/* dnsmasq is Copyright (c) 2000-2024 Simon Kelley This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 dated June, 1991, or (at your option) version 3 dated 29 June, 2007. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "dnsmasq.h" #ifdef HAVE_LINUX_NETWORK #include #include #include /* Blergh. Radv does this, so that's our excuse. */ #ifndef SOL_NETLINK #define SOL_NETLINK 270 #endif #ifndef NETLINK_NO_ENOBUFS #define NETLINK_NO_ENOBUFS 5 #endif /* linux 2.6.19 buggers up the headers, patch it up here. */ #ifndef IFA_RTA # define IFA_RTA(r) \ ((struct rtattr*)(((char*)(r)) + NLMSG_ALIGN(sizeof(struct ifaddrmsg)))) # include #endif #ifndef NDA_RTA # define NDA_RTA(r) ((struct rtattr*)(((char*)(r)) + NLMSG_ALIGN(sizeof(struct ndmsg)))) #endif /* Used to request refresh of addresses or routes just once, * when multiple changes might be announced. */ enum async_states { STATE_NEWADDR = (1 << 0), STATE_NEWROUTE = (1 << 1), }; static struct iovec iov; static u32 netlink_pid; static unsigned nl_async(struct nlmsghdr *h, unsigned state); static void nl_multicast_state(unsigned state); char *netlink_init(void) { struct sockaddr_nl addr; socklen_t slen = sizeof(addr); addr.nl_family = AF_NETLINK; addr.nl_pad = 0; addr.nl_pid = 0; /* autobind */ addr.nl_groups = RTMGRP_IPV4_ROUTE; addr.nl_groups |= RTMGRP_IPV4_IFADDR; addr.nl_groups |= RTMGRP_IPV6_ROUTE; addr.nl_groups |= RTMGRP_IPV6_IFADDR; /* May not be able to have permission to set multicast groups don't die in that case */ if ((daemon->netlinkfd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE)) != -1) { if (bind(daemon->netlinkfd, (struct sockaddr *)&addr, sizeof(addr)) == -1) { addr.nl_groups = 0; if (errno != EPERM || bind(daemon->netlinkfd, (struct sockaddr *)&addr, sizeof(addr)) == -1) daemon->netlinkfd = -1; } } if (daemon->netlinkfd == -1 || getsockname(daemon->netlinkfd, (struct sockaddr *)&addr, &slen) == -1) die(_("cannot create netlink socket: %s"), NULL, EC_MISC); /* save pid assigned by bind() and retrieved by getsockname() */ netlink_pid = addr.nl_pid; iov.iov_len = 100; iov.iov_base = safe_malloc(iov.iov_len); return NULL; } static ssize_t netlink_recv(int flags) { struct msghdr msg; struct sockaddr_nl nladdr; ssize_t rc; while (1) { msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_name = &nladdr; msg.msg_namelen = sizeof(nladdr); msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_flags = 0; while ((rc = recvmsg(daemon->netlinkfd, &msg, flags | MSG_PEEK | MSG_TRUNC)) == -1 && errno == EINTR); /* make buffer big enough */ if (rc != -1 && (msg.msg_flags & MSG_TRUNC)) { /* Very new Linux kernels return the actual size needed, older ones always return truncated size */ if ((size_t)rc == iov.iov_len) { if (expand_buf(&iov, rc + 100)) continue; } else expand_buf(&iov, rc); } /* read it for real */ msg.msg_flags = 0; while ((rc = recvmsg(daemon->netlinkfd, &msg, flags)) == -1 && errno == EINTR); /* Make sure this is from the kernel */ if (rc == -1 || nladdr.nl_pid == 0) break; } /* discard stuff which is truncated at this point (expand_buf() may fail) */ if (msg.msg_flags & MSG_TRUNC) { rc = -1; errno = ENOMEM; } return rc; } /* family = AF_UNSPEC finds ARP table entries. family = AF_LOCAL finds MAC addresses. returns 0 on failure, 1 on success, -1 when restart is required */ int iface_enumerate(int family, void *parm, int (*callback)()) { struct sockaddr_nl addr; struct nlmsghdr *h; ssize_t len; static unsigned int seq = 0; int callback_ok = 1; unsigned state = 0; struct { struct nlmsghdr nlh; struct rtgenmsg g; } req; memset(&req, 0, sizeof(req)); memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; if (family == AF_UNSPEC) req.nlh.nlmsg_type = RTM_GETNEIGH; else if (family == AF_LOCAL) req.nlh.nlmsg_type = RTM_GETLINK; else req.nlh.nlmsg_type = RTM_GETADDR; req.nlh.nlmsg_len = sizeof(req); req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST | NLM_F_ACK; req.nlh.nlmsg_pid = 0; req.nlh.nlmsg_seq = ++seq; req.g.rtgen_family = family; /* Don't block in recvfrom if send fails */ while(retry_send(sendto(daemon->netlinkfd, (void *)&req, sizeof(req), 0, (struct sockaddr *)&addr, sizeof(addr)))); if (errno != 0) return 0; while (1) { if ((len = netlink_recv(0)) == -1) { if (errno == ENOBUFS) { nl_multicast_state(state); return -1; } return 0; } for (h = (struct nlmsghdr *)iov.iov_base; NLMSG_OK(h, (size_t)len); h = NLMSG_NEXT(h, len)) if (h->nlmsg_pid != netlink_pid || h->nlmsg_type == NLMSG_ERROR) { /* May be multicast arriving async */ state = nl_async(h, state); } else if (h->nlmsg_seq != seq) { /* May be part of incomplete response to previous request after ENOBUFS. Drop it. */ continue; } else if (h->nlmsg_type == NLMSG_DONE) return callback_ok; else if (h->nlmsg_type == RTM_NEWADDR && family != AF_UNSPEC && family != AF_LOCAL) { struct ifaddrmsg *ifa = NLMSG_DATA(h); struct rtattr *rta = IFA_RTA(ifa); unsigned int len1 = h->nlmsg_len - NLMSG_LENGTH(sizeof(*ifa)); if (ifa->ifa_family == family) { if (ifa->ifa_family == AF_INET) { struct in_addr netmask, addr, broadcast; char *label = NULL; netmask.s_addr = htonl(~(in_addr_t)0 << (32 - ifa->ifa_prefixlen)); addr.s_addr = 0; broadcast.s_addr = 0; while (RTA_OK(rta, len1)) { if (rta->rta_type == IFA_LOCAL) addr = *((struct in_addr *)(rta+1)); else if (rta->rta_type == IFA_BROADCAST) broadcast = *((struct in_addr *)(rta+1)); else if (rta->rta_type == IFA_LABEL) label = RTA_DATA(rta); rta = RTA_NEXT(rta, len1); } if (addr.s_addr && callback_ok) if (!((*callback)(addr, ifa->ifa_index, label, netmask, broadcast, parm))) callback_ok = 0; } else if (ifa->ifa_family == AF_INET6) { struct in6_addr *addrp = NULL; u32 valid = 0, preferred = 0; int flags = 0; while (RTA_OK(rta, len1)) { /* * Important comment: (from if_addr.h) * IFA_ADDRESS is prefix address, rather than local interface address. * It makes no difference for normally configured broadcast interfaces, * but for point-to-point IFA_ADDRESS is DESTINATION address, * local address is supplied in IFA_LOCAL attribute. */ if (rta->rta_type == IFA_LOCAL) addrp = ((struct in6_addr *)(rta+1)); else if (rta->rta_type == IFA_ADDRESS && !addrp) addrp = ((struct in6_addr *)(rta+1)); else if (rta->rta_type == IFA_CACHEINFO) { struct ifa_cacheinfo *ifc = (struct ifa_cacheinfo *)(rta+1); preferred = ifc->ifa_prefered; valid = ifc->ifa_valid; } rta = RTA_NEXT(rta, len1); } if (ifa->ifa_flags & IFA_F_TENTATIVE) flags |= IFACE_TENTATIVE; if (ifa->ifa_flags & IFA_F_DEPRECATED) flags |= IFACE_DEPRECATED; if (!(ifa->ifa_flags & IFA_F_TEMPORARY)) flags |= IFACE_PERMANENT; if (addrp && callback_ok) if (!((*callback)(addrp, (int)(ifa->ifa_prefixlen), (int)(ifa->ifa_scope), (int)(ifa->ifa_index), flags, (int) preferred, (int)valid, parm))) callback_ok = 0; } } } else if (h->nlmsg_type == RTM_NEWNEIGH && family == AF_UNSPEC) { struct ndmsg *neigh = NLMSG_DATA(h); struct rtattr *rta = NDA_RTA(neigh); unsigned int len1 = h->nlmsg_len - NLMSG_LENGTH(sizeof(*neigh)); size_t maclen = 0; char *inaddr = NULL, *mac = NULL; while (RTA_OK(rta, len1)) { if (rta->rta_type == NDA_DST) inaddr = (char *)(rta+1); else if (rta->rta_type == NDA_LLADDR) { maclen = rta->rta_len - sizeof(struct rtattr); mac = (char *)(rta+1); } rta = RTA_NEXT(rta, len1); } if (!(neigh->ndm_state & (NUD_NOARP | NUD_INCOMPLETE | NUD_FAILED)) && inaddr && mac && callback_ok) if (!((*callback)(neigh->ndm_family, inaddr, mac, maclen, parm))) callback_ok = 0; } #ifdef HAVE_DHCP6 else if (h->nlmsg_type == RTM_NEWLINK && family == AF_LOCAL) { struct ifinfomsg *link = NLMSG_DATA(h); struct rtattr *rta = IFLA_RTA(link); unsigned int len1 = h->nlmsg_len - NLMSG_LENGTH(sizeof(*link)); char *mac = NULL; size_t maclen = 0; while (RTA_OK(rta, len1)) { if (rta->rta_type == IFLA_ADDRESS) { maclen = rta->rta_len - sizeof(struct rtattr); mac = (char *)(rta+1); } rta = RTA_NEXT(rta, len1); } if (mac && callback_ok && !((link->ifi_flags & (IFF_LOOPBACK | IFF_POINTOPOINT))) && !((*callback)((int)link->ifi_index, (unsigned int)link->ifi_type, mac, maclen, parm))) callback_ok = 0; } #endif } } static void nl_multicast_state(unsigned state) { ssize_t len; struct nlmsghdr *h; do { /* don't risk blocking reading netlink messages here. */ while ((len = netlink_recv(MSG_DONTWAIT)) != -1) for (h = (struct nlmsghdr *)iov.iov_base; NLMSG_OK(h, (size_t)len); h = NLMSG_NEXT(h, len)) state = nl_async(h, state); } while (errno == ENOBUFS); } void netlink_multicast(void) { unsigned state = 0; nl_multicast_state(state); } static unsigned nl_async(struct nlmsghdr *h, unsigned state) { if (h->nlmsg_type == NLMSG_ERROR) { struct nlmsgerr *err = NLMSG_DATA(h); if (err->error != 0) my_syslog(LOG_ERR, _("netlink returns error: %s"), strerror(-(err->error))); } else if (h->nlmsg_pid == 0 && h->nlmsg_type == RTM_NEWROUTE && (state & STATE_NEWROUTE)==0) { /* We arrange to receive netlink multicast messages whenever the network route is added. If this happens and we still have a DNS packet in the buffer, we re-send it. This helps on DoD links, where frequently the packet which triggers dialling is a DNS query, which then gets lost. By re-sending, we can avoid the lookup failing. */ struct rtmsg *rtm = NLMSG_DATA(h); if (rtm->rtm_type == RTN_UNICAST && rtm->rtm_scope == RT_SCOPE_LINK && (rtm->rtm_table == RT_TABLE_MAIN || rtm->rtm_table == RT_TABLE_LOCAL)) { queue_event(EVENT_NEWROUTE); state |= STATE_NEWROUTE; } } else if ((h->nlmsg_type == RTM_NEWADDR || h->nlmsg_type == RTM_DELADDR) && (state & STATE_NEWADDR)==0) { queue_event(EVENT_NEWADDR); state |= STATE_NEWADDR; } return state; } #endif /* HAVE_LINUX_NETWORK */