// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2018 Rockchip Electronics Co. Ltd. * * Author: Wyon Bi */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l))) /* * The offset address[7:0] is distributed two parts, one from the bit7 to bit5 * is the first address, the other from the bit4 to bit0 is the second address. * when you configure the registers, you must set both of them. The Clock Lane * and Data Lane use the same registers with the same second address, but the * first address is different. */ #define FIRST_ADDRESS(x) (((x) & 0x7) << 5) #define SECOND_ADDRESS(x) (((x) & 0x1f) << 0) #define PHY_REG(first, second) (FIRST_ADDRESS(first) | \ SECOND_ADDRESS(second)) /* Analog Register Part: reg00 */ #define BANDGAP_POWER_MASK BIT(7) #define BANDGAP_POWER_DOWN BIT(7) #define BANDGAP_POWER_ON 0 #define LANE_EN_MASK GENMASK(6, 2) #define LANE_EN_CK BIT(6) #define LANE_EN_3 BIT(5) #define LANE_EN_2 BIT(4) #define LANE_EN_1 BIT(3) #define LANE_EN_0 BIT(2) #define POWER_WORK_MASK GENMASK(1, 0) #define POWER_WORK_ENABLE UPDATE(1, 1, 0) #define POWER_WORK_DISABLE UPDATE(2, 1, 0) /* Analog Register Part: reg01 */ #define REG_SYNCRST_MASK BIT(2) #define REG_SYNCRST_RESET BIT(2) #define REG_SYNCRST_NORMAL 0 #define REG_LDOPD_MASK BIT(1) #define REG_LDOPD_POWER_DOWN BIT(1) #define REG_LDOPD_POWER_ON 0 #define REG_PLLPD_MASK BIT(0) #define REG_PLLPD_POWER_DOWN BIT(0) #define REG_PLLPD_POWER_ON 0 /* Analog Register Part: reg03 */ #define REG_FBDIV_HI_MASK BIT(5) #define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5) #define REG_PREDIV_MASK GENMASK(4, 0) #define REG_PREDIV(x) UPDATE(x, 4, 0) /* Analog Register Part: reg04 */ #define REG_FBDIV_LO_MASK GENMASK(7, 0) #define REG_FBDIV_LO(x) UPDATE(x, 7, 0) /* Analog Register Part: reg05 */ #define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4) #define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4) #define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0) #define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0) /* Analog Register Part: reg06 */ #define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4) #define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4) #define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0) #define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0) /* Analog Register Part: reg07 */ #define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4) #define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4) #define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0) #define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0) /* Analog Register Part: reg08 */ #define PLL_POST_DIV_ENABLE_MASK BIT(5) #define PLL_POST_DIV_ENABLE BIT(5) #define SAMPLE_CLOCK_DIRECTION_MASK BIT(4) #define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4) #define SAMPLE_CLOCK_DIRECTION_FORWARD 0 #define LOWFRE_EN_MASK BIT(5) #define PLL_OUTPUT_FREQUENCY_DIV_BY_1 0 #define PLL_OUTPUT_FREQUENCY_DIV_BY_2 1 /* Analog Register Part: reg0b */ #define CLOCK_LANE_VOD_RANGE_SET_MASK GENMASK(3, 0) #define CLOCK_LANE_VOD_RANGE_SET(x) UPDATE(x, 3, 0) #define VOD_MIN_RANGE 0x1 #define VOD_MID_RANGE 0x3 #define VOD_BIG_RANGE 0x7 #define VOD_MAX_RANGE 0xf /* Analog Register Part: reg1E */ #define PLL_MODE_SEL_MASK GENMASK(6, 5) #define PLL_MODE_SEL_LVDS_MODE 0 #define PLL_MODE_SEL_MIPI_MODE BIT(5) /* Digital Register Part: reg00 */ #define REG_DIG_RSTN_MASK BIT(0) #define REG_DIG_RSTN_NORMAL BIT(0) #define REG_DIG_RSTN_RESET 0 /* Digital Register Part: reg01 */ #define INVERT_TXCLKESC_MASK BIT(1) #define INVERT_TXCLKESC_ENABLE BIT(1) #define INVERT_TXCLKESC_DISABLE 0 #define INVERT_TXBYTECLKHS_MASK BIT(0) #define INVERT_TXBYTECLKHS_ENABLE BIT(0) #define INVERT_TXBYTECLKHS_DISABLE 0 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */ #define T_LPX_CNT_MASK GENMASK(5, 0) #define T_LPX_CNT(x) UPDATE(x, 5, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */ #define T_HS_ZERO_CNT_HI_MASK BIT(7) #define T_HS_ZERO_CNT_HI(x) UPDATE(x, 7, 7) #define T_HS_PREPARE_CNT_MASK GENMASK(6, 0) #define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */ #define T_HS_ZERO_CNT_LO_MASK GENMASK(5, 0) #define T_HS_ZERO_CNT_LO(x) UPDATE(x, 5, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */ #define T_HS_TRAIL_CNT_MASK GENMASK(6, 0) #define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */ #define T_HS_EXIT_CNT_LO_MASK GENMASK(4, 0) #define T_HS_EXIT_CNT_LO(x) UPDATE(x, 4, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */ #define T_CLK_POST_CNT_LO_MASK GENMASK(3, 0) #define T_CLK_POST_CNT_LO(x) UPDATE(x, 3, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */ #define LPDT_TX_PPI_SYNC_MASK BIT(2) #define LPDT_TX_PPI_SYNC_ENABLE BIT(2) #define LPDT_TX_PPI_SYNC_DISABLE 0 #define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0) #define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */ #define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0) #define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */ #define T_CLK_PRE_CNT_MASK GENMASK(3, 0) #define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */ #define T_CLK_POST_CNT_HI_MASK GENMASK(7, 6) #define T_CLK_POST_CNT_HI(x) UPDATE(x, 7, 6) #define T_TA_GO_CNT_MASK GENMASK(5, 0) #define T_TA_GO_CNT(x) UPDATE(x, 5, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */ #define T_HS_EXIT_CNT_HI_MASK BIT(6) #define T_HS_EXIT_CNT_HI(x) UPDATE(x, 6, 6) #define T_TA_SURE_CNT_MASK GENMASK(5, 0) #define T_TA_SURE_CNT(x) UPDATE(x, 5, 0) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */ #define T_TA_WAIT_CNT_MASK GENMASK(5, 0) #define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0) /* LVDS Register Part: reg00 */ #define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2) #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2) #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0 /* LVDS Register Part: reg01 */ #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7) #define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7) #define LVDS_DIGITAL_INTERNAL_DISABLE 0 /* LVDS Register Part: reg03 */ #define MODE_ENABLE_MASK GENMASK(2, 0) #define TTL_MODE_ENABLE BIT(2) #define LVDS_MODE_ENABLE BIT(1) #define MIPI_MODE_ENABLE BIT(0) /* LVDS Register Part: reg0b */ #define LVDS_LANE_EN_MASK GENMASK(7, 3) #define LVDS_DATA_LANE0_EN BIT(7) #define LVDS_DATA_LANE1_EN BIT(6) #define LVDS_DATA_LANE2_EN BIT(5) #define LVDS_DATA_LANE3_EN BIT(4) #define LVDS_CLK_LANE_EN BIT(3) #define LVDS_PLL_POWER_MASK BIT(2) #define LVDS_PLL_POWER_OFF BIT(2) #define LVDS_PLL_POWER_ON 0 #define LVDS_BANDGAP_POWER_MASK BIT(0) #define LVDS_BANDGAP_POWER_DOWN BIT(0) #define LVDS_BANDGAP_POWER_ON 0 #define DSI_PHY_RSTZ 0xa0 #define PHY_ENABLECLK BIT(2) #define DSI_PHY_STATUS 0xb0 #define PHY_LOCK BIT(0) #define msleep(a) udelay(a * 1000) enum phy_max_rate { MAX_1GHZ, MAX_2_5GHZ, }; struct clk_hw { struct clk_core *core; struct clk *clk; const struct clk_init_data *init; }; struct inno_video_phy_plat_data { const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table; const unsigned int num_timings; enum phy_max_rate max_rate; }; struct inno_dsidphy { struct udevice *dev; struct clk *ref_clk; struct clk *pclk_phy; struct clk *pclk_host; const struct inno_video_phy_plat_data *pdata; void __iomem *phy_base; void __iomem *host_base; struct reset_ctl *rst; struct phy_configure_opts_mipi_dphy dphy_cfg; struct clk *pll_clk; struct { struct clk_hw hw; u8 prediv; u16 fbdiv; unsigned long rate; } pll; }; enum { REGISTER_PART_ANALOG, REGISTER_PART_DIGITAL, REGISTER_PART_CLOCK_LANE, REGISTER_PART_DATA0_LANE, REGISTER_PART_DATA1_LANE, REGISTER_PART_DATA2_LANE, REGISTER_PART_DATA3_LANE, REGISTER_PART_LVDS, }; struct inno_mipi_dphy_timing { unsigned long rate; u8 lpx; u8 hs_prepare; u8 clk_lane_hs_zero; u8 data_lane_hs_zero; u8 hs_trail; }; static const struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = { { 110000000, 0x0, 0x20, 0x16, 0x02, 0x22}, { 150000000, 0x0, 0x06, 0x16, 0x03, 0x45}, { 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b}, { 250000000, 0x0, 0x05, 0x17, 0x05, 0x16}, { 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c}, { 400000000, 0x0, 0x64, 0x19, 0x07, 0x33}, { 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e}, { 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a}, { 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a}, { 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29}, {1000000000, 0x0, 0x09, 0x20, 0x09, 0x27}, }; static const struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = { { 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02}, { 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02}, { 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02}, { 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04}, { 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04}, { 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04}, { 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08}, { 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10}, { 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30}, { 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30}, {1000000000, 0x05, 0x08, 0x20, 0x09, 0x30}, {1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f}, {1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f}, {1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f}, {1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f}, {2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b}, {2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b}, {2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a}, {2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a}, }; static void phy_update_bits(struct inno_dsidphy *inno, u8 first, u8 second, u8 mask, u8 val) { u32 reg = PHY_REG(first, second) << 2; unsigned int tmp, orig; orig = readl(inno->phy_base + reg); tmp = orig & ~mask; tmp |= val & mask; writel(tmp, inno->phy_base + reg); } static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno, unsigned long rate) { unsigned long prate; unsigned long best_freq = 0; unsigned long fref, fout; u8 min_prediv, max_prediv; u8 _prediv, best_prediv = 1; u16 _fbdiv, best_fbdiv = 1; u32 min_delta = UINT_MAX; /* * Upstream Linux tries to read the ref_clk, while the BSP * U-Boot hard-codes this as 24MHz. Try the first, and if that * fails do the second. */ prate = clk_get_rate(inno->ref_clk); if (IS_ERR_VALUE(prate)) prate = 24000000; /* * The PLL output frequency can be calculated using a simple formula: * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2 */ fref = prate / 2; if (rate > 1000000000UL) fout = 1000000000UL; else fout = rate; /* 5Mhz < Fref / prediv < 40MHz */ min_prediv = DIV_ROUND_UP(fref, 40000000); max_prediv = fref / 5000000; for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) { u64 tmp; u32 delta; tmp = (u64)fout * _prediv; do_div(tmp, fref); _fbdiv = tmp; /* * The possible settings of feedback divider are * 12, 13, 14, 16, ~ 511 */ if (_fbdiv == 15) continue; if (_fbdiv < 12 || _fbdiv > 511) continue; tmp = (u64)_fbdiv * fref; do_div(tmp, _prediv); delta = abs(fout - tmp); if (!delta) { best_prediv = _prediv; best_fbdiv = _fbdiv; best_freq = tmp; break; } else if (delta < min_delta) { best_prediv = _prediv; best_fbdiv = _fbdiv; best_freq = tmp; min_delta = delta; } } if (best_freq) { inno->pll.prediv = best_prediv; inno->pll.fbdiv = best_fbdiv; inno->pll.rate = best_freq; } return best_freq; } static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno) { struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg; const struct inno_mipi_dphy_timing *timings; u32 t_txbyteclkhs, t_txclkesc; u32 txbyteclkhs, txclkesc, esc_clk_div; u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait; u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero; unsigned int i; timings = inno->pdata->inno_mipi_dphy_timing_table; inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate); /* Select MIPI mode */ phy_update_bits(inno, REGISTER_PART_LVDS, 0x03, MODE_ENABLE_MASK, MIPI_MODE_ENABLE); /* Configure PLL */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv)); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv)); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04, REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv)); if (inno->pdata->max_rate == MAX_2_5GHZ) { phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08, PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b, CLOCK_LANE_VOD_RANGE_SET_MASK, CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE)); } /* Enable PLL and LDO */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, REG_LDOPD_MASK | REG_PLLPD_MASK, REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON); /* Reset analog */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, REG_SYNCRST_MASK, REG_SYNCRST_RESET); udelay(1); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, REG_SYNCRST_MASK, REG_SYNCRST_NORMAL); /* Reset digital */ phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00, REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET); udelay(1); phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00, REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL); txbyteclkhs = inno->pll.rate / 8; t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs); esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000); txclkesc = txbyteclkhs / esc_clk_div; t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc); /* * The value of counter for HS Ths-exit * Ths-exit = Tpin_txbyteclkhs * value */ hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs); /* * The value of counter for HS Tclk-post * Tclk-post = Tpin_txbyteclkhs * value */ clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs); /* * The value of counter for HS Tclk-pre * Tclk-pre = Tpin_txbyteclkhs * value */ clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE); /* * The value of counter for HS Tta-go * Tta-go for turnaround * Tta-go = Ttxclkesc * value */ ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc); /* * The value of counter for HS Tta-sure * Tta-sure for turnaround * Tta-sure = Ttxclkesc * value */ ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc); /* * The value of counter for HS Tta-wait * Tta-wait for turnaround * Tta-wait = Ttxclkesc * value */ ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc); for (i = 0; i < inno->pdata->num_timings; i++) if (inno->pll.rate <= timings[i].rate) break; if (i == inno->pdata->num_timings) --i; /* * The value of counter for HS Tlpx Time * Tlpx = Tpin_txbyteclkhs * (2 + value) */ if (inno->pdata->max_rate == MAX_1GHZ) { lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs); if (lpx >= 2) lpx -= 2; } else { lpx = timings[i].lpx; } hs_prepare = timings[i].hs_prepare; hs_trail = timings[i].hs_trail; clk_lane_hs_zero = timings[i].clk_lane_hs_zero; data_lane_hs_zero = timings[i].data_lane_hs_zero; wakeup = 0x3ff; for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) { if (i == REGISTER_PART_CLOCK_LANE) hs_zero = clk_lane_hs_zero; else hs_zero = data_lane_hs_zero; phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK, T_LPX_CNT(lpx)); phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK, T_HS_PREPARE_CNT(hs_prepare)); if (inno->pdata->max_rate == MAX_2_5GHZ) phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK, T_HS_ZERO_CNT_HI(hs_zero >> 6)); phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK, T_HS_ZERO_CNT_LO(hs_zero)); phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK, T_HS_TRAIL_CNT(hs_trail)); if (inno->pdata->max_rate == MAX_2_5GHZ) phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK, T_HS_EXIT_CNT_HI(hs_exit >> 5)); phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK, T_HS_EXIT_CNT_LO(hs_exit)); if (inno->pdata->max_rate == MAX_2_5GHZ) phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK, T_CLK_POST_CNT_HI(clk_post >> 4)); phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK, T_CLK_POST_CNT_LO(clk_post)); phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK, T_CLK_PRE_CNT(clk_pre)); phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK, T_WAKEUP_CNT_HI(wakeup >> 8)); phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK, T_WAKEUP_CNT_LO(wakeup)); phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK, T_TA_GO_CNT(ta_go)); phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK, T_TA_SURE_CNT(ta_sure)); phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK, T_TA_WAIT_CNT(ta_wait)); } /* Enable all lanes on analog part */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 | LANE_EN_1 | LANE_EN_0); } static int inno_dsidphy_power_on(struct phy *phy) { struct inno_dsidphy *inno = dev_get_priv(phy->dev); clk_prepare_enable(inno->pclk_phy); clk_prepare_enable(inno->ref_clk); /* Bandgap power on */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, BANDGAP_POWER_MASK, BANDGAP_POWER_ON); /* Enable power work */ phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, POWER_WORK_MASK, POWER_WORK_ENABLE); inno_dsidphy_mipi_mode_enable(inno); return 0; } static int inno_dsidphy_power_off(struct phy *phy) { struct inno_dsidphy *inno = dev_get_priv(phy->dev); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, REG_LDOPD_MASK | REG_PLLPD_MASK, REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, POWER_WORK_MASK, POWER_WORK_DISABLE); phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN); phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0); phy_update_bits(inno, REGISTER_PART_LVDS, 0x01, LVDS_DIGITAL_INTERNAL_ENABLE_MASK, LVDS_DIGITAL_INTERNAL_DISABLE); phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK, LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN); clk_disable_unprepare(inno->ref_clk); clk_disable_unprepare(inno->pclk_phy); return 0; } static int inno_dsidphy_configure(struct phy *phy, void *params) { struct inno_dsidphy *inno = dev_get_priv(phy->dev); struct phy_configure_opts_mipi_dphy *config = params; int ret; ret = phy_mipi_dphy_config_validate(config); if (ret) return ret; memcpy(&inno->dphy_cfg, config, sizeof(inno->dphy_cfg)); return 0; } static const struct phy_ops inno_dsidphy_ops = { .configure = inno_dsidphy_configure, .power_on = inno_dsidphy_power_on, .power_off = inno_dsidphy_power_off, }; static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = { .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz, .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz), .max_rate = MAX_1GHZ, }; static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = { .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz, .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz), .max_rate = MAX_2_5GHZ, }; static int inno_dsidphy_probe(struct udevice *dev) { struct inno_dsidphy *inno = dev_get_priv(dev); int ret; inno->dev = dev; inno->pdata = (const struct inno_video_phy_plat_data *)dev_get_driver_data(dev); inno->phy_base = dev_read_addr_ptr(dev); if (IS_ERR(inno->phy_base)) return PTR_ERR(inno->phy_base); inno->ref_clk = devm_clk_get(dev, "ref"); if (IS_ERR(inno->ref_clk)) { ret = PTR_ERR(inno->ref_clk); dev_err(dev, "failed to get ref clock: %d\n", ret); return ret; } inno->pclk_phy = devm_clk_get(dev, "pclk"); if (IS_ERR(inno->pclk_phy)) { ret = PTR_ERR(inno->pclk_phy); dev_err(dev, "failed to get phy pclk: %d\n", ret); return ret; } inno->rst = devm_reset_control_get(dev, "apb"); if (IS_ERR(inno->rst)) { ret = PTR_ERR(inno->rst); dev_err(dev, "failed to get system reset control: %d\n", ret); return ret; } return 0; } static const struct udevice_id inno_dsidphy_of_match[] = { { .compatible = "rockchip,px30-dsi-dphy", .data = (long)&max_1ghz_video_phy_plat_data, }, { .compatible = "rockchip,rk3128-dsi-dphy", .data = (long)&max_1ghz_video_phy_plat_data, }, { .compatible = "rockchip,rk3368-dsi-dphy", .data = (long)&max_1ghz_video_phy_plat_data, }, { .compatible = "rockchip,rk3568-dsi-dphy", .data = (long)&max_2_5ghz_video_phy_plat_data, }, {} }; U_BOOT_DRIVER(rockchip_inno_dsidphy) = { .name = "rockchip-inno-dsidphy", .id = UCLASS_PHY, .of_match = inno_dsidphy_of_match, .probe = inno_dsidphy_probe, .ops = &inno_dsidphy_ops, .priv_auto = sizeof(struct inno_dsidphy), };