc *mmc; struct msdc_compatible *dev_comp; struct clk src_clk; /* for SD/MMC bus clock */ struct clk src_clk_cg; /* optional, MSDC source clock control gate */ struct clk h_clk; /* MSDC core clock */ u32 src_clk_freq; /* source clock */ u32 mclk; /* mmc framework required bus clock */ u32 sclk; /* actual calculated bus clock */ /* operation timeout clocks */ u32 timeout_ns; u32 timeout_clks; /* tuning options */ u32 hs400_ds_delay; u32 hs200_cmd_int_delay; u32 hs200_write_int_delay; u32 latch_ck; u32 r_smpl; /* sample edge */ bool hs400_mode; /* whether to use gpio detection or built-in hw detection */ bool builtin_cd; bool cd_active_high; /* card detection / write protection GPIOs */ #if CONFIG_IS_ENABLED(DM_GPIO) struct gpio_desc gpio_wp; struct gpio_desc gpio_cd; #endif uint last_resp_type; uint last_data_write; enum bus_mode timing; struct msdc_tune_para def_tune_para; struct msdc_tune_para saved_tune_para; }; static void msdc_reset_hw(struct msdc_host *host) { u32 reg; setbits_le32(&host->base->msdc_cfg, MSDC_CFG_RST); readl_poll_timeout(&host->base->msdc_cfg, reg, !(reg & MSDC_CFG_RST), 1000000); } static void msdc_fifo_clr(struct msdc_host *host) { u32 reg; setbits_le32(&host->base->msdc_fifocs, MSDC_FIFOCS_CLR); readl_poll_timeout(&host->base->msdc_fifocs, reg, !(reg & MSDC_FIFOCS_CLR), 1000000); } static u32 msdc_fifo_rx_bytes(struct msdc_host *host) { return (readl(&host->base->msdc_fifocs) & MSDC_FIFOCS_RXCNT_M) >> MSDC_FIFOCS_RXCNT_S; } static u32 msdc_fifo_tx_bytes(struct msdc_host *host) { return (readl(&host->base->msdc_fifocs) & MSDC_FIFOCS_TXCNT_M) >> MSDC_FIFOCS_TXCNT_S; } static u32 msdc_cmd_find_resp(struct msdc_host *host, struct mmc_cmd *cmd) { u32 resp; switch (cmd->resp_type) { /* Actually, R1, R5, R6, R7 are the same */ case MMC_RSP_R1: resp = 0x1; break; case MMC_RSP_R1b: resp = 0x7; break; case MMC_RSP_R2: resp = 0x2; break; case MMC_RSP_R3: resp = 0x3; break; case MMC_RSP_NONE: default: resp = 0x0; break; } return resp; } static u32 msdc_cmd_prepare_raw_cmd(struct msdc_host *host, struct mmc_cmd *cmd, struct mmc_data *data) { u32 opcode = cmd->cmdidx; u32 resp_type = msdc_cmd_find_resp(host, cmd); uint blocksize = 0; u32 dtype = 0; u32 rawcmd = 0; switch (opcode) { case MMC_CMD_WRITE_MULTIPLE_BLOCK: case MMC_CMD_READ_MULTIPLE_BLOCK: dtype = 2; break; case MMC_CMD_WRITE_SINGLE_BLOCK: case MMC_CMD_READ_SINGLE_BLOCK: case SD_CMD_APP_SEND_SCR: case MMC_CMD_SEND_TUNING_BLOCK: case MMC_CMD_SEND_TUNING_BLOCK_HS200: dtype = 1; break; case SD_CMD_SWITCH_FUNC: /* same as MMC_CMD_SWITCH */ case SD_CMD_SEND_IF_COND: /* same as MMC_CMD_SEND_EXT_CSD */ case SD_CMD_APP_SD_STATUS: /* same as MMC_CMD_SEND_STATUS */ if (data) dtype = 1; } if (data) { if (data->flags == MMC_DATA_WRITE) rawcmd |= SDC_CMD_WR; if (data->blocks > 1) dtype = 2; blocksize = data->blocksize; } rawcmd |= ((opcode << SDC_CMD_CMD_S) & SDC_CMD_CMD_M) | ((resp_type << SDC_CMD_RSPTYP_S) & SDC_CMD_RSPTYP_M) | ((blocksize << SDC_CMD_BLK_LEN_S) & SDC_CMD_BLK_LEN_M) | ((dtype << SDC_CMD_DTYPE_S) & SDC_CMD_DTYPE_M); if (opcode == MMC_CMD_STOP_TRANSMISSION) rawcmd |= SDC_CMD_STOP; return rawcmd; } static int msdc_cmd_done(struct msdc_host *host, int events, struct mmc_cmd *cmd) { u32 *rsp = cmd->response; int ret = 0; if (cmd->resp_type & MMC_RSP_PRESENT) { if (cmd->resp_type & MMC_RSP_136) { rsp[0] = readl(&host->base->sdc_resp[3]); rsp[1] = readl(&host->base->sdc_resp[2]); rsp[2] = readl(&host->base->sdc_resp[1]); rsp[3] = readl(&host->base->sdc_resp[0]); } else { rsp[0] = readl(&host->base->sdc_resp[0]); } } if (!(events & MSDC_INT_CMDRDY)) { if (cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK && cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK_HS200) /* * should not clear fifo/interrupt as the tune data * may have alreay come. */ msdc_reset_hw(host); if (events & MSDC_INT_CMDTMO) ret = -ETIMEDOUT; else ret = -EIO; } return ret; } static bool msdc_cmd_is_ready(struct msdc_host *host) { int ret; u32 reg; /* The max busy time we can endure is 20ms */ ret = readl_poll_timeout(&host->base->sdc_sts, reg, !(reg & SDC_STS_CMDBUSY), 20000); if (ret) { pr_err("CMD bus busy detected\n"); msdc_reset_hw(host); return false; } if (host->last_resp_type == MMC_RSP_R1b && host->last_data_write) { ret = readl_poll_timeout(&host->base->msdc_ps, reg, reg & MSDC_PS_DAT0, 1000000); if (ret) { pr_err("Card stuck in programming state!\n"); msdc_reset_hw(host); return false; } } return true; } static int msdc_start_command(struct msdc_host *host, struct mmc_cmd *cmd, struct mmc_data *data) { u32 rawcmd; u32 status; u32 blocks = 0; int ret; if (!msdc_cmd_is_ready(host)) return -EIO; if ((readl(&host->base->msdc_fifocs) & MSDC_FIFOCS_TXCNT_M) >> MSDC_FIFOCS_TXCNT_S || (readl(&host->base->msdc_fifocs) & MSDC_FIFOCS_RXCNT_M) >> MSDC_FIFOCS_RXCNT_S) { pr_err("TX/RX FIFO non-empty before start of IO. Reset\n"); msdc_reset_hw(host); } msdc_fifo_clr(host); host->last_resp_type = cmd->resp_type; host->last_data_write = 0; rawcmd = msdc_cmd_prepare_raw_cmd(host, cmd, data); if (data) blocks = data->blocks; writel(CMD_INTS_MASK, &host->base->msdc_int); writel(DATA_INTS_MASK, &host->base->msdc_int); writel(blocks, &host->base->sdc_blk_num); writel(cmd->cmdarg, &host->base->sdc_arg); writel(rawcmd, &host->base->sdc_cmd); ret = readl_poll_timeout(&host->base->msdc_int, status, status & CMD_INTS_MASK, 1000000); if (ret) status = MSDC_INT_CMDTMO; return msdc_cmd_done(host, status, cmd); } static void msdc_fifo_read(struct msdc_host *host, u8 *buf, u32 size) { u32 *wbuf; while ((size_t)buf % 4) { *buf++ = readb(&host->base->msdc_rxdata); size--; } wbuf = (u32 *)buf; while (size >= 4) { *wbuf++ = readl(&host->base->msdc_rxdata); size -= 4; } buf = (u8 *)wbuf; while (size) { *buf++ = readb(&host->base->msdc_rxdata); size--; } } static void msdc_fifo_write(struct msdc_host *host, const u8 *buf, u32 size) { const u32 *wbuf; while ((size_t)buf % 4) { writeb(*buf++, &host->base->msdc_txdata); size--; } wbuf = (const u32 *)buf; while (size >= 4) { writel(*wbuf++, &host->base->msdc_txdata); size -= 4; } buf = (const u8 *)wbuf; while (size) { writeb(*buf++, &host->base->msdc_txdata); size--; } } static int msdc_pio_read(struct msdc_host *host, u8 *ptr, u32 size) { u32 status; u32 chksz; int ret = 0; while (1) { status = readl(&host->base->msdc_int); writel(status, &host->base->msdc_int); status &= DATA_INTS_MASK; if (status & MSDC_INT_DATCRCERR) { ret = -EIO; break; } if (status & MSDC_INT_DATTMO) { ret = -ETIMEDOUT; break; } chksz = min(size, (u32)MSDC_FIFO_SIZE); if (msdc_fifo_rx_bytes(host) >= chksz) { msdc_fifo_read(host, ptr, chksz); ptr += chksz; size -= chksz; } if (status & MSDC_INT_XFER_COMPL) { if (size) { pr_err("data not fully read\n"); ret = -EIO; } break; } } return ret; } static int msdc_pio_write(struct msdc_host *host, const u8 *ptr, u32 size) { u32 status; u32 chksz; int ret = 0; while (1) { status = readl(&host->base->msdc_int); writel(status, &host->base->msdc_int); status &= DATA_INTS_MASK; if (status & MSDC_INT_DATCRCERR) { ret = -EIO; break; } if (status & MSDC_INT_DATTMO) { ret = -ETIMEDOUT; break; } if (status & MSDC_INT_XFER_COMPL) { if (size) { pr_err("data not fully written\n"); ret = -EIO; } break; } chksz = min(size, (u32)MSDC_FIFO_SIZE); if (MSDC_FIFO_SIZE - msdc_fifo_tx_bytes(host) >= chksz) { msdc_fifo_write(host, ptr, chksz); ptr += chksz; size -= chksz; } } return ret; } static int msdc_start_data(struct msdc_host *host, struct mmc_data *data) { u32 size; int ret; if (data->flags == MMC_DATA_WRITE) host->last_data_write = 1; size = data->blocks * data->blocksize; if (data->flags == MMC_DATA_WRITE) ret = msdc_pio_write(host, (const u8 *)data->src, size); else ret = msdc_pio_read(host, (u8 *)data->dest, size); if (ret) { msdc_reset_hw(host); msdc_fifo_clr(host); } return ret; } static int msdc_ops_send_cmd(struct udevice *dev, struct mmc_cmd *cmd, struct mmc_data *data) { struct msdc_host *host = dev_get_priv(dev); int cmd_ret, data_ret; cmd_ret = msdc_start_command(host, cmd, data); if (cmd_ret && !(cmd_ret == -EIO && (cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK || cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200))) return cmd_ret; if (data) { data_ret = msdc_start_data(host, data); if (cmd_ret) return cmd_ret; else return data_ret; } return 0; } static void msdc_set_timeout(struct msdc_host *host, u32 ns, u32 clks) { u32 timeout, clk_ns, shift = SCLK_CYCLES_SHIFT; u32 mode = 0; host->timeout_ns = ns; host->timeout_clks = clks; if (host->sclk == 0) { timeout = 0; } else { clk_ns = 1000000000UL / host->sclk; timeout = (ns + clk_ns - 1) / clk_ns + clks; /* unit is 1048576 sclk cycles */ timeout = (timeout + (0x1 << shift) - 1) >> shift; if (host->dev_comp->clk_div_bits == 8) mode = (readl(&host->base->msdc_cfg) & MSDC_CFG_CKMOD_M) >> MSDC_CFG_CKMOD_S; else mode = (readl(&host->base->msdc_cfg) & MSDC_CFG_CKMOD_EXT_M) >> MSDC_CFG_CKMOD_EXT_S; /* DDR mode will double the clk cycles for data timeout */ timeout = mode >= 2 ? timeout * 2 : timeout; timeout = timeout > 1 ? timeout - 1 : 0; timeout = timeout > 255 ? 255 : timeout; } clrsetbits_le32(&host->base->sdc_cfg, SDC_CFG_DTOC_M, timeout << SDC_CFG_DTOC_S); } static void msdc_set_buswidth(struct msdc_host *host, u32 width) { u32 val = readl(&host->base->sdc_cfg); val &= ~SDC_CFG_BUSWIDTH_M; switch (width) { default: case 1: val |= (MSDC_BUS_1BITS << SDC_CFG_BUSWIDTH_S); break; case 4: val |= (MSDC_BUS_4BITS << SDC_CFG_BUSWIDTH_S); break; case 8: val |= (MSDC_BUS_8BITS << SDC_CFG_BUSWIDTH_S); break; } writel(val, &host->base->sdc_cfg); } static void msdc_set_mclk(struct udevice *dev, struct msdc_host *host, enum bus_mode timing, u32 hz) { u32 mode; u32 div; u32 sclk; u32 reg; if (!hz) { host->mclk = 0; clrbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKPDN); return; } if (host->dev_comp->clk_div_bits == 8) clrbits_le32(&host->base->msdc_cfg, MSDC_CFG_HS400_CK_MODE); else clrbits_le32(&host->base->msdc_cfg, MSDC_CFG_HS400_CK_MODE_EXT); if (timing == UHS_DDR50 || timing == MMC_DDR_52 || timing == MMC_HS_400) { if (timing == MMC_HS_400) mode = 0x3; else mode = 0x2; /* ddr mode and use divisor */ if (hz >= (host->src_clk_freq >> 2)) { div = 0; /* mean div = 1/4 */ sclk = host->src_clk_freq >> 2; /* sclk = clk / 4 */ } else { div = (host->src_clk_freq + ((hz << 2) - 1)) / (hz << 2); sclk = (host->src_clk_freq >> 2) / div; div = (div >> 1); } if (timing == MMC_HS_400 && hz >= (host->src_clk_freq >> 1)) { if (host->dev_comp->clk_div_bits == 8) setbits_le32(&host->base->msdc_cfg, MSDC_CFG_HS400_CK_MODE); else setbits_le32(&host->base->msdc_cfg, MSDC_CFG_HS400_CK_MODE_EXT); sclk = host->src_clk_freq >> 1; div = 0; /* div is ignore when bit18 is set */ } } else if (hz >= host->src_clk_freq) { mode = 0x1; /* no divisor */ div = 0; sclk = host->src_clk_freq; } else { mode = 0x0; /* use divisor */ if (hz >= (host->src_clk_freq >> 1)) { div = 0; /* mean div = 1/2 */ sclk = host->src_clk_freq >> 1; /* sclk = clk / 2 */ } else { div = (host->src_clk_freq + ((hz << 2) - 1)) / (hz << 2); sclk = (host->src_clk_freq >> 2) / div; } } clrbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKPDN); if (host->dev_comp->clk_div_bits == 8) { div = min(div, (u32)(MSDC_CFG_CKDIV_M >> MSDC_CFG_CKDIV_S)); clrsetbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKMOD_M | MSDC_CFG_CKDIV_M, (mode << MSDC_CFG_CKMOD_S) | (div << MSDC_CFG_CKDIV_S)); } else { div = min(div, (u32)(MSDC_CFG_CKDIV_EXT_M >> MSDC_CFG_CKDIV_EXT_S)); clrsetbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKMOD_EXT_M | MSDC_CFG_CKDIV_EXT_M, (mode << MSDC_CFG_CKMOD_EXT_S) | (div << MSDC_CFG_CKDIV_EXT_S)); } readl_poll_timeout(&host->base->msdc_cfg, reg, reg & MSDC_CFG_CKSTB, 1000000); setbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKPDN); host->sclk = sclk; host->mclk = hz; host->timing = timing; /* needed because clk changed. */ msdc_set_timeout(host, host->timeout_ns, host->timeout_clks); /* * mmc_select_hs400() will drop to 50Mhz and High speed mode, * tune result of hs200/200Mhz is not suitable for 50Mhz */ if (host->sclk <= 52000000) { writel(host->def_tune_para.iocon, &host->base->msdc_iocon); writel(host->def_tune_para.pad_tune, &host->base->pad_tune); } else { writel(host->saved_tune_para.iocon, &host->base->msdc_iocon); writel(host->saved_tune_para.pad_tune, &host->base->pad_tune); } dev_dbg(dev, "sclk: %d, timing: %d\n", host->sclk, timing); } static int msdc_ops_set_ios(struct udevice *dev) { struct msdc_plat *plat = dev_get_plat(dev); struct msdc_host *host = dev_get_priv(dev); struct mmc *mmc = &plat->mmc; uint clock = mmc->clock; msdc_set_buswidth(host, mmc->bus_width); if (mmc->clk_disable) clock = 0; else if (clock < mmc->cfg->f_min) clock = mmc->cfg->f_min; if (host->mclk != clock || host->timing != mmc->selected_mode) msdc_set_mclk(dev, host, mmc->selected_mode, clock); return 0; } static int msdc_ops_get_cd(struct udevice *dev) { struct msdc_host *host = dev_get_priv(dev); u32 val; if (host->builtin_cd) { val = readl(&host->base->msdc_ps); val = !!(val & MSDC_PS_CDSTS); return !val ^ host->cd_active_high; } #if CONFIG_IS_ENABLED(DM_GPIO) if (!host->gpio_cd.dev) return 1; return dm_gpio_get_value(&host->gpio_cd); #else return 1; #endif } static int msdc_ops_get_wp(struct udevice *dev) { #if CONFIG_IS_ENABLED(DM_GPIO) struct msdc_host *host = dev_get_priv(dev); if (!host->gpio_wp.dev) return 0; return !dm_gpio_get_value(&host->gpio_wp); #else return 0; #endif } #ifdef MMC_SUPPORTS_TUNING static u32 test_delay_bit(u32 delay, u32 bit) { bit %= PAD_DELAY_MAX; return delay & (1 << bit); } static int get_delay_len(u32 delay, u32 start_bit) { int i; for (i = 0; i < (PAD_DELAY_MAX - start_bit); i++) { if (test_delay_bit(delay, start_bit + i) == 0) return i; } return PAD_DELAY_MAX - start_bit; } static struct msdc_delay_phase get_best_delay(struct udevice *dev, struct msdc_host *host, u32 delay) { int start = 0, len = 0; int start_final = 0, len_final = 0; u8 final_phase = 0xff; struct msdc_delay_phase delay_phase = { 0, }; if (delay == 0) { dev_err(dev, "phase error: [map:%x]\n", delay); delay_phase.final_phase = final_phase; return delay_phase; } while (start < PAD_DELAY_MAX) { len = get_delay_len(delay, start); if (len_final < len) { start_final = start; len_final = len; } start += len ? len : 1; if (len >= 12 && start_final < 4) break; } /* The rule is to find the smallest delay cell */ if (start_final == 0) final_phase = (start_final + len_final / 3) % PAD_DELAY_MAX; else final_phase = (start_final + len_final / 2) % PAD_DELAY_MAX; dev_info(dev, "phase: [map:%x] [maxlen:%d] [final:%d]\n", delay, len_final, final_phase); delay_phase.maxlen = len_final; delay_phase.start = start_final; delay_phase.final_phase = final_phase; return delay_phase; } static inline void msdc_set_cmd_delay(struct msdc_host *host, u32 value) { void __iomem *tune_reg = &host->base->pad_tune; if (host->dev_comp->pad_tune0) tune_reg = &host->base->pad_tune0; if (host->top_base) clrsetbits_le32(&host->top_base->emmc_top_cmd, PAD_CMD_RXDLY, value << PAD_CMD_RXDLY_S); else clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M, value << MSDC_PAD_TUNE_CMDRDLY_S); } static inline void msdc_set_data_delay(struct msdc_host *host, u32 value) { void __iomem *tune_reg = &host->base->pad_tune; if (host->dev_comp->pad_tune0) tune_reg = &host->base->pad_tune0; if (host->top_base) clrsetbits_le32(&host->top_base->emmc_top_control, PAD_DAT_RD_RXDLY, value << PAD_DAT_RD_RXDLY_S); else clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M, value << MSDC_PAD_TUNE_DATRRDLY_S); } static int hs400_tune_response(struct udevice *dev, u32 opcode) { struct msdc_plat *plat = dev_get_plat(dev); struct msdc_host *host = dev_get_priv(dev); struct mmc *mmc = &plat->mmc; u32 cmd_delay = 0; struct msdc_delay_phase final_cmd_delay = { 0, }; u8 final_delay; void __iomem *tune_reg = &host->base->pad_cmd_tune; int cmd_err; int i, j; setbits_le32(&host->base->pad_cmd_tune, BIT(0)); if (mmc->selected_mode == MMC_HS_200 || mmc->selected_mode == UHS_SDR104) clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M, host->hs200_cmd_int_delay << MSDC_PAD_TUNE_CMDRRDLY_S); if (host->r_smpl) clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL); else setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL); for (i = 0; i < PAD_DELAY_MAX; i++) { clrsetbits_le32(tune_reg, PAD_CMD_TUNE_RX_DLY3, i << PAD_CMD_TUNE_RX_DLY3_S); for (j = 0; j < 3; j++) { cmd_err = mmc_send_tuning(mmc, opcode); if (!cmd_err) { cmd_delay |= (1 << i); } else { cmd_delay &= ~(1 << i); break; } } } final_cmd_delay = get_best_delay(dev, host, cmd_delay); clrsetbits_le32(tune_reg, PAD_CMD_TUNE_RX_DLY3, final_cmd_delay.final_phase << PAD_CMD_TUNE_RX_DLY3_S); final_delay = final_cmd_delay.final_phase; dev_info(dev, "Final cmd pad delay: %x\n", final_delay); return final_delay == 0xff ? -EIO : 0; } static int msdc_tune_response(struct udevice *dev, u32 opcode) { struct msdc_plat *plat = dev_get_plat(dev); struct msdc_host *host = dev_get_priv(dev); struct mmc *mmc = &plat->mmc; u32 rise_delay = 0, fall_delay = 0; struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0, }; struct msdc_delay_phase internal_delay_phase; u8 final_delay, final_maxlen; u32 internal_delay = 0; void __iomem *tune_reg = &host->base->pad_tune; int cmd_err; int i, j; if (host->dev_comp->pad_tune0) tune_reg = &host->base->pad_tune0; if (mmc->selected_mode == MMC_HS_200 || mmc->selected_mode == UHS_SDR104) clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M, host->hs200_cmd_int_delay << MSDC_PAD_TUNE_CMDRRDLY_S); clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL); for (i = 0; i < PAD_DELAY_MAX; i++) { clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M, i << MSDC_PAD_TUNE_CMDRDLY_S); for (j = 0; j < 3; j++) { cmd_err = mmc_send_tuning(mmc, opcode); if (!cmd_err) { rise_delay |= (1 << i); } else { rise_delay &= ~(1 << i); break; } } } final_rise_delay = get_best_delay(dev, host, rise_delay); /* if rising edge has enough margin, do not scan falling edge */ if (final_rise_delay.maxlen >= 12 || (final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4)) goto skip_fall; setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL); for (i = 0; i < PAD_DELAY_MAX; i++) { clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M, i << MSDC_PAD_TUNE_CMDRDLY_S); for (j = 0; j < 3; j++) { cmd_err = mmc_send_tuning(mmc, opcode); if (!cmd_err) { fall_delay |= (1 << i); } else { fall_delay &= ~(1 << i); break; } } } final_fall_delay = get_best_delay(dev, host, fall_delay); skip_fall: final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen); if (final_maxlen == final_rise_delay.maxlen) { clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL); clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M, final_rise_delay.final_phase << MSDC_PAD_TUNE_CMDRDLY_S); final_delay = final_rise_delay.final_phase; } else { setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL); clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M, final_fall_delay.final_phase << MSDC_PAD_TUNE_CMDRDLY_S); final_delay = final_fall_delay.final_phase; } if (host->dev_comp->async_fifo || host->hs200_cmd_int_delay) goto skip_internal; for (i = 0; i < PAD_DELAY_MAX; i++) { clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M, i << MSDC_PAD_TUNE_CMDRRDLY_S); cmd_err = mmc_send_tuning(mmc, opcode); if (!cmd_err) internal_delay |= (1 << i); } dev_dbg(dev, "Final internal delay: 0x%x\n", internal_delay); internal_delay_phase = get_best_delay(dev, host, internal_delay); clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M, internal_delay_phase.final_phase << MSDC_PAD_TUNE_CMDRRDLY_S); skip_internal: dev_dbg(dev, "Final cmd pad delay: %x\n", final_delay); return final_delay == 0xff ? -EIO : 0; } static int msdc_tune_data(struct udevice *dev, u32 opcode) { struct msdc_plat *plat = dev_get_plat(dev); struct msdc_host *host = dev_get_priv(dev); struct mmc *mmc = &plat->mmc; u32 rise_delay = 0, fall_delay = 0; struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0, }; u8 final_delay, final_maxlen; void __iomem *tune_reg = &host->base->pad_tune; int i, ret; if (host->dev_comp->pad_tune0) tune_reg = &host->base->pad_tune0; clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL); clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL); for (i = 0; i < PAD_DELAY_MAX; i++) { clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M, i << MSDC_PAD_TUNE_DATRRDLY_S); ret = mmc_send_tuning(mmc, opcode); if (!ret) { rise_delay |= (1 << i); } else { /* in this case, retune response is needed */ ret = msdc_tune_response(dev, opcode); if (ret) break; } } final_rise_delay = get_best_delay(dev, host, rise_delay); if (final_rise_delay.maxlen >= 12 || (final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4)) goto skip_fall; setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL); setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL); for (i = 0; i < PAD_DELAY_MAX; i++) { clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M, i << MSDC_PAD_TUNE_DATRRDLY_S); ret = mmc_send_tuning(mmc, opcode); if (!ret) { fall_delay |= (1 << i); } else { /* in this case, retune response is needed */ ret = msdc_tune_response(dev, opcode); if (ret) break; } } final_fall_delay = get_best_delay(dev, host, fall_delay); skip_fall: final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen); if (final_maxlen == final_rise_delay.maxlen) { clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL); clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL); clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M, final_rise_delay.final_phase << MSDC_PAD_TUNE_DATRRDLY_S); final_delay = final_rise_delay.final_phase; } else { setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL); setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL); clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M, final_fall_delay.final_phase << MSDC_PAD_TUNE_DATRRDLY_S); final_delay = final_fall_delay.final_phase; } if (mmc->selected_mode == MMC_HS_200 || mmc->selected_mode == UHS_SDR104) clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATWRDLY_M, host->hs200_write_int_delay << MSDC_PAD_TUNE_DATWRDLY_S); dev_dbg(dev, "Final data pad delay: %x\n", final_delay); return final_delay == 0xff ? -EIO : 0; } /* * MSDC IP which supports data tune + async fifo can do CMD/DAT tune * together, which can save the tuning time. */ static int msdc_tune_together(struct udevice *dev, u32 opcode) { struct msdc_plat *plat = dev_get_plat(dev); struct msdc_host *host = dev_get_priv(dev); struct mmc *mmc = &plat->mmc; u32 rise_delay = 0, fall_delay = 0; struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0, }; u8 final_delay, final_maxlen; int i, ret; clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL); clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL); for (i = 0; i < PAD_DELAY_MAX; i++) { msdc_set_cmd_delay(host, i); msdc_set_data_delay(host, i); ret = mmc_send_tuning(mmc, opcode); if (!ret) rise_delay |= (1 << i); } final_rise_delay = get_best_delay(dev, host, rise_delay); if (final_rise_delay.maxlen >= 12 || (final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4)) goto skip_fall; setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL); setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL); for (i = 0; i < PAD_DELAY_MAX; i++) { msdc_set_cmd_delay(host, i); msdc_set_data_delay(host, i); ret = mmc_send_tuning(mmc, opcode); if (!ret) fall_delay |= (1 << i); } final_fall_delay = get_best_delay(dev, host, fall_delay); skip_fall: final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen); if (final_maxlen == final_rise_delay.maxlen) { clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL); clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL); final_delay = final_rise_delay.final_phase; } else { setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL); setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL); final_delay = final_fall_delay.final_phase; } msdc_set_cmd_delay(host, final_delay); msdc_set_data_delay(host, final_delay); dev_info(dev, "Final pad delay: %x\n", final_delay); return final_delay == 0xff ? -EIO : 0; } static int msdc_execute_tuning(struct udevice *dev, uint opcode) { struct msdc_plat *plat = dev_get_plat(dev); struct msdc_host *host = dev_get_priv(dev); struct mmc *mmc = &plat->mmc; int ret = 0; if (host->dev_comp->data_tune && host->dev_comp->async_fifo) { ret = msdc_tune_together(dev, opcode); if (ret == -EIO) { dev_err(dev, "Tune fail!\n"); return ret; } if (mmc->selected_mode == MMC_HS_400) { clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL | MSDC_IOCON_W_DSPL); clrsetbits_le32(&host->base->pad_tune, MSDC_PAD_TUNE_DATRRDLY_M, 0); writel(host->hs400_ds_delay, &host->base->pad_ds_tune); /* for hs400 mode it must be set to 0 */ clrbits_le32(&host->base->patch_bit2, MSDC_PB2_CFGCRCSTS); host->hs400_mode = true; } goto tune_done; } if (mmc->selected_mode == MMC_HS_400) ret = hs400_tune_response(dev, opcode); else ret = msdc_tune_response(dev, opcode); if (ret == -EIO) { dev_err(dev, "Tune response fail!\n"); return ret; } if (mmc->selected_mode != MMC_HS_400) { ret = msdc_tune_data(dev, opcode); if (ret == -EIO) { dev_err(dev, "Tune data fail!\n"); return ret; } } tune_done: host->saved_tune_para.iocon = readl(&host->base->msdc_iocon); host->saved_tune_para.pad_tune = readl(&host->base->pad_tune); host->saved_tune_para.pad_cmd_tune = readl(&host->base->pad_cmd_tune); return ret; } #endif static void msdc_init_hw(struct msdc_host *host) { u32 val; void __iomem *tune_reg = &host->base->pad_tune; void __iomem *rd_dly0_reg = &host->base->pad_tune0; void __iomem *rd_dly1_reg = &host->base->pad_tune1; if (host->dev_comp->pad_tune0) { tune_reg = &host->base->pad_tune0; rd_dly0_reg = &host->base->dat_rd_dly[0]; rd_dly1_reg = &host->base->dat_rd_dly[1]; } /* Configure to MMC/SD mode, clock free running */ setbits_le32(&host->base->msdc_cfg, MSDC_CFG_MODE); /* Use PIO mode */ setbits_le32(&host->base->msdc_cfg, MSDC_CFG_PIO); /* Reset */ msdc_reset_hw(host); /* Enable/disable hw card detection according to fdt option */ if (host->builtin_cd) clrsetbits_le32(&host->base->msdc_ps, MSDC_PS_CDDBCE_M, (DEFAULT_CD_DEBOUNCE << MSDC_PS_CDDBCE_S) | MSDC_PS_CDEN); else clrbits_le32(&host->base->msdc_ps, MSDC_PS_CDEN); /* Clear all interrupts */ val = readl(&host->base->msdc_int); writel(val, &host->base->msdc_int); /* Enable data & cmd interrupts */ writel(DATA_INTS_MASK | CMD_INTS_MASK, &host->base->msdc_inten); if (host->top_base) { writel(0, &host->top_base->emmc_top_control); writel(0, &host->top_base->emmc_top_cmd); } else { writel(0, tune_reg); } writel(0, &host->base->msdc_iocon); if (host->r_smpl) setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL); else clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL); writel(0x403c0046, &host->base->patch_bit0); writel(0xffff4089, &host->base->patch_bit1); if (host->dev_comp->stop_clk_fix) { clrsetbits_le32(&host->base->patch_bit1, MSDC_PB1_STOP_DLY_M, 3 << MSDC_PB1_STOP_DLY_S); clrbits_le32(&host->base->sdc_fifo_cfg, SDC_FIFO_CFG_WRVALIDSEL); clrbits_le32(&host->base->sdc_fifo_cfg, SDC_FIFO_CFG_RDVALIDSEL); } if (host->dev_comp->busy_check) clrbits_le32(&host->base->patch_bit1, (1 << 7)); setbits_le32(&host->base->emmc50_cfg0, EMMC50_CFG_CFCSTS_SEL); if (host->dev_comp->async_fifo) { clrsetbits_le32(&host->base->patch_bit2, MSDC_PB2_RESPWAIT_M, 3 << MSDC_PB2_RESPWAIT_S); if (host->dev_comp->enhance_rx) { if (host->top_base) setbits_le32(&host->top_base->emmc_top_control, SDC_RX_ENH_EN); else setbits_le32(&host->base->sdc_adv_cfg0, SDC_RX_ENHANCE_EN); } else { clrsetbits_le32(&host->base->patch_bit2, MSDC_PB2_RESPSTSENSEL_M, 2 << MSDC_PB2_RESPSTSENSEL_S); clrsetbits_le32(&host->base->patch_bit2, MSDC_PB2_CRCSTSENSEL_M, 2 << MSDC_PB2_CRCSTSENSEL_S); } /* use async fifo to avoid tune internal delay */ clrbits_le32(&host->base->patch_bit2, MSDC_PB2_CFGRESP); clrbits_le32(&host->base->patch_bit2, MSDC_PB2_CFGCRCSTS); } if (host->dev_comp->data_tune) { if (host->top_base) { setbits_le32(&host->top_base->emmc_top_control, PAD_DAT_RD_RXDLY_SEL); clrbits_le32(&host->top_base->emmc_top_control, DATA_K_VALUE_SEL); setbits_le32(&host->top_base->emmc_top_cmd, PAD_CMD_RD_RXDLY_SEL); } else { setbits_le32(tune_reg, MSDC_PAD_TUNE_RD_SEL | MSDC_PAD_TUNE_CMD_SEL); clrsetbits_le32(&host->base->patch_bit0, MSDC_INT_DAT_LATCH_CK_SEL_M, host->latch_ck << MSDC_INT_DAT_LATCH_CK_SEL_S); } } else { /* choose clock tune */ if (host->top_base) setbits_le32(&host->top_base->emmc_top_control, PAD_RXDLY_SEL); else setbits_le32(tune_reg, MSDC_PAD_TUNE_RXDLYSEL); } if (host->dev_comp->builtin_pad_ctrl) { /* Set pins driving strength */ writel(MSDC_PAD_CTRL0_CLKPD | MSDC_PAD_CTRL0_CLKSMT | MSDC_PAD_CTRL0_CLKIES | (4 << MSDC_PAD_CTRL0_CLKDRVN_S) | (4 << MSDC_PAD_CTRL0_CLKDRVP_S), &host->base->pad_ctrl0); writel(MSDC_PAD_CTRL1_CMDPU | MSDC_PAD_CTRL1_CMDSMT | MSDC_PAD_CTRL1_CMDIES | (4 << MSDC_PAD_CTRL1_CMDDRVN_S) | (4 << MSDC_PAD_CTRL1_CMDDRVP_S), &host->base->pad_ctrl1); writel(MSDC_PAD_CTRL2_DATPU | MSDC_PAD_CTRL2_DATSMT | MSDC_PAD_CTRL2_DATIES | (4 << MSDC_PAD_CTRL2_DATDRVN_S) | (4 << MSDC_PAD_CTRL2_DATDRVP_S), &host->base->pad_ctrl2); } if (host->dev_comp->default_pad_dly) { /* Default pad delay may be needed if tuning not enabled */ clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CLKTDLY_M | MSDC_PAD_TUNE_CMDRRDLY_M | MSDC_PAD_TUNE_CMDRDLY_M | MSDC_PAD_TUNE_DATRRDLY_M | MSDC_PAD_TUNE_DATWRDLY_M, (0x10 << MSDC_PAD_TUNE_CLKTDLY_S) | (0x10 << MSDC_PAD_TUNE_CMDRRDLY_S) | (0x10 << MSDC_PAD_TUNE_CMDRDLY_S) | (0x10 << MSDC_PAD_TUNE_DATRRDLY_S) | (0x10 << MSDC_PAD_TUNE_DATWRDLY_S)); writel((0x10 << MSDC_PAD_TUNE0_DAT0RDDLY_S) | (0x10 << MSDC_PAD_TUNE0_DAT1RDDLY_S) | (0x10 << MSDC_PAD_TUNE0_DAT2RDDLY_S) | (0x10 << MSDC_PAD_TUNE0_DAT3RDDLY_S), rd_dly0_reg); writel((0x10 << MSDC_PAD_TUNE1_DAT4RDDLY_S) | (0x10 << MSDC_PAD_TUNE1_DAT5RDDLY_S) | (0x10 << MSDC_PAD_TUNE1_DAT6RDDLY_S) | (0x10 << MSDC_PAD_TUNE1_DAT7RDDLY_S), rd_dly1_reg); } /* Configure to enable SDIO mode otherwise sdio cmd5 won't work */ setbits_le32(&host->base->sdc_cfg, SDC_CFG_SDIO); /* disable detecting SDIO device interrupt function */ clrbits_le32(&host->base->sdc_cfg, SDC_CFG_SDIOIDE); /* Configure to default data timeout */ clrsetbits_le32(&host->base->sdc_cfg, SDC_CFG_DTOC_M, 3 << SDC_CFG_DTOC_S); host->def_tune_para.iocon = readl(&host->base->msdc_iocon); host->def_tune_para.pad_tune = readl(&host->base->pad_tune); } static void msdc_ungate_clock(struct msdc_host *host) { clk_enable(&host->src_clk); clk_enable(&host->h_clk); if (host->src_clk_cg.dev) clk_enable(&host->src_clk_cg); } static int msdc_drv_probe(struct udevice *dev) { struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); struct msdc_plat *plat = dev_get_plat(dev); struct msdc_host *host = dev_get_priv(dev); struct mmc_config *cfg = &plat->cfg; cfg->name = dev->name; host->dev_comp = (struct msdc_compatible *)dev_get_driver_data(dev); host->src_clk_freq = clk_get_rate(&host->src_clk); if (host->dev_comp->clk_div_bits == 8) cfg->f_min = host->src_clk_freq / (4 * 255); else cfg->f_min = host->src_clk_freq / (4 * 4095); if (cfg->f_min < MIN_BUS_CLK) cfg->f_min = MIN_BUS_CLK; if (cfg->f_max < cfg->f_min || cfg->f_max > host->src_clk_freq) cfg->f_max = host->src_clk_freq; cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34; host->mmc = &plat->mmc; host->timeout_ns = 100000000; host->timeout_clks = 3 * (1 << SCLK_CYCLES_SHIFT); #ifdef CONFIG_PINCTRL pinctrl_select_state(dev, "default"); #endif msdc_ungate_clock(host); msdc_init_hw(host); upriv->mmc = &plat->mmc; return 0; } static int msdc_of_to_plat(struct udevice *dev) { struct msdc_plat *plat = dev_get_plat(dev); struct msdc_host *host = dev_get_priv(dev); struct mmc_config *cfg = &plat->cfg; fdt_addr_t base, top_base; int ret; base = dev_read_addr(dev); if (base == FDT_ADDR_T_NONE) return -EINVAL; host->base = map_sysmem(base, 0); top_base = dev_read_addr_index(dev, 1); if (top_base == FDT_ADDR_T_NONE) host->top_base = NULL; else host->top_base = map_sysmem(top_base, 0); ret = mmc_of_parse(dev, cfg); if (ret) return ret; ret = clk_get_by_name(dev, "source", &host->src_clk); if (ret < 0) return ret; ret = clk_get_by_name(dev, "hclk", &host->h_clk); if (ret < 0) return ret; clk_get_by_name(dev, "source_cg", &host->src_clk_cg); /* optional */ #if CONFIG_IS_ENABLED(DM_GPIO) gpio_request_by_name(dev, "wp-gpios", 0, &host->gpio_wp, GPIOD_IS_IN); gpio_request_by_name(dev, "cd-gpios", 0, &host->gpio_cd, GPIOD_IS_IN); #endif host->hs400_ds_delay = dev_read_u32_default(dev, "hs400-ds-delay", 0); host->hs200_cmd_int_delay = dev_read_u32_default(dev, "cmd_int_delay", 0); host->hs200_write_int_delay = dev_read_u32_default(dev, "write_int_delay", 0); host->latch_ck = dev_read_u32_default(dev, "latch-ck", 0); host->r_smpl = dev_read_u32_default(dev, "r_smpl", 0); host->builtin_cd = dev_read_u32_default(dev, "builtin-cd", 0); host->cd_active_high = dev_read_bool(dev, "cd-active-high"); return 0; } static int msdc_drv_bind(struct udevice *dev) { struct msdc_plat *plat = dev_get_plat(dev); return mmc_bind(dev, &plat->mmc, &plat->cfg); } static int msdc_ops_wait_dat0(struct udevice *dev, int state, int timeout_us) { struct msdc_host *host = dev_get_priv(dev); int ret; u32 reg; ret = readl_poll_sleep_timeout(&host->base->msdc_ps, reg, !!(reg & MSDC_PS_DAT0) == !!state, 1000, /* 1 ms */ timeout_us); return ret; } static const struct dm_mmc_ops msdc_ops = { .send_cmd = msdc_ops_send_cmd, .set_ios = msdc_ops_set_ios, .get_cd = msdc_ops_get_cd, .get_wp = msdc_ops_get_wp, #ifdef MMC_SUPPORTS_TUNING .execute_tuning = msdc_execute_tuning, #endif .wait_dat0 = msdc_ops_wait_dat0, }; static const struct msdc_compatible mt7620_compat = { .clk_div_bits = 8, .pad_tune0 = false, .async_fifo = false, .data_tune = false, .busy_check = false, .stop_clk_fix = false, .enhance_rx = false, .builtin_pad_ctrl = true, .default_pad_dly = true, }; static const struct msdc_compatible mt7621_compat = { .clk_div_bits = 8, .pad_tune0 = false, .async_fifo = true, .data_tune = true, .busy_check = false, .stop_clk_fix = false, .enhance_rx = false, .builtin_pad_ctrl = true, .default_pad_dly = true, }; static const struct msdc_compatible mt7622_compat = { .clk_div_bits = 12, .pad_tune0 = true, .async_fifo = true, .data_tune = true, .busy_check = true, .stop_clk_fix = true, }; static const struct msdc_compatible mt7623_compat = { .clk_div_bits = 12, .pad_tune0 = true, .async_fifo = true, .data_tune = true, .busy_check = false, .stop_clk_fix = false, .enhance_rx = false }; static const struct msdc_compatible mt7986_compat = { .clk_div_bits = 12, .pad_tune0 = true, .async_fifo = true, .data_tune = true, .busy_check = true, .stop_clk_fix = true, .enhance_rx = true, }; static const struct msdc_compatible mt7981_compat = { .clk_div_bits = 12, .pad_tune0 = true, .async_fifo = true, .data_tune = true, .busy_check = true, .stop_clk_fix = true, }; static const struct msdc_compatible mt8512_compat = { .clk_div_bits = 12, .pad_tune0 = true, .async_fifo = true, .data_tune = true, .busy_check = true, .stop_clk_fix = true, }; static const struct msdc_compatible mt8516_compat = { .clk_div_bits = 12, .pad_tune0 = true, .async_fifo = true, .data_tune = true, .busy_check = true, .stop_clk_fix = true, }; static const struct msdc_compatible mt8183_compat = { .clk_div_bits = 12, .pad_tune0 = true, .async_fifo = true, .data_tune = true, .busy_check = true, .stop_clk_fix = true, }; static const struct udevice_id msdc_ids[] = { { .compatible = "mediatek,mt7620-mmc", .data = (ulong)&mt7620_compat }, { .compatible = "mediatek,mt7621-mmc", .data = (ulong)&mt7621_compat }, { .compatible = "mediatek,mt7622-mmc", .data = (ulong)&mt7622_compat }, { .compatible = "mediatek,mt7623-mmc", .data = (ulong)&mt7623_compat }, { .compatible = "mediatek,mt7986-mmc", .data = (ulong)&mt7986_compat }, { .compatible = "mediatek,mt7981-mmc", .data = (ulong)&mt7981_compat }, { .compatible = "mediatek,mt8512-mmc", .data = (ulong)&mt8512_compat }, { .compatible = "mediatek,mt8516-mmc", .data = (ulong)&mt8516_compat }, { .compatible = "mediatek,mt8183-mmc", .data = (ulong)&mt8183_compat }, {} }; U_BOOT_DRIVER(mtk_sd_drv) = { .name = "mtk_sd", .id = UCLASS_MMC, .of_match = msdc_ids, .of_to_plat = msdc_of_to_plat, .bind = msdc_drv_bind, .probe = msdc_drv_probe, .ops = &msdc_ops, .plat_auto = sizeof(struct msdc_plat), .priv_auto = sizeof(struct msdc_host), };