/* * iperf, Copyright (c) 2014-2024, The Regents of the University of * California, through Lawrence Berkeley National Laboratory (subject * to receipt of any required approvals from the U.S. Dept. of * Energy). All rights reserved. * * If you have questions about your rights to use or distribute this * software, please contact Berkeley Lab's Technology Transfer * Department at TTD@lbl.gov. * * NOTICE. This software is owned by the U.S. Department of Energy. * As such, the U.S. Government has been granted for itself and others * acting on its behalf a paid-up, nonexclusive, irrevocable, * worldwide license in the Software to reproduce, prepare derivative * works, and perform publicly and display publicly. Beginning five * (5) years after the date permission to assert copyright is obtained * from the U.S. Department of Energy, and subject to any subsequent * five (5) year renewals, the U.S. Government is granted for itself * and others acting on its behalf a paid-up, nonexclusive, * irrevocable, worldwide license in the Software to reproduce, * prepare derivative works, distribute copies to the public, perform * publicly and display publicly, and to permit others to do so. * * This code is distributed under a BSD style license, see the LICENSE file * for complete information. */ #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #define __USE_GNU #include "iperf_config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(HAVE_CPUSET_SETAFFINITY) #include #include #endif /* HAVE_CPUSET_SETAFFINITY */ #if defined(__CYGWIN__) || defined(_WIN32) || defined(_WIN64) || defined(__WINDOWS__) #define CPU_SETSIZE __CPU_SETSIZE #endif /* __CYGWIN__, _WIN32, _WIN64, __WINDOWS__ */ #if defined(HAVE_SETPROCESSAFFINITYMASK) #include #endif /* HAVE_SETPROCESSAFFINITYMASK */ #include "net.h" #include "iperf.h" #include "iperf_api.h" #include "iperf_udp.h" #include "iperf_tcp.h" #if defined(HAVE_SCTP_H) #include "iperf_sctp.h" #endif /* HAVE_SCTP_H */ #include "timer.h" #include "cjson.h" #include "units.h" #include "iperf_util.h" #include "iperf_locale.h" #include "version.h" #if defined(HAVE_SSL) #include #include #include "iperf_auth.h" #endif /* HAVE_SSL */ /* Forwards. */ static int send_parameters(struct iperf_test *test); static int get_parameters(struct iperf_test *test); static int send_results(struct iperf_test *test); static int get_results(struct iperf_test *test); static int diskfile_send(struct iperf_stream *sp); static int diskfile_recv(struct iperf_stream *sp); static int JSON_write(int fd, cJSON *json); static void print_interval_results(struct iperf_test *test, struct iperf_stream *sp, cJSON *json_interval_streams); static cJSON *JSON_read(int fd); static int JSONStream_Output(struct iperf_test *test, const char* event_name, cJSON* obj); /*************************** Print usage functions ****************************/ void usage() { fputs(usage_shortstr, stderr); } void usage_long(FILE *f) { fprintf(f, usage_longstr, DEFAULT_NO_MSG_RCVD_TIMEOUT, UDP_RATE / (1024*1024), DEFAULT_PACING_TIMER, DURATION, DEFAULT_TCP_BLKSIZE / 1024, DEFAULT_UDP_BLKSIZE); } void warning(const char *str) { fprintf(stderr, "warning: %s\n", str); } /************** Getter routines for some fields inside iperf_test *************/ int iperf_get_verbose(struct iperf_test *ipt) { return ipt->verbose; } int iperf_get_control_socket(struct iperf_test *ipt) { return ipt->ctrl_sck; } int iperf_get_control_socket_mss(struct iperf_test *ipt) { return ipt->ctrl_sck_mss; } int iperf_get_test_omit(struct iperf_test *ipt) { return ipt->omit; } int iperf_get_test_duration(struct iperf_test *ipt) { return ipt->duration; } uint64_t iperf_get_test_rate(struct iperf_test *ipt) { return ipt->settings->rate; } uint64_t iperf_get_test_bitrate_limit(struct iperf_test *ipt) { return ipt->settings->bitrate_limit; } double iperf_get_test_bitrate_limit_interval(struct iperf_test *ipt) { return ipt->settings->bitrate_limit_interval; } int iperf_get_test_bitrate_limit_stats_per_interval(struct iperf_test *ipt) { return ipt->settings->bitrate_limit_stats_per_interval; } uint64_t iperf_get_test_fqrate(struct iperf_test *ipt) { return ipt->settings->fqrate; } int iperf_get_test_pacing_timer(struct iperf_test *ipt) { return ipt->settings->pacing_timer; } uint64_t iperf_get_test_bytes(struct iperf_test *ipt) { return (uint64_t) ipt->settings->bytes; } uint64_t iperf_get_test_blocks(struct iperf_test *ipt) { return (uint64_t) ipt->settings->blocks; } int iperf_get_test_burst(struct iperf_test *ipt) { return ipt->settings->burst; } char iperf_get_test_role(struct iperf_test *ipt) { return ipt->role; } int iperf_get_test_reverse(struct iperf_test *ipt) { return ipt->reverse; } int iperf_get_test_bidirectional(struct iperf_test *ipt) { return ipt->bidirectional; } int iperf_get_test_blksize(struct iperf_test *ipt) { return ipt->settings->blksize; } FILE * iperf_get_test_outfile (struct iperf_test *ipt) { return ipt->outfile; } int iperf_get_test_socket_bufsize(struct iperf_test *ipt) { return ipt->settings->socket_bufsize; } double iperf_get_test_reporter_interval(struct iperf_test *ipt) { return ipt->reporter_interval; } double iperf_get_test_stats_interval(struct iperf_test *ipt) { return ipt->stats_interval; } int iperf_get_test_num_streams(struct iperf_test *ipt) { return ipt->num_streams; } int iperf_get_test_timestamps(struct iperf_test *ipt) { return ipt->timestamps; } const char * iperf_get_test_timestamp_format(struct iperf_test *ipt) { return ipt->timestamp_format; } int iperf_get_test_repeating_payload(struct iperf_test *ipt) { return ipt->repeating_payload; } int iperf_get_test_bind_port(struct iperf_test *ipt) { return ipt->bind_port; } int iperf_get_test_server_port(struct iperf_test *ipt) { return ipt->server_port; } char* iperf_get_test_server_hostname(struct iperf_test *ipt) { return ipt->server_hostname; } char* iperf_get_test_template(struct iperf_test *ipt) { return ipt->tmp_template; } int iperf_get_test_protocol_id(struct iperf_test *ipt) { return ipt->protocol->id; } int iperf_get_test_json_output(struct iperf_test *ipt) { return ipt->json_output; } char * iperf_get_test_json_output_string(struct iperf_test *ipt) { return ipt->json_output_string; } int iperf_get_test_json_stream(struct iperf_test *ipt) { return ipt->json_stream; } int iperf_get_test_zerocopy(struct iperf_test *ipt) { return ipt->zerocopy; } int iperf_get_test_get_server_output(struct iperf_test *ipt) { return ipt->get_server_output; } char iperf_get_test_unit_format(struct iperf_test *ipt) { return ipt->settings->unit_format; } char * iperf_get_test_bind_address(struct iperf_test *ipt) { return ipt->bind_address; } char * iperf_get_test_bind_dev(struct iperf_test *ipt) { return ipt->bind_dev; } int iperf_get_test_udp_counters_64bit(struct iperf_test *ipt) { return ipt->udp_counters_64bit; } int iperf_get_test_one_off(struct iperf_test *ipt) { return ipt->one_off; } int iperf_get_test_tos(struct iperf_test *ipt) { return ipt->settings->tos; } char * iperf_get_test_extra_data(struct iperf_test *ipt) { return ipt->extra_data; } static const char iperf_version[] = IPERF_VERSION; char * iperf_get_iperf_version(void) { return (char*)iperf_version; } int iperf_get_test_no_delay(struct iperf_test *ipt) { return ipt->no_delay; } int iperf_get_test_connect_timeout(struct iperf_test *ipt) { return ipt->settings->connect_timeout; } int iperf_get_test_idle_timeout(struct iperf_test *ipt) { return ipt->settings->idle_timeout; } int iperf_get_dont_fragment(struct iperf_test *ipt) { return ipt->settings->dont_fragment; } struct iperf_time* iperf_get_test_rcv_timeout(struct iperf_test *ipt) { return &ipt->settings->rcv_timeout; } char* iperf_get_test_congestion_control(struct iperf_test* ipt) { return ipt->congestion; } int iperf_get_test_mss(struct iperf_test *ipt) { return ipt->settings->mss; } int iperf_get_mapped_v4(struct iperf_test* ipt) { return ipt->mapped_v4; } /************** Setter routines for some fields inside iperf_test *************/ void iperf_set_verbose(struct iperf_test *ipt, int verbose) { ipt->verbose = verbose; } void iperf_set_control_socket(struct iperf_test *ipt, int ctrl_sck) { ipt->ctrl_sck = ctrl_sck; } void iperf_set_test_omit(struct iperf_test *ipt, int omit) { ipt->omit = omit; } void iperf_set_test_duration(struct iperf_test *ipt, int duration) { ipt->duration = duration; } void iperf_set_test_reporter_interval(struct iperf_test *ipt, double reporter_interval) { ipt->reporter_interval = reporter_interval; } void iperf_set_test_stats_interval(struct iperf_test *ipt, double stats_interval) { ipt->stats_interval = stats_interval; } void iperf_set_test_state(struct iperf_test *ipt, signed char state) { ipt->state = state; } void iperf_set_test_blksize(struct iperf_test *ipt, int blksize) { ipt->settings->blksize = blksize; } void iperf_set_test_logfile(struct iperf_test *ipt, const char *logfile) { ipt->logfile = strdup(logfile); } void iperf_set_test_rate(struct iperf_test *ipt, uint64_t rate) { ipt->settings->rate = rate; } void iperf_set_test_bitrate_limit_maximum(struct iperf_test *ipt, uint64_t total_rate) { ipt->settings->bitrate_limit = total_rate; } void iperf_set_test_bitrate_limit_interval(struct iperf_test *ipt, uint64_t bitrate_limit_interval) { ipt->settings->bitrate_limit_interval = bitrate_limit_interval; } void iperf_set_test_bitrate_limit_stats_per_interval(struct iperf_test *ipt, uint64_t bitrate_limit_stats_per_interval) { ipt->settings->bitrate_limit_stats_per_interval = bitrate_limit_stats_per_interval; } void iperf_set_test_fqrate(struct iperf_test *ipt, uint64_t fqrate) { ipt->settings->fqrate = fqrate; } void iperf_set_test_pacing_timer(struct iperf_test *ipt, int pacing_timer) { ipt->settings->pacing_timer = pacing_timer; } void iperf_set_test_bytes(struct iperf_test *ipt, uint64_t bytes) { ipt->settings->bytes = (iperf_size_t) bytes; } void iperf_set_test_blocks(struct iperf_test *ipt, uint64_t blocks) { ipt->settings->blocks = (iperf_size_t) blocks; } void iperf_set_test_burst(struct iperf_test *ipt, int burst) { ipt->settings->burst = burst; } void iperf_set_test_bind_port(struct iperf_test *ipt, int bind_port) { ipt->bind_port = bind_port; } void iperf_set_test_server_port(struct iperf_test *ipt, int srv_port) { ipt->server_port = srv_port; } void iperf_set_test_socket_bufsize(struct iperf_test *ipt, int socket_bufsize) { ipt->settings->socket_bufsize = socket_bufsize; } void iperf_set_test_num_streams(struct iperf_test *ipt, int num_streams) { ipt->num_streams = num_streams; } void iperf_set_test_repeating_payload(struct iperf_test *ipt, int repeating_payload) { ipt->repeating_payload = repeating_payload; } void iperf_set_test_timestamps(struct iperf_test *ipt, int timestamps) { ipt->timestamps = timestamps; } void iperf_set_test_timestamp_format(struct iperf_test *ipt, const char *tf) { ipt->timestamp_format = strdup(tf); } void iperf_set_mapped_v4(struct iperf_test *ipt, const int val) { ipt->mapped_v4 = val; } void iperf_set_on_new_stream_callback(struct iperf_test* ipt, void (*callback)()) { ipt->on_new_stream = callback; } void iperf_set_on_test_start_callback(struct iperf_test* ipt, void (*callback)()) { ipt->on_test_start = callback; } void iperf_set_on_test_connect_callback(struct iperf_test* ipt, void (*callback)()) { ipt->on_connect = callback; } void iperf_set_on_test_finish_callback(struct iperf_test* ipt, void (*callback)()) { ipt->on_test_finish = callback; } static void check_sender_has_retransmits(struct iperf_test *ipt) { if (ipt->mode != RECEIVER && ipt->protocol->id == Ptcp && has_tcpinfo_retransmits()) ipt->sender_has_retransmits = 1; else ipt->sender_has_retransmits = 0; } void iperf_set_test_role(struct iperf_test *ipt, char role) { ipt->role = role; if (!ipt->reverse) { if (ipt->bidirectional) ipt->mode = BIDIRECTIONAL; else if (role == 'c') ipt->mode = SENDER; else if (role == 's') ipt->mode = RECEIVER; } else { if (role == 'c') ipt->mode = RECEIVER; else if (role == 's') ipt->mode = SENDER; } check_sender_has_retransmits(ipt); } void iperf_set_test_server_hostname(struct iperf_test *ipt, const char *server_hostname) { ipt->server_hostname = strdup(server_hostname); } void iperf_set_test_template(struct iperf_test *ipt, const char *tmp_template) { ipt->tmp_template = strdup(tmp_template); } void iperf_set_test_reverse(struct iperf_test *ipt, int reverse) { ipt->reverse = reverse; if (!ipt->reverse) { if (ipt->role == 'c') ipt->mode = SENDER; else if (ipt->role == 's') ipt->mode = RECEIVER; } else { if (ipt->role == 'c') ipt->mode = RECEIVER; else if (ipt->role == 's') ipt->mode = SENDER; } check_sender_has_retransmits(ipt); } void iperf_set_test_json_output(struct iperf_test *ipt, int json_output) { ipt->json_output = json_output; } void iperf_set_test_json_stream(struct iperf_test *ipt, int json_stream) { ipt->json_stream = json_stream; } int iperf_has_zerocopy( void ) { return has_sendfile(); } void iperf_set_test_zerocopy(struct iperf_test *ipt, int zerocopy) { ipt->zerocopy = (zerocopy && has_sendfile()); } void iperf_set_test_get_server_output(struct iperf_test *ipt, int get_server_output) { ipt->get_server_output = get_server_output; } void iperf_set_test_unit_format(struct iperf_test *ipt, char unit_format) { ipt->settings->unit_format = unit_format; } #if defined(HAVE_SSL) void iperf_set_test_client_username(struct iperf_test *ipt, const char *client_username) { ipt->settings->client_username = strdup(client_username); } void iperf_set_test_client_password(struct iperf_test *ipt, const char *client_password) { ipt->settings->client_password = strdup(client_password); } void iperf_set_test_client_rsa_pubkey(struct iperf_test *ipt, const char *client_rsa_pubkey_base64) { ipt->settings->client_rsa_pubkey = load_pubkey_from_base64(client_rsa_pubkey_base64); } void iperf_set_test_server_authorized_users(struct iperf_test *ipt, const char *server_authorized_users) { ipt->server_authorized_users = strdup(server_authorized_users); } void iperf_set_test_server_skew_threshold(struct iperf_test *ipt, int server_skew_threshold) { ipt->server_skew_threshold = server_skew_threshold; } void iperf_set_test_server_rsa_privkey(struct iperf_test *ipt, const char *server_rsa_privkey_base64) { ipt->server_rsa_private_key = load_privkey_from_base64(server_rsa_privkey_base64); } #endif // HAVE_SSL void iperf_set_test_bind_address(struct iperf_test *ipt, const char *bnd_address) { ipt->bind_address = strdup(bnd_address); } void iperf_set_test_bind_dev(struct iperf_test *ipt, const char *bnd_dev) { ipt->bind_dev = strdup(bnd_dev); } void iperf_set_test_udp_counters_64bit(struct iperf_test *ipt, int udp_counters_64bit) { ipt->udp_counters_64bit = udp_counters_64bit; } void iperf_set_test_one_off(struct iperf_test *ipt, int one_off) { ipt->one_off = one_off; } void iperf_set_test_tos(struct iperf_test *ipt, int tos) { ipt->settings->tos = tos; } void iperf_set_test_extra_data(struct iperf_test *ipt, const char *dat) { ipt->extra_data = strdup(dat); } void iperf_set_test_bidirectional(struct iperf_test* ipt, int bidirectional) { ipt->bidirectional = bidirectional; if (bidirectional) ipt->mode = BIDIRECTIONAL; else iperf_set_test_reverse(ipt, ipt->reverse); } void iperf_set_test_no_delay(struct iperf_test* ipt, int no_delay) { ipt->no_delay = no_delay; } void iperf_set_test_connect_timeout(struct iperf_test* ipt, int ct) { ipt->settings->connect_timeout = ct; } void iperf_set_test_idle_timeout(struct iperf_test* ipt, int to) { ipt->settings->idle_timeout = to; } void iperf_set_dont_fragment(struct iperf_test* ipt, int dnf) { ipt->settings->dont_fragment = dnf; } void iperf_set_test_rcv_timeout(struct iperf_test* ipt, struct iperf_time* to) { ipt->settings->rcv_timeout.secs = to->secs; ipt->settings->rcv_timeout.usecs = to->usecs; } void iperf_set_test_congestion_control(struct iperf_test* ipt, char* cc) { ipt->congestion = strdup(cc); } void iperf_set_test_mss(struct iperf_test *ipt, int mss) { ipt->settings->mss = mss; } /********************** Get/set test protocol structure ***********************/ struct protocol * get_protocol(struct iperf_test *test, int prot_id) { struct protocol *prot; SLIST_FOREACH(prot, &test->protocols, protocols) { if (prot->id == prot_id) break; } if (prot == NULL) i_errno = IEPROTOCOL; return prot; } int set_protocol(struct iperf_test *test, int prot_id) { struct protocol *prot = NULL; SLIST_FOREACH(prot, &test->protocols, protocols) { if (prot->id == prot_id) { test->protocol = prot; check_sender_has_retransmits(test); return 0; } } i_errno = IEPROTOCOL; return -1; } /************************** Iperf callback functions **************************/ void iperf_on_new_stream(struct iperf_stream *sp) { connect_msg(sp); } void iperf_on_test_start(struct iperf_test *test) { if (test->json_output) { cJSON_AddItemToObject(test->json_start, "test_start", iperf_json_printf("protocol: %s num_streams: %d blksize: %d omit: %d duration: %d bytes: %d blocks: %d reverse: %d tos: %d target_bitrate: %d bidir: %d fqrate: %d interval: %f", test->protocol->name, (int64_t) test->num_streams, (int64_t) test->settings->blksize, (int64_t) test->omit, (int64_t) test->duration, (int64_t) test->settings->bytes, (int64_t) test->settings->blocks, test->reverse?(int64_t)1:(int64_t)0, (int64_t) test->settings->tos, (int64_t) test->settings->rate, (int64_t) test->bidirectional, (uint64_t) test->settings->fqrate, test->stats_interval)); } else { if (test->verbose) { if (test->settings->bytes) iperf_printf(test, test_start_bytes, test->protocol->name, test->num_streams, test->settings->blksize, test->omit, test->settings->bytes, test->settings->tos); else if (test->settings->blocks) iperf_printf(test, test_start_blocks, test->protocol->name, test->num_streams, test->settings->blksize, test->omit, test->settings->blocks, test->settings->tos); else iperf_printf(test, test_start_time, test->protocol->name, test->num_streams, test->settings->blksize, test->omit, test->duration, test->settings->tos); } } if (test->json_stream) { JSONStream_Output(test, "start", test->json_start); } } /* This converts an IPv6 string address from IPv4-mapped format into regular ** old IPv4 format, which is easier on the eyes of network veterans. ** ** If the v6 address is not v4-mapped it is left alone. ** ** Returns 1 if the v6 address is v4-mapped, 0 otherwise. */ static int mapped_v4_to_regular_v4(char *str) { char *prefix = "::ffff:"; int prefix_len; prefix_len = strlen(prefix); if (strncmp(str, prefix, prefix_len) == 0) { int str_len = strlen(str); memmove(str, str + prefix_len, str_len - prefix_len + 1); return 1; } return 0; } void iperf_on_connect(struct iperf_test *test) { time_t now_secs; const char* rfc1123_fmt = "%a, %d %b %Y %H:%M:%S %Z"; char now_str[100]; char ipr[INET6_ADDRSTRLEN]; int port; struct sockaddr_storage sa; struct sockaddr_in *sa_inP; struct sockaddr_in6 *sa_in6P; socklen_t len; now_secs = time((time_t*) 0); (void) strftime(now_str, sizeof(now_str), rfc1123_fmt, gmtime(&now_secs)); if (test->json_output) cJSON_AddItemToObject(test->json_start, "timestamp", iperf_json_printf("time: %s timesecs: %d", now_str, (int64_t) now_secs)); else if (test->verbose) iperf_printf(test, report_time, now_str); if (test->role == 'c') { if (test->json_output) cJSON_AddItemToObject(test->json_start, "connecting_to", iperf_json_printf("host: %s port: %d", test->server_hostname, (int64_t) test->server_port)); else { iperf_printf(test, report_connecting, test->server_hostname, test->server_port); if (test->reverse) iperf_printf(test, report_reverse, test->server_hostname); } } else { len = sizeof(sa); getpeername(test->ctrl_sck, (struct sockaddr *) &sa, &len); if (getsockdomain(test->ctrl_sck) == AF_INET) { sa_inP = (struct sockaddr_in *) &sa; inet_ntop(AF_INET, &sa_inP->sin_addr, ipr, sizeof(ipr)); port = ntohs(sa_inP->sin_port); } else { sa_in6P = (struct sockaddr_in6 *) &sa; inet_ntop(AF_INET6, &sa_in6P->sin6_addr, ipr, sizeof(ipr)); port = ntohs(sa_in6P->sin6_port); } if (mapped_v4_to_regular_v4(ipr)) { iperf_set_mapped_v4(test, 1); } if (test->json_output) cJSON_AddItemToObject(test->json_start, "accepted_connection", iperf_json_printf("host: %s port: %d", ipr, (int64_t) port)); else iperf_printf(test, report_accepted, ipr, port); } if (test->json_output) { cJSON_AddStringToObject(test->json_start, "cookie", test->cookie); if (test->protocol->id == SOCK_STREAM) { if (test->settings->mss) cJSON_AddNumberToObject(test->json_start, "tcp_mss", test->settings->mss); else { cJSON_AddNumberToObject(test->json_start, "tcp_mss_default", test->ctrl_sck_mss); } } // Duplicate to make sure it appears on all output cJSON_AddNumberToObject(test->json_start, "target_bitrate", test->settings->rate); cJSON_AddNumberToObject(test->json_start, "fq_rate", test->settings->fqrate); } else if (test->verbose) { iperf_printf(test, report_cookie, test->cookie); if (test->protocol->id == SOCK_STREAM) { if (test->settings->mss) iperf_printf(test, " TCP MSS: %d\n", test->settings->mss); else { iperf_printf(test, " TCP MSS: %d (default)\n", test->ctrl_sck_mss); } } if (test->settings->rate) iperf_printf(test, " Target Bitrate: %"PRIu64"\n", test->settings->rate); } } void iperf_on_test_finish(struct iperf_test *test) { } /******************************************************************************/ /* * iperf_parse_hostname tries to split apart a string into hostname % * interface parts, which are returned in **p and **p1, if they * exist. If the %interface part is detected, and it's not an IPv6 * link local address, then returns 1, else returns 0. * * Modifies the string pointed to by spec in-place due to the use of * strtok(3). The caller should strdup(3) or otherwise copy the string * if an unmodified copy is needed. */ int iperf_parse_hostname(struct iperf_test *test, char *spec, char **p, char **p1) { struct in6_addr ipv6_addr; // Format is [%] if ((*p = strtok(spec, "%")) != NULL && (*p1 = strtok(NULL, "%")) != NULL) { /* * If an IPv6 literal for a link-local address, then * tell the caller to leave the "%" in the hostname. */ if (inet_pton(AF_INET6, *p, &ipv6_addr) == 1 && IN6_IS_ADDR_LINKLOCAL(&ipv6_addr)) { if (test->debug) { iperf_printf(test, "IPv6 link-local address literal detected\n"); } return 0; } /* * Other kind of address or FQDN. The interface name after * "%" is a shorthand for --bind-dev. */ else { if (test->debug) { iperf_printf(test, "p %s p1 %s\n", *p, *p1); } return 1; } } else { if (test->debug) { iperf_printf(test, "noparse\n"); } return 0; } } int iperf_parse_arguments(struct iperf_test *test, int argc, char **argv) { static struct option longopts[] = { {"port", required_argument, NULL, 'p'}, {"format", required_argument, NULL, 'f'}, {"interval", required_argument, NULL, 'i'}, {"daemon", no_argument, NULL, 'D'}, {"one-off", no_argument, NULL, '1'}, {"verbose", no_argument, NULL, 'V'}, {"json", no_argument, NULL, 'J'}, {"json-stream", no_argument, NULL, OPT_JSON_STREAM}, {"version", no_argument, NULL, 'v'}, {"server", no_argument, NULL, 's'}, {"client", required_argument, NULL, 'c'}, {"udp", no_argument, NULL, 'u'}, {"bitrate", required_argument, NULL, 'b'}, {"bandwidth", required_argument, NULL, 'b'}, {"server-bitrate-limit", required_argument, NULL, OPT_SERVER_BITRATE_LIMIT}, {"time", required_argument, NULL, 't'}, {"bytes", required_argument, NULL, 'n'}, {"blockcount", required_argument, NULL, 'k'}, {"length", required_argument, NULL, 'l'}, {"parallel", required_argument, NULL, 'P'}, {"reverse", no_argument, NULL, 'R'}, {"bidir", no_argument, NULL, OPT_BIDIRECTIONAL}, {"window", required_argument, NULL, 'w'}, {"bind", required_argument, NULL, 'B'}, #if defined(HAVE_SO_BINDTODEVICE) {"bind-dev", required_argument, NULL, OPT_BIND_DEV}, #endif /* HAVE_SO_BINDTODEVICE */ {"cport", required_argument, NULL, OPT_CLIENT_PORT}, {"set-mss", required_argument, NULL, 'M'}, {"no-delay", no_argument, NULL, 'N'}, {"version4", no_argument, NULL, '4'}, {"version6", no_argument, NULL, '6'}, {"tos", required_argument, NULL, 'S'}, {"dscp", required_argument, NULL, OPT_DSCP}, {"extra-data", required_argument, NULL, OPT_EXTRA_DATA}, #if defined(HAVE_FLOWLABEL) {"flowlabel", required_argument, NULL, 'L'}, #endif /* HAVE_FLOWLABEL */ {"zerocopy", no_argument, NULL, 'Z'}, {"omit", required_argument, NULL, 'O'}, {"file", required_argument, NULL, 'F'}, {"repeating-payload", no_argument, NULL, OPT_REPEATING_PAYLOAD}, {"timestamps", optional_argument, NULL, OPT_TIMESTAMPS}, #if defined(HAVE_CPU_AFFINITY) {"affinity", required_argument, NULL, 'A'}, #endif /* HAVE_CPU_AFFINITY */ {"title", required_argument, NULL, 'T'}, #if defined(HAVE_TCP_CONGESTION) {"congestion", required_argument, NULL, 'C'}, {"linux-congestion", required_argument, NULL, 'C'}, #endif /* HAVE_TCP_CONGESTION */ #if defined(HAVE_SCTP_H) {"sctp", no_argument, NULL, OPT_SCTP}, {"nstreams", required_argument, NULL, OPT_NUMSTREAMS}, {"xbind", required_argument, NULL, 'X'}, #endif {"pidfile", required_argument, NULL, 'I'}, {"logfile", required_argument, NULL, OPT_LOGFILE}, {"forceflush", no_argument, NULL, OPT_FORCEFLUSH}, {"get-server-output", no_argument, NULL, OPT_GET_SERVER_OUTPUT}, {"udp-counters-64bit", no_argument, NULL, OPT_UDP_COUNTERS_64BIT}, {"no-fq-socket-pacing", no_argument, NULL, OPT_NO_FQ_SOCKET_PACING}, #if defined(HAVE_DONT_FRAGMENT) {"dont-fragment", no_argument, NULL, OPT_DONT_FRAGMENT}, #endif /* HAVE_DONT_FRAGMENT */ #if defined(HAVE_SSL) {"username", required_argument, NULL, OPT_CLIENT_USERNAME}, {"rsa-public-key-path", required_argument, NULL, OPT_CLIENT_RSA_PUBLIC_KEY}, {"rsa-private-key-path", required_argument, NULL, OPT_SERVER_RSA_PRIVATE_KEY}, {"authorized-users-path", required_argument, NULL, OPT_SERVER_AUTHORIZED_USERS}, {"time-skew-threshold", required_argument, NULL, OPT_SERVER_SKEW_THRESHOLD}, {"use-pkcs1-padding", no_argument, NULL, OPT_USE_PKCS1_PADDING}, #endif /* HAVE_SSL */ {"fq-rate", required_argument, NULL, OPT_FQ_RATE}, {"pacing-timer", required_argument, NULL, OPT_PACING_TIMER}, {"connect-timeout", required_argument, NULL, OPT_CONNECT_TIMEOUT}, {"idle-timeout", required_argument, NULL, OPT_IDLE_TIMEOUT}, {"rcv-timeout", required_argument, NULL, OPT_RCV_TIMEOUT}, {"snd-timeout", required_argument, NULL, OPT_SND_TIMEOUT}, {"debug", optional_argument, NULL, 'd'}, {"help", no_argument, NULL, 'h'}, {NULL, 0, NULL, 0} }; int flag; int portno; int blksize; int server_flag, client_flag, rate_flag, duration_flag, rcv_timeout_flag, snd_timeout_flag; char *endptr; #if defined(HAVE_CPU_AFFINITY) char* comma; #endif /* HAVE_CPU_AFFINITY */ char* slash; char *p, *p1; struct xbind_entry *xbe; double farg; int rcv_timeout_in = 0; blksize = 0; server_flag = client_flag = rate_flag = duration_flag = rcv_timeout_flag = snd_timeout_flag =0; #if defined(HAVE_SSL) char *client_username = NULL, *client_rsa_public_key = NULL, *server_rsa_private_key = NULL; FILE *ptr_file; #endif /* HAVE_SSL */ while ((flag = getopt_long(argc, argv, "p:f:i:D1VJvsc:ub:t:n:k:l:P:Rw:B:M:N46S:L:ZO:F:A:T:C:dI:hX:", longopts, NULL)) != -1) { switch (flag) { case 'p': portno = atoi(optarg); if (portno < 1 || portno > 65535) { i_errno = IEBADPORT; return -1; } test->server_port = portno; break; case 'f': if (!optarg) { i_errno = IEBADFORMAT; return -1; } test->settings->unit_format = *optarg; if (test->settings->unit_format == 'k' || test->settings->unit_format == 'K' || test->settings->unit_format == 'm' || test->settings->unit_format == 'M' || test->settings->unit_format == 'g' || test->settings->unit_format == 'G' || test->settings->unit_format == 't' || test->settings->unit_format == 'T') { break; } else { i_errno = IEBADFORMAT; return -1; } break; case 'i': /* XXX: could potentially want separate stat collection and reporting intervals, but just set them to be the same for now */ test->stats_interval = test->reporter_interval = atof(optarg); if ((test->stats_interval < MIN_INTERVAL || test->stats_interval > MAX_INTERVAL) && test->stats_interval != 0) { i_errno = IEINTERVAL; return -1; } break; case 'D': test->daemon = 1; server_flag = 1; break; case '1': test->one_off = 1; server_flag = 1; break; case 'V': test->verbose = 1; break; case 'J': test->json_output = 1; break; case OPT_JSON_STREAM: test->json_output = 1; test->json_stream = 1; break; case 'v': printf("%s (cJSON %s)\n%s\n%s\n", version, cJSON_Version(), get_system_info(), get_optional_features()); exit(0); case 's': if (test->role == 'c') { i_errno = IESERVCLIENT; return -1; } iperf_set_test_role(test, 's'); break; case 'c': if (test->role == 's') { i_errno = IESERVCLIENT; return -1; } iperf_set_test_role(test, 'c'); iperf_set_test_server_hostname(test, optarg); if (iperf_parse_hostname(test, optarg, &p, &p1)) { #if defined(HAVE_SO_BINDTODEVICE) /* Get rid of the hostname we saved earlier. */ free(iperf_get_test_server_hostname(test)); iperf_set_test_server_hostname(test, p); iperf_set_test_bind_dev(test, p1); #else /* HAVE_SO_BINDTODEVICE */ i_errno = IEBINDDEVNOSUPPORT; return -1; #endif /* HAVE_SO_BINDTODEVICE */ } break; case 'u': set_protocol(test, Pudp); client_flag = 1; break; case OPT_SCTP: #if defined(HAVE_SCTP_H) set_protocol(test, Psctp); client_flag = 1; break; #else /* HAVE_SCTP_H */ i_errno = IEUNIMP; return -1; #endif /* HAVE_SCTP_H */ case OPT_NUMSTREAMS: #if defined(linux) || defined(__FreeBSD__) test->settings->num_ostreams = unit_atoi(optarg); client_flag = 1; #else /* linux */ i_errno = IEUNIMP; return -1; #endif /* linux */ case 'b': slash = strchr(optarg, '/'); if (slash) { *slash = '\0'; ++slash; test->settings->burst = atoi(slash); if (test->settings->burst <= 0 || test->settings->burst > MAX_BURST) { i_errno = IEBURST; return -1; } } test->settings->rate = unit_atof_rate(optarg); rate_flag = 1; client_flag = 1; break; case OPT_SERVER_BITRATE_LIMIT: slash = strchr(optarg, '/'); if (slash) { *slash = '\0'; ++slash; test->settings->bitrate_limit_interval = atof(slash); if (test->settings->bitrate_limit_interval != 0 && /* Using same Max/Min limits as for Stats Interval */ (test->settings->bitrate_limit_interval < MIN_INTERVAL || test->settings->bitrate_limit_interval > MAX_INTERVAL) ) { i_errno = IETOTALINTERVAL; return -1; } } test->settings->bitrate_limit = unit_atof_rate(optarg); server_flag = 1; break; case 't': test->duration = atoi(optarg); if (test->duration > MAX_TIME || test->duration < 0) { i_errno = IEDURATION; return -1; } duration_flag = 1; client_flag = 1; break; case 'n': test->settings->bytes = unit_atoi(optarg); client_flag = 1; break; case 'k': test->settings->blocks = unit_atoi(optarg); client_flag = 1; break; case 'l': blksize = unit_atoi(optarg); client_flag = 1; break; case 'P': test->num_streams = atoi(optarg); if (test->num_streams > MAX_STREAMS) { i_errno = IENUMSTREAMS; return -1; } client_flag = 1; break; case 'R': if (test->bidirectional) { i_errno = IEREVERSEBIDIR; return -1; } iperf_set_test_reverse(test, 1); client_flag = 1; break; case OPT_BIDIRECTIONAL: if (test->reverse) { i_errno = IEREVERSEBIDIR; return -1; } iperf_set_test_bidirectional(test, 1); client_flag = 1; break; case 'w': // XXX: This is a socket buffer, not specific to TCP // Do sanity checks as double-precision floating point // to avoid possible integer overflows. farg = unit_atof(optarg); if (farg > (double) MAX_TCP_BUFFER) { i_errno = IEBUFSIZE; return -1; } test->settings->socket_bufsize = (int) farg; client_flag = 1; break; case 'B': iperf_set_test_bind_address(test, optarg); if (iperf_parse_hostname(test, optarg, &p, &p1)) { #if defined(HAVE_SO_BINDTODEVICE) /* Get rid of the hostname we saved earlier. */ free(iperf_get_test_bind_address(test)); iperf_set_test_bind_address(test, p); iperf_set_test_bind_dev(test, p1); #else /* HAVE_SO_BINDTODEVICE */ i_errno = IEBINDDEVNOSUPPORT; return -1; #endif /* HAVE_SO_BINDTODEVICE */ } break; #if defined (HAVE_SO_BINDTODEVICE) case OPT_BIND_DEV: iperf_set_test_bind_dev(test, optarg); break; #endif /* HAVE_SO_BINDTODEVICE */ case OPT_CLIENT_PORT: portno = atoi(optarg); if (portno < 1 || portno > 65535) { i_errno = IEBADPORT; return -1; } test->bind_port = portno; break; case 'M': test->settings->mss = atoi(optarg); if (test->settings->mss > MAX_MSS) { i_errno = IEMSS; return -1; } client_flag = 1; break; case 'N': test->no_delay = 1; client_flag = 1; break; case '4': test->settings->domain = AF_INET; break; case '6': test->settings->domain = AF_INET6; break; case 'S': test->settings->tos = strtol(optarg, &endptr, 0); if (endptr == optarg || test->settings->tos < 0 || test->settings->tos > 255) { i_errno = IEBADTOS; return -1; } client_flag = 1; break; case OPT_DSCP: test->settings->tos = parse_qos(optarg); if(test->settings->tos < 0) { i_errno = IEBADTOS; return -1; } client_flag = 1; break; case OPT_EXTRA_DATA: test->extra_data = strdup(optarg); client_flag = 1; break; case 'L': #if defined(HAVE_FLOWLABEL) test->settings->flowlabel = strtol(optarg, &endptr, 0); if (endptr == optarg || test->settings->flowlabel < 1 || test->settings->flowlabel > 0xfffff) { i_errno = IESETFLOW; return -1; } client_flag = 1; #else /* HAVE_FLOWLABEL */ i_errno = IEUNIMP; return -1; #endif /* HAVE_FLOWLABEL */ break; case 'X': xbe = (struct xbind_entry *)malloc(sizeof(struct xbind_entry)); if (!xbe) { i_errno = IESETSCTPBINDX; return -1; } memset(xbe, 0, sizeof(*xbe)); xbe->name = strdup(optarg); if (!xbe->name) { i_errno = IESETSCTPBINDX; return -1; } TAILQ_INSERT_TAIL(&test->xbind_addrs, xbe, link); break; case 'Z': if (!has_sendfile()) { i_errno = IENOSENDFILE; return -1; } test->zerocopy = 1; client_flag = 1; break; case OPT_REPEATING_PAYLOAD: test->repeating_payload = 1; client_flag = 1; break; case OPT_TIMESTAMPS: iperf_set_test_timestamps(test, 1); if (optarg) { iperf_set_test_timestamp_format(test, optarg); } else { iperf_set_test_timestamp_format(test, TIMESTAMP_FORMAT); } break; case 'O': test->omit = atoi(optarg); if (test->omit < 0 || test->omit > 60) { i_errno = IEOMIT; return -1; } client_flag = 1; break; case 'F': test->diskfile_name = optarg; break; case OPT_IDLE_TIMEOUT: test->settings->idle_timeout = atoi(optarg); if (test->settings->idle_timeout < 1 || test->settings->idle_timeout > MAX_TIME) { i_errno = IEIDLETIMEOUT; return -1; } server_flag = 1; break; case OPT_RCV_TIMEOUT: rcv_timeout_in = atoi(optarg); if (rcv_timeout_in < MIN_NO_MSG_RCVD_TIMEOUT || rcv_timeout_in > MAX_TIME * SEC_TO_mS) { i_errno = IERCVTIMEOUT; return -1; } test->settings->rcv_timeout.secs = rcv_timeout_in / SEC_TO_mS; test->settings->rcv_timeout.usecs = (rcv_timeout_in % SEC_TO_mS) * mS_TO_US; rcv_timeout_flag = 1; break; #if defined(HAVE_TCP_USER_TIMEOUT) case OPT_SND_TIMEOUT: test->settings->snd_timeout = atoi(optarg); if (test->settings->snd_timeout < 0 || test->settings->snd_timeout > MAX_TIME * SEC_TO_mS) { i_errno = IESNDTIMEOUT; return -1; } snd_timeout_flag = 1; break; #endif /* HAVE_TCP_USER_TIMEOUT */ case 'A': #if defined(HAVE_CPU_AFFINITY) test->affinity = strtol(optarg, &endptr, 0); if (endptr == optarg || test->affinity < 0 || test->affinity > 1024) { i_errno = IEAFFINITY; return -1; } comma = strchr(optarg, ','); if (comma != NULL) { test->server_affinity = atoi(comma+1); if (test->server_affinity < 0 || test->server_affinity > 1024) { i_errno = IEAFFINITY; return -1; } client_flag = 1; } #else /* HAVE_CPU_AFFINITY */ i_errno = IEUNIMP; return -1; #endif /* HAVE_CPU_AFFINITY */ break; case 'T': test->title = strdup(optarg); client_flag = 1; break; case 'C': #if defined(HAVE_TCP_CONGESTION) test->congestion = strdup(optarg); client_flag = 1; #else /* HAVE_TCP_CONGESTION */ i_errno = IEUNIMP; return -1; #endif /* HAVE_TCP_CONGESTION */ break; case 'd': test->debug = 1; test->debug_level = DEBUG_LEVEL_MAX; if (optarg) { test->debug_level = atoi(optarg); if (test->debug_level < 0) test->debug_level = DEBUG_LEVEL_MAX; } break; case 'I': test->pidfile = strdup(optarg); break; case OPT_LOGFILE: test->logfile = strdup(optarg); break; case OPT_FORCEFLUSH: test->forceflush = 1; break; case OPT_GET_SERVER_OUTPUT: test->get_server_output = 1; client_flag = 1; break; case OPT_UDP_COUNTERS_64BIT: test->udp_counters_64bit = 1; break; case OPT_NO_FQ_SOCKET_PACING: #if defined(HAVE_SO_MAX_PACING_RATE) printf("Warning: --no-fq-socket-pacing is deprecated\n"); test->settings->fqrate = 0; client_flag = 1; #else /* HAVE_SO_MAX_PACING_RATE */ i_errno = IEUNIMP; return -1; #endif break; case OPT_FQ_RATE: #if defined(HAVE_SO_MAX_PACING_RATE) test->settings->fqrate = unit_atof_rate(optarg); client_flag = 1; #else /* HAVE_SO_MAX_PACING_RATE */ i_errno = IEUNIMP; return -1; #endif break; #if defined(HAVE_DONT_FRAGMENT) case OPT_DONT_FRAGMENT: test->settings->dont_fragment = 1; client_flag = 1; break; #endif /* HAVE_DONT_FRAGMENT */ #if defined(HAVE_SSL) case OPT_CLIENT_USERNAME: client_username = strdup(optarg); break; case OPT_CLIENT_RSA_PUBLIC_KEY: client_rsa_public_key = strdup(optarg); break; case OPT_SERVER_RSA_PRIVATE_KEY: server_rsa_private_key = strdup(optarg); break; case OPT_SERVER_AUTHORIZED_USERS: test->server_authorized_users = strdup(optarg); break; case OPT_SERVER_SKEW_THRESHOLD: test->server_skew_threshold = atoi(optarg); if(test->server_skew_threshold <= 0){ i_errno = IESKEWTHRESHOLD; return -1; } break; case OPT_USE_PKCS1_PADDING: test->use_pkcs1_padding = 1; break; #endif /* HAVE_SSL */ case OPT_PACING_TIMER: test->settings->pacing_timer = unit_atoi(optarg); client_flag = 1; break; case OPT_CONNECT_TIMEOUT: test->settings->connect_timeout = unit_atoi(optarg); client_flag = 1; break; case 'h': usage_long(stdout); exit(0); default: fprintf(stderr, "\n"); usage(); exit(1); } } /* Check flag / role compatibility. */ if (test->role == 'c' && server_flag) { i_errno = IESERVERONLY; return -1; } if (test->role == 's' && client_flag) { i_errno = IECLIENTONLY; return -1; } #if defined(HAVE_SSL) if (test->role == 's' && (client_username || client_rsa_public_key)){ i_errno = IECLIENTONLY; return -1; } else if (test->role == 'c' && (client_username || client_rsa_public_key) && !(client_username && client_rsa_public_key)) { i_errno = IESETCLIENTAUTH; return -1; } else if (test->role == 'c' && (client_username && client_rsa_public_key)){ char *client_password = NULL; size_t s; if (test_load_pubkey_from_file(client_rsa_public_key) < 0){ iperf_err(test, "%s\n", ERR_error_string(ERR_get_error(), NULL)); i_errno = IESETCLIENTAUTH; return -1; } /* Need to copy env var, so we can do a common free */ if ((client_password = getenv("IPERF3_PASSWORD")) != NULL) client_password = strdup(client_password); else if (iperf_getpass(&client_password, &s, stdin) < 0){ i_errno = IESETCLIENTAUTH; return -1; } test->settings->client_username = client_username; test->settings->client_password = client_password; test->settings->client_rsa_pubkey = load_pubkey_from_file(client_rsa_public_key); free(client_rsa_public_key); client_rsa_public_key = NULL; } if (test->role == 'c' && (server_rsa_private_key || test->server_authorized_users)){ i_errno = IESERVERONLY; return -1; } else if (test->role == 'c' && (test->server_skew_threshold != 0)){ i_errno = IESERVERONLY; return -1; } else if (test->role == 'c' && rcv_timeout_flag && test->mode == SENDER){ i_errno = IERVRSONLYRCVTIMEOUT; return -1; } else if (test->role == 's' && (server_rsa_private_key || test->server_authorized_users) && !(server_rsa_private_key && test->server_authorized_users)) { i_errno = IESETSERVERAUTH; return -1; } if (test->role == 's' && test->server_authorized_users) { ptr_file =fopen(test->server_authorized_users, "r"); if (!ptr_file) { i_errno = IESERVERAUTHUSERS; return -1; } fclose(ptr_file); } if (test->role == 's' && server_rsa_private_key) { test->server_rsa_private_key = load_privkey_from_file(server_rsa_private_key); if (test->server_rsa_private_key == NULL){ iperf_err(test, "%s\n", ERR_error_string(ERR_get_error(), NULL)); i_errno = IESETSERVERAUTH; return -1; } free(server_rsa_private_key); server_rsa_private_key = NULL; if(test->server_skew_threshold == 0){ // Set default value for time skew threshold test->server_skew_threshold=10; } } #endif //HAVE_SSL // File cannot be transferred using UDP because of the UDP packets header (packet number, etc.) if(test->role == 'c' && test->diskfile_name != (char*) 0 && test->protocol->id == Pudp) { i_errno = IEUDPFILETRANSFER; return -1; } if (blksize == 0) { if (test->protocol->id == Pudp) blksize = 0; /* try to dynamically determine from MSS */ else if (test->protocol->id == Psctp) blksize = DEFAULT_SCTP_BLKSIZE; else blksize = DEFAULT_TCP_BLKSIZE; } if ((test->protocol->id != Pudp && blksize <= 0) || blksize > MAX_BLOCKSIZE) { i_errno = IEBLOCKSIZE; return -1; } if (test->protocol->id == Pudp && (blksize > 0 && (blksize < MIN_UDP_BLOCKSIZE || blksize > MAX_UDP_BLOCKSIZE))) { i_errno = IEUDPBLOCKSIZE; return -1; } test->settings->blksize = blksize; if (!rate_flag) test->settings->rate = test->protocol->id == Pudp ? UDP_RATE : 0; /* if no bytes or blocks specified, nor a duration_flag, and we have -F, ** get the file-size as the bytes count to be transferred */ if (test->settings->bytes == 0 && test->settings->blocks == 0 && ! duration_flag && test->diskfile_name != (char*) 0 && test->role == 'c' ){ struct stat st; if( stat(test->diskfile_name, &st) == 0 ){ iperf_size_t file_bytes = st.st_size; test->settings->bytes = file_bytes; if (test->debug) printf("End condition set to file-size: %"PRIu64" bytes\n", test->settings->bytes); } // if failing to read file stat, it should fallback to default duration mode } if ((test->settings->bytes != 0 || test->settings->blocks != 0) && ! duration_flag) test->duration = 0; /* Disallow specifying multiple test end conditions. The code actually ** works just fine without this prohibition. As soon as any one of the ** three possible end conditions is met, the test ends. So this check ** could be removed if desired. */ if ((duration_flag && test->settings->bytes != 0) || (duration_flag && test->settings->blocks != 0) || (test->settings->bytes != 0 && test->settings->blocks != 0)) { i_errno = IEENDCONDITIONS; return -1; } /* For subsequent calls to getopt */ #ifdef __APPLE__ optreset = 1; #endif optind = 0; if ((test->role != 'c') && (test->role != 's')) { i_errno = IENOROLE; return -1; } /* Set Total-rate average interval to multiplicity of State interval */ if (test->settings->bitrate_limit_interval != 0) { test->settings->bitrate_limit_stats_per_interval = (test->settings->bitrate_limit_interval <= test->stats_interval ? 1 : round(test->settings->bitrate_limit_interval/test->stats_interval) ); } /* Show warning if JSON output is used with explicit report format */ if ((test->json_output) && (test->settings->unit_format != 'a')) { warning("Report format (-f) flag ignored with JSON output (-J)"); } /* Show warning if JSON output is used with verbose or debug flags */ if (test->json_output && test->verbose) { warning("Verbose output (-v) may interfere with JSON output (-J)"); } if (test->json_output && test->debug) { warning("Debug output (-d) may interfere with JSON output (-J)"); } return 0; } /* * Open the file specified by test->logfile and set test->outfile to its' FD. */ int iperf_open_logfile(struct iperf_test *test) { test->outfile = fopen(test->logfile, "a+"); if (test->outfile == NULL) { i_errno = IELOGFILE; return -1; } return 0; } void iperf_close_logfile(struct iperf_test *test) { if (test->outfile && test->outfile != stdout) { fclose(test->outfile); test->outfile = NULL; } } int iperf_set_send_state(struct iperf_test *test, signed char state) { if (test->ctrl_sck >= 0) { test->state = state; if (Nwrite(test->ctrl_sck, (char*) &state, sizeof(state), Ptcp) < 0) { i_errno = IESENDMESSAGE; return -1; } } return 0; } void iperf_check_throttle(struct iperf_stream *sp, struct iperf_time *nowP) { struct iperf_time temp_time; double seconds; uint64_t bits_per_second; if (sp->test->done || sp->test->settings->rate == 0) return; iperf_time_diff(&sp->result->start_time_fixed, nowP, &temp_time); seconds = iperf_time_in_secs(&temp_time); bits_per_second = sp->result->bytes_sent * 8 / seconds; if (bits_per_second < sp->test->settings->rate) { sp->green_light = 1; } else { sp->green_light = 0; } } /* Verify that average traffic is not greater than the specified limit */ void iperf_check_total_rate(struct iperf_test *test, iperf_size_t last_interval_bytes_transferred) { double seconds; uint64_t bits_per_second; iperf_size_t total_bytes; int i; if (test->done || test->settings->bitrate_limit == 0) // Continue only if check should be done return; /* Add last inetrval's transferred bytes to the array */ if (++test->bitrate_limit_last_interval_index >= test->settings->bitrate_limit_stats_per_interval) test->bitrate_limit_last_interval_index = 0; test->bitrate_limit_intervals_traffic_bytes[test->bitrate_limit_last_interval_index] = last_interval_bytes_transferred; /* Ensure that enough stats periods passed to allow averaging throughput */ test->bitrate_limit_stats_count += 1; if (test->bitrate_limit_stats_count < test->settings->bitrate_limit_stats_per_interval) return; /* Calculating total bytes traffic to be averaged */ for (i = 0, total_bytes = 0; i < test->settings->bitrate_limit_stats_per_interval; i++) { total_bytes += test->bitrate_limit_intervals_traffic_bytes[i]; } seconds = test->stats_interval * test->settings->bitrate_limit_stats_per_interval; bits_per_second = total_bytes * 8 / seconds; if (test->debug) { iperf_printf(test,"Interval %" PRIu64 " - throughput %" PRIu64 " bps (limit %" PRIu64 ")\n", test->bitrate_limit_stats_count, bits_per_second, test->settings->bitrate_limit); } if (bits_per_second > test->settings->bitrate_limit) { if (iperf_get_verbose(test)) iperf_err(test, "Total throughput of %" PRIu64 " bps exceeded %" PRIu64 " bps limit", bits_per_second, test->settings->bitrate_limit); test->bitrate_limit_exceeded = 1; } } int iperf_send_mt(struct iperf_stream *sp) { register int multisend, r, streams_active; register struct iperf_test *test = sp->test; struct iperf_time now; int no_throttle_check; /* Can we do multisend mode? */ if (test->settings->burst != 0) multisend = test->settings->burst; else if (test->settings->rate == 0) multisend = test->multisend; else multisend = 1; /* nope */ /* Should bitrate throttle be checked for every send */ no_throttle_check = test->settings->rate != 0 && test->settings->burst == 0; for (; multisend > 0; --multisend) { if (no_throttle_check) iperf_time_now(&now); streams_active = 0; { if (sp->green_light && sp->sender) { // XXX If we hit one of these ending conditions maybe // want to stop even trying to send something? if (multisend > 1 && test->settings->bytes != 0 && test->bytes_sent >= test->settings->bytes) break; if (multisend > 1 && test->settings->blocks != 0 && test->blocks_sent >= test->settings->blocks) break; if ((r = sp->snd(sp)) < 0) { if (r == NET_SOFTERROR) break; i_errno = IESTREAMWRITE; return r; } streams_active = 1; test->bytes_sent += r; if (!sp->pending_size) ++test->blocks_sent; if (no_throttle_check) iperf_check_throttle(sp, &now); } } if (!streams_active) break; } if (!no_throttle_check) { /* Throttle check if was not checked for each send */ iperf_time_now(&now); if (sp->sender) iperf_check_throttle(sp, &now); } return 0; } int iperf_recv_mt(struct iperf_stream *sp) { int r; struct iperf_test *test = sp->test; if ((r = sp->rcv(sp)) < 0) { i_errno = IESTREAMREAD; return r; } test->bytes_received += r; ++test->blocks_received; return 0; } int iperf_init_test(struct iperf_test *test) { struct iperf_time now; struct iperf_stream *sp; if (test->protocol->init) { if (test->protocol->init(test) < 0) return -1; } /* Init each stream. */ if (iperf_time_now(&now) < 0) { i_errno = IEINITTEST; return -1; } SLIST_FOREACH(sp, &test->streams, streams) { sp->result->start_time = sp->result->start_time_fixed = now; } if (test->on_test_start) test->on_test_start(test); return 0; } static void send_timer_proc(TimerClientData client_data, struct iperf_time *nowP) { struct iperf_stream *sp = client_data.p; /* All we do here is set or clear the flag saying that this stream may ** be sent to. The actual sending gets done in the send proc, after ** checking the flag. */ iperf_check_throttle(sp, nowP); } int iperf_create_send_timers(struct iperf_test * test) { struct iperf_time now; struct iperf_stream *sp; TimerClientData cd; if (iperf_time_now(&now) < 0) { i_errno = IEINITTEST; return -1; } SLIST_FOREACH(sp, &test->streams, streams) { sp->green_light = 1; if (test->settings->rate != 0 && sp->sender) { cd.p = sp; sp->send_timer = tmr_create(NULL, send_timer_proc, cd, test->settings->pacing_timer, 1); if (sp->send_timer == NULL) { i_errno = IEINITTEST; return -1; } } } return 0; } #if defined(HAVE_SSL) int test_is_authorized(struct iperf_test *test){ if ( !(test->server_rsa_private_key && test->server_authorized_users)) { return 0; } if (test->settings->authtoken){ char *username = NULL, *password = NULL; time_t ts; int rc = decode_auth_setting(test->debug, test->settings->authtoken, test->server_rsa_private_key, &username, &password, &ts, test->use_pkcs1_padding); if (rc) { return -1; } int ret = check_authentication(username, password, ts, test->server_authorized_users, test->server_skew_threshold); if (ret == 0){ if (test->debug) { iperf_printf(test, report_authentication_succeeded, username, ts); } free(username); free(password); return 0; } else { if (test->debug) { iperf_printf(test, report_authentication_failed, ret, username, ts); } free(username); free(password); return -1; } } return -1; } #endif //HAVE_SSL /** * iperf_exchange_parameters - handles the param_Exchange part for client * */ int iperf_exchange_parameters(struct iperf_test *test) { int s; int32_t err; if (test->role == 'c') { if (send_parameters(test) < 0) return -1; } else { if (get_parameters(test) < 0) return -1; #if defined(HAVE_SSL) if (test_is_authorized(test) < 0){ if (iperf_set_send_state(test, SERVER_ERROR) != 0) return -1; i_errno = IEAUTHTEST; err = htonl(i_errno); if (Nwrite(test->ctrl_sck, (char*) &err, sizeof(err), Ptcp) < 0) { i_errno = IECTRLWRITE; return -1; } return -1; } #endif //HAVE_SSL if ((s = test->protocol->listen(test)) < 0) { if (iperf_set_send_state(test, SERVER_ERROR) != 0) return -1; err = htonl(i_errno); if (Nwrite(test->ctrl_sck, (char*) &err, sizeof(err), Ptcp) < 0) { i_errno = IECTRLWRITE; return -1; } err = htonl(errno); if (Nwrite(test->ctrl_sck, (char*) &err, sizeof(err), Ptcp) < 0) { i_errno = IECTRLWRITE; return -1; } return -1; } FD_SET(s, &test->read_set); test->max_fd = (s > test->max_fd) ? s : test->max_fd; test->prot_listener = s; // Send the control message to create streams and start the test if (iperf_set_send_state(test, CREATE_STREAMS) != 0) return -1; } return 0; } /*************************************************************/ int iperf_exchange_results(struct iperf_test *test) { if (test->role == 'c') { /* Send results to server. */ if (send_results(test) < 0) return -1; /* Get server results. */ if (get_results(test) < 0) return -1; } else { /* Get client results. */ if (get_results(test) < 0) return -1; /* Send results to client. */ if (send_results(test) < 0) return -1; } return 0; } /*************************************************************/ static int send_parameters(struct iperf_test *test) { int r = 0; cJSON *j; j = cJSON_CreateObject(); if (j == NULL) { i_errno = IESENDPARAMS; r = -1; } else { if (test->protocol->id == Ptcp) cJSON_AddTrueToObject(j, "tcp"); else if (test->protocol->id == Pudp) cJSON_AddTrueToObject(j, "udp"); else if (test->protocol->id == Psctp) cJSON_AddTrueToObject(j, "sctp"); cJSON_AddNumberToObject(j, "omit", test->omit); if (test->server_affinity != -1) cJSON_AddNumberToObject(j, "server_affinity", test->server_affinity); cJSON_AddNumberToObject(j, "time", test->duration); cJSON_AddNumberToObject(j, "num", test->settings->bytes); cJSON_AddNumberToObject(j, "blockcount", test->settings->blocks); if (test->settings->mss) cJSON_AddNumberToObject(j, "MSS", test->settings->mss); if (test->no_delay) cJSON_AddTrueToObject(j, "nodelay"); cJSON_AddNumberToObject(j, "parallel", test->num_streams); if (test->reverse) cJSON_AddTrueToObject(j, "reverse"); if (test->bidirectional) cJSON_AddTrueToObject(j, "bidirectional"); if (test->settings->socket_bufsize) cJSON_AddNumberToObject(j, "window", test->settings->socket_bufsize); if (test->settings->blksize) cJSON_AddNumberToObject(j, "len", test->settings->blksize); if (test->settings->rate) cJSON_AddNumberToObject(j, "bandwidth", test->settings->rate); if (test->settings->fqrate) cJSON_AddNumberToObject(j, "fqrate", test->settings->fqrate); if (test->settings->pacing_timer) cJSON_AddNumberToObject(j, "pacing_timer", test->settings->pacing_timer); if (test->settings->burst) cJSON_AddNumberToObject(j, "burst", test->settings->burst); if (test->settings->tos) cJSON_AddNumberToObject(j, "TOS", test->settings->tos); if (test->settings->flowlabel) cJSON_AddNumberToObject(j, "flowlabel", test->settings->flowlabel); if (test->title) cJSON_AddStringToObject(j, "title", test->title); if (test->extra_data) cJSON_AddStringToObject(j, "extra_data", test->extra_data); if (test->congestion) cJSON_AddStringToObject(j, "congestion", test->congestion); if (test->congestion_used) cJSON_AddStringToObject(j, "congestion_used", test->congestion_used); if (test->get_server_output) cJSON_AddNumberToObject(j, "get_server_output", iperf_get_test_get_server_output(test)); if (test->udp_counters_64bit) cJSON_AddNumberToObject(j, "udp_counters_64bit", iperf_get_test_udp_counters_64bit(test)); if (test->repeating_payload) cJSON_AddNumberToObject(j, "repeating_payload", test->repeating_payload); if (test->zerocopy) cJSON_AddNumberToObject(j, "zerocopy", test->zerocopy); #if defined(HAVE_DONT_FRAGMENT) if (test->settings->dont_fragment) cJSON_AddNumberToObject(j, "dont_fragment", test->settings->dont_fragment); #endif /* HAVE_DONT_FRAGMENT */ #if defined(HAVE_SSL) /* Send authentication parameters */ if (test->settings->client_username && test->settings->client_password && test->settings->client_rsa_pubkey){ int rc = encode_auth_setting(test->settings->client_username, test->settings->client_password, test->settings->client_rsa_pubkey, &test->settings->authtoken, test->use_pkcs1_padding); if (rc) { cJSON_Delete(j); i_errno = IESENDPARAMS; return -1; } cJSON_AddStringToObject(j, "authtoken", test->settings->authtoken); } #endif // HAVE_SSL cJSON_AddStringToObject(j, "client_version", IPERF_VERSION); if (test->debug) { char *str = cJSON_Print(j); printf("send_parameters:\n%s\n", str); cJSON_free(str); } if (JSON_write(test->ctrl_sck, j) < 0) { i_errno = IESENDPARAMS; r = -1; } cJSON_Delete(j); } return r; } /*************************************************************/ static int get_parameters(struct iperf_test *test) { int r = 0; cJSON *j; cJSON *j_p; j = JSON_read(test->ctrl_sck); if (j == NULL) { i_errno = IERECVPARAMS; r = -1; } else { if (test->debug) { char *str; str = cJSON_Print(j); printf("get_parameters:\n%s\n", str ); cJSON_free(str); } if ((j_p = cJSON_GetObjectItem(j, "tcp")) != NULL) set_protocol(test, Ptcp); if ((j_p = cJSON_GetObjectItem(j, "udp")) != NULL) set_protocol(test, Pudp); if ((j_p = cJSON_GetObjectItem(j, "sctp")) != NULL) set_protocol(test, Psctp); if ((j_p = cJSON_GetObjectItem(j, "omit")) != NULL) test->omit = j_p->valueint; if ((j_p = cJSON_GetObjectItem(j, "server_affinity")) != NULL) test->server_affinity = j_p->valueint; if ((j_p = cJSON_GetObjectItem(j, "time")) != NULL) test->duration = j_p->valueint; test->settings->bytes = 0; if ((j_p = cJSON_GetObjectItem(j, "num")) != NULL) test->settings->bytes = j_p->valueint; test->settings->blocks = 0; if ((j_p = cJSON_GetObjectItem(j, "blockcount")) != NULL) test->settings->blocks = j_p->valueint; if ((j_p = cJSON_GetObjectItem(j, "MSS")) != NULL) test->settings->mss = j_p->valueint; if ((j_p = cJSON_GetObjectItem(j, "nodelay")) != NULL) test->no_delay = 1; if ((j_p = cJSON_GetObjectItem(j, "parallel")) != NULL) test->num_streams = j_p->valueint; if ((j_p = cJSON_GetObjectItem(j, "reverse")) != NULL) iperf_set_test_reverse(test, 1); if ((j_p = cJSON_GetObjectItem(j, "bidirectional")) != NULL) iperf_set_test_bidirectional(test, 1); if ((j_p = cJSON_GetObjectItem(j, "window")) != NULL) test->settings->socket_bufsize = j_p->valueint; if ((j_p = cJSON_GetObjectItem(j, "len")) != NULL) test->settings->blksize = j_p->valueint; if ((j_p = cJSON_GetObjectItem(j, "bandwidth")) != NULL) test->settings->rate = j_p->valueint; if ((j_p = cJSON_GetObjectItem(j, "fqrate")) != NULL) test->settings->fqrate = j_p->valueint; if ((j_p = cJSON_GetObjectItem(j, "pacing_timer")) != NULL) test->settings->pacing_timer = j_p->valueint; if ((j_p = cJSON_GetObjectItem(j, "burst")) != NULL) test->settings->burst = j_p->valueint; if ((j_p = cJSON_GetObjectItem(j, "TOS")) != NULL) test->settings->tos = j_p->valueint; if ((j_p = cJSON_GetObjectItem(j, "flowlabel")) != NULL) test->settings->flowlabel = j_p->valueint; if ((j_p = cJSON_GetObjectItem(j, "title")) != NULL) test->title = strdup(j_p->valuestring); if ((j_p = cJSON_GetObjectItem(j, "extra_data")) != NULL) test->extra_data = strdup(j_p->valuestring); if ((j_p = cJSON_GetObjectItem(j, "congestion")) != NULL) test->congestion = strdup(j_p->valuestring); if ((j_p = cJSON_GetObjectItem(j, "congestion_used")) != NULL) test->congestion_used = strdup(j_p->valuestring); if ((j_p = cJSON_GetObjectItem(j, "get_server_output")) != NULL) iperf_set_test_get_server_output(test, 1); if ((j_p = cJSON_GetObjectItem(j, "udp_counters_64bit")) != NULL) iperf_set_test_udp_counters_64bit(test, 1); if ((j_p = cJSON_GetObjectItem(j, "repeating_payload")) != NULL) test->repeating_payload = 1; if ((j_p = cJSON_GetObjectItem(j, "zerocopy")) != NULL) test->zerocopy = j_p->valueint; #if defined(HAVE_DONT_FRAGMENT) if ((j_p = cJSON_GetObjectItem(j, "dont_fragment")) != NULL) test->settings->dont_fragment = j_p->valueint; #endif /* HAVE_DONT_FRAGMENT */ #if defined(HAVE_SSL) if ((j_p = cJSON_GetObjectItem(j, "authtoken")) != NULL) test->settings->authtoken = strdup(j_p->valuestring); #endif //HAVE_SSL if (test->mode && test->protocol->id == Ptcp && has_tcpinfo_retransmits()) test->sender_has_retransmits = 1; if (test->settings->rate) cJSON_AddNumberToObject(test->json_start, "target_bitrate", test->settings->rate); cJSON_Delete(j); } return r; } /*************************************************************/ static int send_results(struct iperf_test *test) { int r = 0; cJSON *j; cJSON *j_streams; struct iperf_stream *sp; cJSON *j_stream; int sender_has_retransmits; iperf_size_t bytes_transferred; int retransmits; struct iperf_time temp_time; double start_time, end_time; j = cJSON_CreateObject(); if (j == NULL) { i_errno = IEPACKAGERESULTS; r = -1; } else { cJSON_AddNumberToObject(j, "cpu_util_total", test->cpu_util[0]); cJSON_AddNumberToObject(j, "cpu_util_user", test->cpu_util[1]); cJSON_AddNumberToObject(j, "cpu_util_system", test->cpu_util[2]); if ( test->mode == RECEIVER ) sender_has_retransmits = -1; else sender_has_retransmits = test->sender_has_retransmits; cJSON_AddNumberToObject(j, "sender_has_retransmits", sender_has_retransmits); if ( test->congestion_used ) { cJSON_AddStringToObject(j, "congestion_used", test->congestion_used); } /* If on the server and sending server output, then do this */ if (test->role == 's' && test->get_server_output) { if (test->json_output) { /* Add JSON output */ cJSON_AddItemReferenceToObject(j, "server_output_json", test->json_top); } else { /* Add textual output */ size_t buflen = 0; /* Figure out how much room we need to hold the complete output string */ struct iperf_textline *t; TAILQ_FOREACH(t, &(test->server_output_list), textlineentries) { buflen += strlen(t->line); } /* Allocate and build it up from the component lines */ char *output = calloc(buflen + 1, 1); TAILQ_FOREACH(t, &(test->server_output_list), textlineentries) { strncat(output, t->line, buflen); buflen -= strlen(t->line); } cJSON_AddStringToObject(j, "server_output_text", output); free(output); } } j_streams = cJSON_CreateArray(); if (j_streams == NULL) { i_errno = IEPACKAGERESULTS; r = -1; } else { cJSON_AddItemToObject(j, "streams", j_streams); SLIST_FOREACH(sp, &test->streams, streams) { j_stream = cJSON_CreateObject(); if (j_stream == NULL) { i_errno = IEPACKAGERESULTS; r = -1; } else { cJSON_AddItemToArray(j_streams, j_stream); bytes_transferred = sp->sender ? (sp->result->bytes_sent - sp->result->bytes_sent_omit) : sp->result->bytes_received; retransmits = (sp->sender && test->sender_has_retransmits) ? sp->result->stream_retrans : -1; cJSON_AddNumberToObject(j_stream, "id", sp->id); cJSON_AddNumberToObject(j_stream, "bytes", bytes_transferred); cJSON_AddNumberToObject(j_stream, "retransmits", retransmits); cJSON_AddNumberToObject(j_stream, "jitter", sp->jitter); cJSON_AddNumberToObject(j_stream, "errors", sp->cnt_error); cJSON_AddNumberToObject(j_stream, "omitted_errors", sp->omitted_cnt_error); cJSON_AddNumberToObject(j_stream, "packets", sp->packet_count); cJSON_AddNumberToObject(j_stream, "omitted_packets", sp->omitted_packet_count); iperf_time_diff(&sp->result->start_time, &sp->result->start_time, &temp_time); start_time = iperf_time_in_secs(&temp_time); iperf_time_diff(&sp->result->start_time, &sp->result->end_time, &temp_time); end_time = iperf_time_in_secs(&temp_time); cJSON_AddNumberToObject(j_stream, "start_time", start_time); cJSON_AddNumberToObject(j_stream, "end_time", end_time); } } if (r == 0 && test->debug) { char *str = cJSON_Print(j); printf("send_results\n%s\n", str); cJSON_free(str); } if (r == 0 && JSON_write(test->ctrl_sck, j) < 0) { i_errno = IESENDRESULTS; r = -1; } } cJSON_Delete(j); } return r; } /*************************************************************/ static int get_results(struct iperf_test *test) { int r = 0; cJSON *j; cJSON *j_cpu_util_total; cJSON *j_cpu_util_user; cJSON *j_cpu_util_system; cJSON *j_remote_congestion_used; cJSON *j_sender_has_retransmits; int result_has_retransmits; cJSON *j_streams; int n, i; cJSON *j_stream; cJSON *j_id; cJSON *j_bytes; cJSON *j_retransmits; cJSON *j_jitter; cJSON *j_errors; cJSON *j_omitted_errors; cJSON *j_packets; cJSON *j_omitted_packets; cJSON *j_server_output; cJSON *j_start_time, *j_end_time; int sid; int64_t cerror, pcount, omitted_cerror, omitted_pcount; double jitter; iperf_size_t bytes_transferred; int retransmits; struct iperf_stream *sp; j = JSON_read(test->ctrl_sck); if (j == NULL) { i_errno = IERECVRESULTS; r = -1; } else { j_cpu_util_total = cJSON_GetObjectItem(j, "cpu_util_total"); j_cpu_util_user = cJSON_GetObjectItem(j, "cpu_util_user"); j_cpu_util_system = cJSON_GetObjectItem(j, "cpu_util_system"); j_sender_has_retransmits = cJSON_GetObjectItem(j, "sender_has_retransmits"); if (j_cpu_util_total == NULL || j_cpu_util_user == NULL || j_cpu_util_system == NULL || j_sender_has_retransmits == NULL) { i_errno = IERECVRESULTS; r = -1; } else { if (test->debug) { char *str = cJSON_Print(j); printf("get_results\n%s\n", str); cJSON_free(str); } test->remote_cpu_util[0] = j_cpu_util_total->valuedouble; test->remote_cpu_util[1] = j_cpu_util_user->valuedouble; test->remote_cpu_util[2] = j_cpu_util_system->valuedouble; result_has_retransmits = j_sender_has_retransmits->valueint; if ( test->mode == RECEIVER ) { test->sender_has_retransmits = result_has_retransmits; test->other_side_has_retransmits = 0; } else if ( test->mode == BIDIRECTIONAL ) test->other_side_has_retransmits = result_has_retransmits; j_streams = cJSON_GetObjectItem(j, "streams"); if (j_streams == NULL) { i_errno = IERECVRESULTS; r = -1; } else { n = cJSON_GetArraySize(j_streams); for (i=0; ivalueint; bytes_transferred = j_bytes->valueint; retransmits = j_retransmits->valueint; jitter = j_jitter->valuedouble; cerror = j_errors->valueint; pcount = j_packets->valueint; if (j_omitted_packets != NULL) { omitted_cerror = j_omitted_errors->valueint; omitted_pcount = j_omitted_packets->valueint; } SLIST_FOREACH(sp, &test->streams, streams) if (sp->id == sid) break; if (sp == NULL) { i_errno = IESTREAMID; r = -1; } else { if (sp->sender) { sp->jitter = jitter; sp->cnt_error = cerror; sp->peer_packet_count = pcount; sp->result->bytes_received = bytes_transferred; if (j_omitted_packets != NULL) { sp->omitted_cnt_error = omitted_cerror; sp->peer_omitted_packet_count = omitted_pcount; } else { sp->peer_omitted_packet_count = sp->omitted_packet_count; if (sp->peer_omitted_packet_count > 0) { /* -1 indicates unknown error count since it includes the omitted count */ sp->omitted_cnt_error = (sp->cnt_error > 0) ? -1 : 0; } else { sp->omitted_cnt_error = sp->cnt_error; } } /* * We have to handle the possibility that * start_time and end_time might not be * available; this is the case for older (pre-3.2) * servers. * * We need to have result structure members to hold * the both sides' start_time and end_time. */ if (j_start_time && j_end_time) { sp->result->receiver_time = j_end_time->valuedouble - j_start_time->valuedouble; } else { sp->result->receiver_time = 0.0; } } else { sp->peer_packet_count = pcount; sp->result->bytes_sent = bytes_transferred; sp->result->stream_retrans = retransmits; if (j_omitted_packets != NULL) { sp->peer_omitted_packet_count = omitted_pcount; } else { sp->peer_omitted_packet_count = sp->peer_packet_count; } if (j_start_time && j_end_time) { sp->result->sender_time = j_end_time->valuedouble - j_start_time->valuedouble; } else { sp->result->sender_time = 0.0; } } } } } } /* * If we're the client and we're supposed to get remote results, * look them up and process accordingly. */ if (test->role == 'c' && iperf_get_test_get_server_output(test)) { /* Look for JSON. If we find it, grab the object so it doesn't get deleted. */ j_server_output = cJSON_DetachItemFromObject(j, "server_output_json"); if (j_server_output != NULL) { test->json_server_output = j_server_output; } else { /* No JSON, look for textual output. Make a copy of the text for later. */ j_server_output = cJSON_GetObjectItem(j, "server_output_text"); if (j_server_output != NULL) { test->server_output_text = strdup(j_server_output->valuestring); } } } } } j_remote_congestion_used = cJSON_GetObjectItem(j, "congestion_used"); if (j_remote_congestion_used != NULL) { test->remote_congestion_used = strdup(j_remote_congestion_used->valuestring); } cJSON_Delete(j); } return r; } /*************************************************************/ static int JSON_write(int fd, cJSON *json) { uint32_t hsize, nsize; char *str; int r = 0; str = cJSON_PrintUnformatted(json); if (str == NULL) r = -1; else { hsize = strlen(str); nsize = htonl(hsize); if (Nwrite(fd, (char*) &nsize, sizeof(nsize), Ptcp) < 0) r = -1; else { if (Nwrite(fd, str, hsize, Ptcp) < 0) r = -1; } cJSON_free(str); } return r; } /*************************************************************/ static cJSON * JSON_read(int fd) { uint32_t hsize, nsize; size_t strsize; char *str; cJSON *json = NULL; int rc; /* * Read a four-byte integer, which is the length of the JSON to follow. * Then read the JSON into a buffer and parse it. Return a parsed JSON * structure, NULL if there was an error. */ if (Nread(fd, (char*) &nsize, sizeof(nsize), Ptcp) >= 0) { hsize = ntohl(nsize); /* Allocate a buffer to hold the JSON */ strsize = hsize + 1; /* +1 for trailing NULL */ if (strsize) { str = (char *) calloc(sizeof(char), strsize); if (str != NULL) { rc = Nread(fd, str, hsize, Ptcp); if (rc >= 0) { /* * We should be reading in the number of bytes corresponding to the * length in that 4-byte integer. If we don't the socket might have * prematurely closed. Only do the JSON parsing if we got the * correct number of bytes. */ if (rc == hsize) { json = cJSON_Parse(str); } else { printf("WARNING: Size of data read does not correspond to offered length\n"); } } } free(str); } else { printf("WARNING: Data length overflow\n"); } } return json; } /*************************************************************/ /** * JSONStream_Output - outputs an obj as event without distrubing it */ static int JSONStream_Output(struct iperf_test * test, const char * event_name, cJSON * obj) { cJSON *event = cJSON_CreateObject(); if (!event) return -1; cJSON_AddStringToObject(event, "event", event_name); cJSON_AddItemReferenceToObject(event, "data", obj); char *str = cJSON_PrintUnformatted(event); if (str == NULL) return -1; if (pthread_mutex_lock(&(test->print_mutex)) != 0) { perror("iperf_json_finish: pthread_mutex_lock"); } fprintf(test->outfile, "%s\n", str); if (pthread_mutex_unlock(&(test->print_mutex)) != 0) { perror("iperf_json_finish: pthread_mutex_unlock"); } iflush(test); cJSON_free(str); cJSON_Delete(event); return 0; } /*************************************************************/ /** * add_to_interval_list -- adds new interval to the interval_list */ void add_to_interval_list(struct iperf_stream_result * rp, struct iperf_interval_results * new) { struct iperf_interval_results *irp; irp = (struct iperf_interval_results *) malloc(sizeof(struct iperf_interval_results)); memcpy(irp, new, sizeof(struct iperf_interval_results)); TAILQ_INSERT_TAIL(&rp->interval_results, irp, irlistentries); } /************************************************************/ /** * connect_msg -- displays connection message * denoting sender/receiver details * */ void connect_msg(struct iperf_stream *sp) { char ipl[INET6_ADDRSTRLEN], ipr[INET6_ADDRSTRLEN]; int lport, rport; if (getsockdomain(sp->socket) == AF_INET) { inet_ntop(AF_INET, (void *) &((struct sockaddr_in *) &sp->local_addr)->sin_addr, ipl, sizeof(ipl)); mapped_v4_to_regular_v4(ipl); inet_ntop(AF_INET, (void *) &((struct sockaddr_in *) &sp->remote_addr)->sin_addr, ipr, sizeof(ipr)); mapped_v4_to_regular_v4(ipr); lport = ntohs(((struct sockaddr_in *) &sp->local_addr)->sin_port); rport = ntohs(((struct sockaddr_in *) &sp->remote_addr)->sin_port); } else { inet_ntop(AF_INET6, (void *) &((struct sockaddr_in6 *) &sp->local_addr)->sin6_addr, ipl, sizeof(ipl)); mapped_v4_to_regular_v4(ipl); inet_ntop(AF_INET6, (void *) &((struct sockaddr_in6 *) &sp->remote_addr)->sin6_addr, ipr, sizeof(ipr)); mapped_v4_to_regular_v4(ipr); lport = ntohs(((struct sockaddr_in6 *) &sp->local_addr)->sin6_port); rport = ntohs(((struct sockaddr_in6 *) &sp->remote_addr)->sin6_port); } if (sp->test->json_output) cJSON_AddItemToArray(sp->test->json_connected, iperf_json_printf("socket: %d local_host: %s local_port: %d remote_host: %s remote_port: %d", (int64_t) sp->socket, ipl, (int64_t) lport, ipr, (int64_t) rport)); else iperf_printf(sp->test, report_connected, sp->socket, ipl, lport, ipr, rport); } /**************************************************************************/ struct iperf_test * iperf_new_test() { struct iperf_test *test; int rc; test = (struct iperf_test *) malloc(sizeof(struct iperf_test)); if (!test) { i_errno = IENEWTEST; return NULL; } /* initialize everything to zero */ memset(test, 0, sizeof(struct iperf_test)); /* Initialize mutex for printing output */ pthread_mutexattr_t mutexattr; pthread_mutexattr_init(&mutexattr); rc = pthread_mutexattr_settype(&mutexattr, PTHREAD_MUTEX_ERRORCHECK); if (rc != 0) { errno = rc; perror("iperf_new_test: pthread_mutexattr_settype"); } if (pthread_mutex_init(&(test->print_mutex), &mutexattr) != 0) { perror("iperf_new_test: pthread_mutex_init"); } pthread_mutexattr_destroy(&mutexattr); test->settings = (struct iperf_settings *) malloc(sizeof(struct iperf_settings)); if (!test->settings) { free(test); i_errno = IENEWTEST; return NULL; } memset(test->settings, 0, sizeof(struct iperf_settings)); test->bitrate_limit_intervals_traffic_bytes = (iperf_size_t *) malloc(sizeof(iperf_size_t) * MAX_INTERVAL); if (!test->bitrate_limit_intervals_traffic_bytes) { free(test->settings); free(test); i_errno = IENEWTEST; return NULL; } memset(test->bitrate_limit_intervals_traffic_bytes, 0, sizeof(sizeof(iperf_size_t) * MAX_INTERVAL)); /* By default all output goes to stdout */ test->outfile = stdout; return test; } /**************************************************************************/ struct protocol * protocol_new(void) { struct protocol *proto; proto = malloc(sizeof(struct protocol)); if(!proto) { return NULL; } memset(proto, 0, sizeof(struct protocol)); return proto; } void protocol_free(struct protocol *proto) { free(proto); } /**************************************************************************/ int iperf_defaults(struct iperf_test *testp) { struct protocol *tcp, *udp; #if defined(HAVE_SCTP_H) struct protocol *sctp; #endif /* HAVE_SCTP_H */ testp->omit = OMIT; testp->duration = DURATION; testp->diskfile_name = (char*) 0; testp->affinity = -1; testp->server_affinity = -1; TAILQ_INIT(&testp->xbind_addrs); #if defined(HAVE_CPUSET_SETAFFINITY) CPU_ZERO(&testp->cpumask); #endif /* HAVE_CPUSET_SETAFFINITY */ testp->title = NULL; testp->extra_data = NULL; testp->congestion = NULL; testp->congestion_used = NULL; testp->remote_congestion_used = NULL; testp->server_port = PORT; testp->ctrl_sck = -1; testp->listener = -1; testp->prot_listener = -1; testp->other_side_has_retransmits = 0; testp->stats_callback = iperf_stats_callback; testp->reporter_callback = iperf_reporter_callback; testp->stats_interval = testp->reporter_interval = 1; testp->num_streams = 1; testp->settings->domain = AF_UNSPEC; testp->settings->unit_format = 'a'; testp->settings->socket_bufsize = 0; /* use autotuning */ testp->settings->blksize = DEFAULT_TCP_BLKSIZE; testp->settings->rate = 0; testp->settings->bitrate_limit = 0; testp->settings->bitrate_limit_interval = 5; testp->settings->bitrate_limit_stats_per_interval = 0; testp->settings->fqrate = 0; testp->settings->pacing_timer = DEFAULT_PACING_TIMER; testp->settings->burst = 0; testp->settings->mss = 0; testp->settings->bytes = 0; testp->settings->blocks = 0; testp->settings->connect_timeout = -1; testp->settings->rcv_timeout.secs = DEFAULT_NO_MSG_RCVD_TIMEOUT / SEC_TO_mS; testp->settings->rcv_timeout.usecs = (DEFAULT_NO_MSG_RCVD_TIMEOUT % SEC_TO_mS) * mS_TO_US; testp->zerocopy = 0; memset(testp->cookie, 0, COOKIE_SIZE); testp->multisend = 10; /* arbitrary */ /* Set up protocol list */ SLIST_INIT(&testp->streams); SLIST_INIT(&testp->protocols); tcp = protocol_new(); if (!tcp) return -1; tcp->id = Ptcp; tcp->name = "TCP"; tcp->accept = iperf_tcp_accept; tcp->listen = iperf_tcp_listen; tcp->connect = iperf_tcp_connect; tcp->send = iperf_tcp_send; tcp->recv = iperf_tcp_recv; tcp->init = NULL; SLIST_INSERT_HEAD(&testp->protocols, tcp, protocols); udp = protocol_new(); if (!udp) { protocol_free(tcp); return -1; } udp->id = Pudp; udp->name = "UDP"; udp->accept = iperf_udp_accept; udp->listen = iperf_udp_listen; udp->connect = iperf_udp_connect; udp->send = iperf_udp_send; udp->recv = iperf_udp_recv; udp->init = iperf_udp_init; SLIST_INSERT_AFTER(tcp, udp, protocols); set_protocol(testp, Ptcp); #if defined(HAVE_SCTP_H) sctp = protocol_new(); if (!sctp) { protocol_free(tcp); protocol_free(udp); return -1; } sctp->id = Psctp; sctp->name = "SCTP"; sctp->accept = iperf_sctp_accept; sctp->listen = iperf_sctp_listen; sctp->connect = iperf_sctp_connect; sctp->send = iperf_sctp_send; sctp->recv = iperf_sctp_recv; sctp->init = iperf_sctp_init; SLIST_INSERT_AFTER(udp, sctp, protocols); #endif /* HAVE_SCTP_H */ testp->on_new_stream = iperf_on_new_stream; testp->on_test_start = iperf_on_test_start; testp->on_connect = iperf_on_connect; testp->on_test_finish = iperf_on_test_finish; TAILQ_INIT(&testp->server_output_list); return 0; } /**************************************************************************/ void iperf_free_test(struct iperf_test *test) { struct protocol *prot; struct iperf_stream *sp; /* Free streams */ while (!SLIST_EMPTY(&test->streams)) { sp = SLIST_FIRST(&test->streams); SLIST_REMOVE_HEAD(&test->streams, streams); iperf_free_stream(sp); } if (test->server_hostname) free(test->server_hostname); if (test->tmp_template) free(test->tmp_template); if (test->bind_address) free(test->bind_address); if (test->bind_dev) free(test->bind_dev); if (!TAILQ_EMPTY(&test->xbind_addrs)) { struct xbind_entry *xbe; while (!TAILQ_EMPTY(&test->xbind_addrs)) { xbe = TAILQ_FIRST(&test->xbind_addrs); TAILQ_REMOVE(&test->xbind_addrs, xbe, link); if (xbe->ai) freeaddrinfo(xbe->ai); free(xbe->name); free(xbe); } } #if defined(HAVE_SSL) if (test->server_rsa_private_key) EVP_PKEY_free(test->server_rsa_private_key); test->server_rsa_private_key = NULL; free(test->settings->authtoken); test->settings->authtoken = NULL; free(test->settings->client_username); test->settings->client_username = NULL; free(test->settings->client_password); test->settings->client_password = NULL; if (test->settings->client_rsa_pubkey) EVP_PKEY_free(test->settings->client_rsa_pubkey); test->settings->client_rsa_pubkey = NULL; #endif /* HAVE_SSL */ if (test->settings) free(test->settings); if (test->title) free(test->title); if (test->extra_data) free(test->extra_data); if (test->congestion) free(test->congestion); if (test->congestion_used) free(test->congestion_used); if (test->remote_congestion_used) free(test->remote_congestion_used); if (test->timestamp_format) free(test->timestamp_format); if (test->omit_timer != NULL) tmr_cancel(test->omit_timer); if (test->timer != NULL) tmr_cancel(test->timer); if (test->stats_timer != NULL) tmr_cancel(test->stats_timer); if (test->reporter_timer != NULL) tmr_cancel(test->reporter_timer); /* Free protocol list */ while (!SLIST_EMPTY(&test->protocols)) { prot = SLIST_FIRST(&test->protocols); SLIST_REMOVE_HEAD(&test->protocols, protocols); free(prot); } /* Destroy print mutex. iperf_printf() doesn't work after this point */ int rc; rc = pthread_mutex_destroy(&(test->print_mutex)); if (rc != 0) { errno = rc; perror("iperf_free_test: pthread_mutex_destroy"); } if (test->logfile) { free(test->logfile); test->logfile = NULL; iperf_close_logfile(test); } if (test->server_output_text) { free(test->server_output_text); test->server_output_text = NULL; } if (test->json_output_string) { free(test->json_output_string); test->json_output_string = NULL; } /* Free output line buffers, if any (on the server only) */ struct iperf_textline *t; while (!TAILQ_EMPTY(&test->server_output_list)) { t = TAILQ_FIRST(&test->server_output_list); TAILQ_REMOVE(&test->server_output_list, t, textlineentries); free(t->line); free(t); } /* sctp_bindx: do not free the arguments, only the resolver results */ if (!TAILQ_EMPTY(&test->xbind_addrs)) { struct xbind_entry *xbe; TAILQ_FOREACH(xbe, &test->xbind_addrs, link) { if (xbe->ai) { freeaddrinfo(xbe->ai); xbe->ai = NULL; } } } /* Free interval's traffic array for average rate calculations */ if (test->bitrate_limit_intervals_traffic_bytes != NULL) free(test->bitrate_limit_intervals_traffic_bytes); /* XXX: Why are we setting these values to NULL? */ // test->streams = NULL; test->stats_callback = NULL; test->reporter_callback = NULL; free(test); } void iperf_reset_test(struct iperf_test *test) { struct iperf_stream *sp; int i; iperf_close_logfile(test); /* Free streams */ while (!SLIST_EMPTY(&test->streams)) { sp = SLIST_FIRST(&test->streams); SLIST_REMOVE_HEAD(&test->streams, streams); iperf_free_stream(sp); } if (test->omit_timer != NULL) { tmr_cancel(test->omit_timer); test->omit_timer = NULL; } if (test->timer != NULL) { tmr_cancel(test->timer); test->timer = NULL; } if (test->stats_timer != NULL) { tmr_cancel(test->stats_timer); test->stats_timer = NULL; } if (test->reporter_timer != NULL) { tmr_cancel(test->reporter_timer); test->reporter_timer = NULL; } test->done = 0; SLIST_INIT(&test->streams); if (test->remote_congestion_used) free(test->remote_congestion_used); test->remote_congestion_used = NULL; test->role = 's'; test->mode = RECEIVER; test->sender_has_retransmits = 0; set_protocol(test, Ptcp); test->omit = OMIT; test->duration = DURATION; test->server_affinity = -1; #if defined(HAVE_CPUSET_SETAFFINITY) CPU_ZERO(&test->cpumask); #endif /* HAVE_CPUSET_SETAFFINITY */ test->state = 0; test->ctrl_sck = -1; test->listener = -1; test->prot_listener = -1; test->bytes_sent = 0; test->blocks_sent = 0; test->bytes_received = 0; test->blocks_received = 0; test->other_side_has_retransmits = 0; test->bitrate_limit_stats_count = 0; test->bitrate_limit_last_interval_index = 0; test->bitrate_limit_exceeded = 0; for (i = 0; i < MAX_INTERVAL; i++) test->bitrate_limit_intervals_traffic_bytes[i] = 0; test->reverse = 0; test->bidirectional = 0; test->no_delay = 0; FD_ZERO(&test->read_set); FD_ZERO(&test->write_set); test->num_streams = 1; test->settings->socket_bufsize = 0; test->settings->blksize = DEFAULT_TCP_BLKSIZE; test->settings->rate = 0; test->settings->fqrate = 0; test->settings->burst = 0; test->settings->mss = 0; test->settings->tos = 0; test->settings->dont_fragment = 0; test->zerocopy = 0; #if defined(HAVE_SSL) if (test->settings->authtoken) { free(test->settings->authtoken); test->settings->authtoken = NULL; } if (test->settings->client_username) { free(test->settings->client_username); test->settings->client_username = NULL; } if (test->settings->client_password) { free(test->settings->client_password); test->settings->client_password = NULL; } if (test->settings->client_rsa_pubkey) { EVP_PKEY_free(test->settings->client_rsa_pubkey); test->settings->client_rsa_pubkey = NULL; } #endif /* HAVE_SSL */ memset(test->cookie, 0, COOKIE_SIZE); test->multisend = 10; /* arbitrary */ test->udp_counters_64bit = 0; if (test->title) { free(test->title); test->title = NULL; } if (test->extra_data) { free(test->extra_data); test->extra_data = NULL; } /* Free output line buffers, if any (on the server only) */ struct iperf_textline *t; while (!TAILQ_EMPTY(&test->server_output_list)) { t = TAILQ_FIRST(&test->server_output_list); TAILQ_REMOVE(&test->server_output_list, t, textlineentries); free(t->line); free(t); } } /* Reset all of a test's stats back to zero. Called when the omitting ** period is over. */ void iperf_reset_stats(struct iperf_test *test) { struct iperf_time now; struct iperf_stream *sp; struct iperf_stream_result *rp; test->bytes_sent = 0; test->blocks_sent = 0; iperf_time_now(&now); SLIST_FOREACH(sp, &test->streams, streams) { sp->omitted_packet_count = sp->packet_count; sp->omitted_cnt_error = sp->cnt_error; sp->omitted_outoforder_packets = sp->outoforder_packets; sp->jitter = 0; rp = sp->result; rp->bytes_sent_omit = rp->bytes_sent; rp->bytes_received = 0; rp->bytes_sent_this_interval = rp->bytes_received_this_interval = 0; if (test->sender_has_retransmits == 1) { struct iperf_interval_results ir; /* temporary results structure */ save_tcpinfo(sp, &ir); rp->stream_prev_total_retrans = get_total_retransmits(&ir); } rp->stream_retrans = 0; rp->start_time = now; } } /**************************************************************************/ /** * Gather statistics during a test. * This function works for both the client and server side. */ void iperf_stats_callback(struct iperf_test *test) { struct iperf_stream *sp; struct iperf_stream_result *rp = NULL; struct iperf_interval_results *irp, temp; struct iperf_time temp_time; iperf_size_t total_interval_bytes_transferred = 0; temp.omitted = test->omitting; SLIST_FOREACH(sp, &test->streams, streams) { rp = sp->result; temp.bytes_transferred = sp->sender ? rp->bytes_sent_this_interval : rp->bytes_received_this_interval; // Total bytes transferred this interval total_interval_bytes_transferred += rp->bytes_sent_this_interval + rp->bytes_received_this_interval; irp = TAILQ_LAST(&rp->interval_results, irlisthead); /* result->end_time contains timestamp of previous interval */ if ( irp != NULL ) /* not the 1st interval */ memcpy(&temp.interval_start_time, &rp->end_time, sizeof(struct iperf_time)); else /* or use timestamp from beginning */ memcpy(&temp.interval_start_time, &rp->start_time, sizeof(struct iperf_time)); /* now save time of end of this interval */ iperf_time_now(&rp->end_time); memcpy(&temp.interval_end_time, &rp->end_time, sizeof(struct iperf_time)); iperf_time_diff(&temp.interval_start_time, &temp.interval_end_time, &temp_time); temp.interval_duration = iperf_time_in_secs(&temp_time); if (test->protocol->id == Ptcp) { if ( has_tcpinfo()) { save_tcpinfo(sp, &temp); if (test->sender_has_retransmits == 1) { long total_retrans = get_total_retransmits(&temp); temp.interval_retrans = total_retrans - rp->stream_prev_total_retrans; rp->stream_retrans += temp.interval_retrans; rp->stream_prev_total_retrans = total_retrans; temp.snd_cwnd = get_snd_cwnd(&temp); if (temp.snd_cwnd > rp->stream_max_snd_cwnd) { rp->stream_max_snd_cwnd = temp.snd_cwnd; } temp.snd_wnd = get_snd_wnd(&temp); if (temp.snd_wnd > rp->stream_max_snd_wnd) { rp->stream_max_snd_wnd = temp.snd_wnd; } temp.rtt = get_rtt(&temp); if (temp.rtt > rp->stream_max_rtt) { rp->stream_max_rtt = temp.rtt; } if (rp->stream_min_rtt == 0 || temp.rtt < rp->stream_min_rtt) { rp->stream_min_rtt = temp.rtt; } rp->stream_sum_rtt += temp.rtt; rp->stream_count_rtt++; temp.rttvar = get_rttvar(&temp); temp.pmtu = get_pmtu(&temp); } } } else { if (irp == NULL) { temp.interval_packet_count = sp->packet_count; temp.interval_outoforder_packets = sp->outoforder_packets; temp.interval_cnt_error = sp->cnt_error; } else { temp.interval_packet_count = sp->packet_count - irp->packet_count; temp.interval_outoforder_packets = sp->outoforder_packets - irp->outoforder_packets; temp.interval_cnt_error = sp->cnt_error - irp->cnt_error; } temp.packet_count = sp->packet_count; temp.jitter = sp->jitter; temp.outoforder_packets = sp->outoforder_packets; temp.cnt_error = sp->cnt_error; } add_to_interval_list(rp, &temp); rp->bytes_sent_this_interval = rp->bytes_received_this_interval = 0; } /* Verify that total server's throughput is not above specified limit */ if (test->role == 's') { iperf_check_total_rate(test, total_interval_bytes_transferred); } } /** * Print intermediate results during a test (interval report). * Uses print_interval_results to print the results for each stream, * then prints an interval summary for all streams in this * interval. */ static void iperf_print_intermediate(struct iperf_test *test) { struct iperf_stream *sp = NULL; struct iperf_interval_results *irp; struct iperf_time temp_time; cJSON *json_interval; cJSON *json_interval_streams; int lower_mode, upper_mode; int current_mode; int discard_json; /* * Due to timing oddities, there can be cases, especially on the * server side, where at the end of a test there is a fairly short * interval with no data transferred. This could caused by * the control and data flows sharing the same path in the network, * and having the control messages for stopping the test being * queued behind the data packets. * * We'd like to try to omit that last interval when it happens, to * avoid cluttering data and output with useless stuff. * So we're going to try to ignore very short intervals (less than * 10% of the interval time) that have no data. */ int interval_ok = 0; SLIST_FOREACH(sp, &test->streams, streams) { irp = TAILQ_LAST(&sp->result->interval_results, irlisthead); if (irp) { iperf_time_diff(&irp->interval_start_time, &irp->interval_end_time, &temp_time); double interval_len = iperf_time_in_secs(&temp_time); if (test->debug) { printf("interval_len %f bytes_transferred %" PRIu64 "\n", interval_len, irp->bytes_transferred); } /* * If the interval is at least 10% the normal interval * length, or if there were actual bytes transferred, * then we want to keep this interval. */ if (interval_len >= test->stats_interval * 0.10 || irp->bytes_transferred > 0) { interval_ok = 1; if (test->debug) { printf("interval forces keep\n"); } } } } if (!interval_ok) { if (test->debug) { printf("ignoring short interval with no data\n"); } return; } /* * When we use streamed json, we don't actually need to keep the interval * results around unless we're the server and the client requested the server output. * * This avoids unneeded memory build up for long sessions. */ discard_json = test->json_stream == 1 && !(test->role == 's' && test->get_server_output); if (test->json_output) { json_interval = cJSON_CreateObject(); if (json_interval == NULL) return; if (!discard_json) cJSON_AddItemToArray(test->json_intervals, json_interval); json_interval_streams = cJSON_CreateArray(); if (json_interval_streams == NULL) return; cJSON_AddItemToObject(json_interval, "streams", json_interval_streams); } else { json_interval = NULL; json_interval_streams = NULL; } /* * We must to sum streams separately. * For bidirectional mode we must to display * information about sender and receiver streams. * For client side we must handle sender streams * firstly and receiver streams for server side. * The following design allows us to do this. */ if (test->mode == BIDIRECTIONAL) { if (test->role == 'c') { lower_mode = -1; upper_mode = 0; } else { lower_mode = 0; upper_mode = 1; } } else { lower_mode = test->mode; upper_mode = lower_mode; } for (current_mode = lower_mode; current_mode <= upper_mode; ++current_mode) { char ubuf[UNIT_LEN]; char nbuf[UNIT_LEN]; char mbuf[UNIT_LEN]; char zbuf[] = " "; iperf_size_t bytes = 0; double bandwidth; int retransmits = 0; double start_time, end_time; int64_t total_packets = 0, lost_packets = 0; double avg_jitter = 0.0, lost_percent; int stream_must_be_sender = current_mode * current_mode; char *sum_name; /* Print stream role just for bidirectional mode. */ if (test->mode == BIDIRECTIONAL) { sprintf(mbuf, "[%s-%s]", stream_must_be_sender?"TX":"RX", test->role == 'c'?"C":"S"); } else { mbuf[0] = '\0'; zbuf[0] = '\0'; } SLIST_FOREACH(sp, &test->streams, streams) { if (sp->sender == stream_must_be_sender) { print_interval_results(test, sp, json_interval_streams); /* sum up all streams */ irp = TAILQ_LAST(&sp->result->interval_results, irlisthead); if (irp == NULL) { iperf_err(test, "iperf_print_intermediate error: interval_results is NULL"); return; } bytes += irp->bytes_transferred; if (test->protocol->id == Ptcp) { if (test->sender_has_retransmits == 1) { retransmits += irp->interval_retrans; } } else { total_packets += irp->interval_packet_count; lost_packets += irp->interval_cnt_error; avg_jitter += irp->jitter; } } } /* next build string with sum of all streams */ if (test->num_streams > 1 || test->json_output) { /* * With BIDIR give a different JSON object name to the one sent/receive sums. * The different name is given to the data sent from the server, which is * the "reverse" channel. This makes sure that the name reported on the server * and client are compatible, and the names are the same as with non-bidir, * except for when reverse is used. */ sum_name = "sum"; if (test->mode == BIDIRECTIONAL) { if ((test->role == 'c' && !stream_must_be_sender) || (test->role != 'c' && stream_must_be_sender)) { sum_name = "sum_bidir_reverse"; } } sp = SLIST_FIRST(&test->streams); /* reset back to 1st stream */ /* Only do this of course if there was a first stream */ if (sp) { irp = TAILQ_LAST(&sp->result->interval_results, irlisthead); /* use 1st stream for timing info */ unit_snprintf(ubuf, UNIT_LEN, (double) bytes, 'A'); bandwidth = (double) bytes / (double) irp->interval_duration; unit_snprintf(nbuf, UNIT_LEN, bandwidth, test->settings->unit_format); iperf_time_diff(&sp->result->start_time,&irp->interval_start_time, &temp_time); start_time = iperf_time_in_secs(&temp_time); iperf_time_diff(&sp->result->start_time,&irp->interval_end_time, &temp_time); end_time = iperf_time_in_secs(&temp_time); if (test->protocol->id == Ptcp || test->protocol->id == Psctp) { if (test->sender_has_retransmits == 1 && stream_must_be_sender) { /* Interval sum, TCP with retransmits. */ if (test->json_output) cJSON_AddItemToObject(json_interval, sum_name, iperf_json_printf("start: %f end: %f seconds: %f bytes: %d bits_per_second: %f retransmits: %d omitted: %b sender: %b", (double) start_time, (double) end_time, (double) irp->interval_duration, (int64_t) bytes, bandwidth * 8, (int64_t) retransmits, irp->omitted, stream_must_be_sender)); /* XXX irp->omitted or test->omitting? */ else iperf_printf(test, report_sum_bw_retrans_format, mbuf, start_time, end_time, ubuf, nbuf, retransmits, irp->omitted?report_omitted:""); /* XXX irp->omitted or test->omitting? */ } else { /* Interval sum, TCP without retransmits. */ if (test->json_output) cJSON_AddItemToObject(json_interval, sum_name, iperf_json_printf("start: %f end: %f seconds: %f bytes: %d bits_per_second: %f omitted: %b sender: %b", (double) start_time, (double) end_time, (double) irp->interval_duration, (int64_t) bytes, bandwidth * 8, test->omitting, stream_must_be_sender)); else iperf_printf(test, report_sum_bw_format, mbuf, start_time, end_time, ubuf, nbuf, test->omitting?report_omitted:""); } } else { /* Interval sum, UDP. */ if (stream_must_be_sender) { if (test->json_output) cJSON_AddItemToObject(json_interval, sum_name, iperf_json_printf("start: %f end: %f seconds: %f bytes: %d bits_per_second: %f packets: %d omitted: %b sender: %b", (double) start_time, (double) end_time, (double) irp->interval_duration, (int64_t) bytes, bandwidth * 8, (int64_t) total_packets, test->omitting, stream_must_be_sender)); else iperf_printf(test, report_sum_bw_udp_sender_format, mbuf, start_time, end_time, ubuf, nbuf, zbuf, total_packets, test->omitting?report_omitted:""); } else { avg_jitter /= test->num_streams; if (total_packets > 0) { lost_percent = 100.0 * lost_packets / total_packets; } else { lost_percent = 0.0; } if (test->json_output) cJSON_AddItemToObject(json_interval, sum_name, iperf_json_printf("start: %f end: %f seconds: %f bytes: %d bits_per_second: %f jitter_ms: %f lost_packets: %d packets: %d lost_percent: %f omitted: %b sender: %b", (double) start_time, (double) end_time, (double) irp->interval_duration, (int64_t) bytes, bandwidth * 8, (double) avg_jitter * 1000.0, (int64_t) lost_packets, (int64_t) total_packets, (double) lost_percent, test->omitting, stream_must_be_sender)); else iperf_printf(test, report_sum_bw_udp_format, mbuf, start_time, end_time, ubuf, nbuf, avg_jitter * 1000.0, lost_packets, total_packets, lost_percent, test->omitting?report_omitted:""); } } } } } if (test->json_stream) JSONStream_Output(test, "interval", json_interval); if (discard_json) cJSON_Delete(json_interval); } /** * Print overall summary statistics at the end of a test. */ static void iperf_print_results(struct iperf_test *test) { cJSON *json_summary_streams = NULL; int lower_mode, upper_mode; int current_mode; char *sum_sent_name, *sum_received_name, *sum_name; int tmp_sender_has_retransmits = test->sender_has_retransmits; /* print final summary for all intervals */ if (test->json_output) { json_summary_streams = cJSON_CreateArray(); if (json_summary_streams == NULL) return; cJSON_AddItemToObject(test->json_end, "streams", json_summary_streams); } else { iperf_printf(test, "%s", report_bw_separator); if (test->verbose) iperf_printf(test, "%s", report_summary); if (test->protocol->id == Ptcp || test->protocol->id == Psctp) { if (test->sender_has_retransmits || test->other_side_has_retransmits) { if (test->bidirectional) iperf_printf(test, "%s", report_bw_retrans_header_bidir); else iperf_printf(test, "%s", report_bw_retrans_header); } else { if (test->bidirectional) iperf_printf(test, "%s", report_bw_header_bidir); else iperf_printf(test, "%s", report_bw_header); } } else { if (test->bidirectional) iperf_printf(test, "%s", report_bw_udp_header_bidir); else iperf_printf(test, "%s", report_bw_udp_header); } } /* * We must to sum streams separately. * For bidirectional mode we must to display * information about sender and receiver streams. * For client side we must handle sender streams * firstly and receiver streams for server side. * The following design allows us to do this. */ if (test->mode == BIDIRECTIONAL) { if (test->role == 'c') { lower_mode = -1; upper_mode = 0; } else { lower_mode = 0; upper_mode = 1; } } else { lower_mode = test->mode; upper_mode = lower_mode; } for (current_mode = lower_mode; current_mode <= upper_mode; ++current_mode) { cJSON *json_summary_stream = NULL; int64_t total_retransmits = 0; int64_t total_packets = 0, lost_packets = 0; int64_t sender_packet_count = 0, receiver_packet_count = 0; /* for this stream, this interval */ int64_t sender_omitted_packet_count = 0, receiver_omitted_packet_count = 0; /* for this stream, this interval */ int64_t sender_total_packets = 0, receiver_total_packets = 0; /* running total */ char ubuf[UNIT_LEN]; char nbuf[UNIT_LEN]; struct stat sb; char sbuf[UNIT_LEN]; struct iperf_stream *sp = NULL; iperf_size_t bytes_sent, total_sent = 0; iperf_size_t bytes_received, total_received = 0; double start_time, end_time = 0.0, avg_jitter = 0.0, lost_percent = 0.0; double sender_time = 0.0, receiver_time = 0.0; struct iperf_time temp_time; double bandwidth; char mbuf[UNIT_LEN]; int stream_must_be_sender = current_mode * current_mode; /* Print stream role just for bidirectional mode. */ if (test->mode == BIDIRECTIONAL) { sprintf(mbuf, "[%s-%s]", stream_must_be_sender?"TX":"RX", test->role == 'c'?"C":"S"); } else { mbuf[0] = '\0'; } /* Get sender_has_retransmits for each sender side (client and server) */ if (test->mode == BIDIRECTIONAL && stream_must_be_sender) test->sender_has_retransmits = tmp_sender_has_retransmits; else if (test->mode == BIDIRECTIONAL && !stream_must_be_sender) test->sender_has_retransmits = test->other_side_has_retransmits; start_time = 0.; sp = SLIST_FIRST(&test->streams); /* * If there is at least one stream, then figure out the length of time * we were running the tests and print out some statistics about * the streams. It's possible to not have any streams at all * if the client got interrupted before it got to do anything. * * Also note that we try to keep separate values for the sender * and receiver ending times. Earlier iperf (3.1 and earlier) * servers didn't send that to the clients, so in this case we fall * back to using the client's ending timestamp. The fallback is * basically emulating what iperf 3.1 did. */ if (sp) { iperf_time_diff(&sp->result->start_time, &sp->result->end_time, &temp_time); end_time = iperf_time_in_secs(&temp_time); if (sp->sender) { sp->result->sender_time = end_time; if (sp->result->receiver_time == 0.0) { sp->result->receiver_time = sp->result->sender_time; } } else { sp->result->receiver_time = end_time; if (sp->result->sender_time == 0.0) { sp->result->sender_time = sp->result->receiver_time; } } sender_time = sp->result->sender_time; receiver_time = sp->result->receiver_time; SLIST_FOREACH(sp, &test->streams, streams) { if (sp->sender == stream_must_be_sender) { if (test->json_output) { json_summary_stream = cJSON_CreateObject(); if (json_summary_stream == NULL) return; cJSON_AddItemToArray(json_summary_streams, json_summary_stream); } bytes_sent = sp->result->bytes_sent - sp->result->bytes_sent_omit; bytes_received = sp->result->bytes_received; total_sent += bytes_sent; total_received += bytes_received; if (sp->sender) { sender_packet_count = sp->packet_count; sender_omitted_packet_count = sp->omitted_packet_count; receiver_packet_count = sp->peer_packet_count; receiver_omitted_packet_count = sp->peer_omitted_packet_count; } else { sender_packet_count = sp->peer_packet_count; sender_omitted_packet_count = sp->peer_omitted_packet_count; receiver_packet_count = sp->packet_count; receiver_omitted_packet_count = sp->omitted_packet_count; } if (test->protocol->id == Ptcp || test->protocol->id == Psctp) { if (test->sender_has_retransmits) { total_retransmits += sp->result->stream_retrans; } } else { /* * Running total of the total number of packets. Use the sender packet count if we * have it, otherwise use the receiver packet count. */ int64_t packet_count = sender_packet_count ? sender_packet_count : receiver_packet_count; total_packets += (packet_count - sp->omitted_packet_count); sender_total_packets += (sender_packet_count - sender_omitted_packet_count); receiver_total_packets += (receiver_packet_count - receiver_omitted_packet_count); lost_packets += sp->cnt_error; if (sp->omitted_cnt_error > -1) lost_packets -= sp->omitted_cnt_error; avg_jitter += sp->jitter; } unit_snprintf(ubuf, UNIT_LEN, (double) bytes_sent, 'A'); if (sender_time > 0.0) { bandwidth = (double) bytes_sent / (double) sender_time; } else { bandwidth = 0.0; } unit_snprintf(nbuf, UNIT_LEN, bandwidth, test->settings->unit_format); if (test->protocol->id == Ptcp || test->protocol->id == Psctp) { if (test->sender_has_retransmits) { /* Sender summary, TCP and SCTP with retransmits. */ if (test->json_output) cJSON_AddItemToObject(json_summary_stream, report_sender, iperf_json_printf("socket: %d start: %f end: %f seconds: %f bytes: %d bits_per_second: %f retransmits: %d max_snd_cwnd: %d max_snd_wnd: %d max_rtt: %d min_rtt: %d mean_rtt: %d sender: %b", (int64_t) sp->socket, (double) start_time, (double) sender_time, (double) sender_time, (int64_t) bytes_sent, bandwidth * 8, (int64_t) sp->result->stream_retrans, (int64_t) sp->result->stream_max_snd_cwnd, (int64_t) sp->result->stream_max_snd_wnd, (int64_t) sp->result->stream_max_rtt, (int64_t) sp->result->stream_min_rtt, (int64_t) ((sp->result->stream_count_rtt == 0) ? 0 : sp->result->stream_sum_rtt / sp->result->stream_count_rtt), stream_must_be_sender)); else if (test->role == 's' && !sp->sender) { if (test->verbose) iperf_printf(test, report_sender_not_available_format, sp->socket); } else { iperf_printf(test, report_bw_retrans_format, sp->socket, mbuf, start_time, sender_time, ubuf, nbuf, sp->result->stream_retrans, report_sender); } } else { /* Sender summary, TCP and SCTP without retransmits. */ if (test->json_output) cJSON_AddItemToObject(json_summary_stream, report_sender, iperf_json_printf("socket: %d start: %f end: %f seconds: %f bytes: %d bits_per_second: %f sender: %b", (int64_t) sp->socket, (double) start_time, (double) sender_time, (double) sender_time, (int64_t) bytes_sent, bandwidth * 8, stream_must_be_sender)); else if (test->role == 's' && !sp->sender) { if (test->verbose) iperf_printf(test, report_sender_not_available_format, sp->socket); } else { iperf_printf(test, report_bw_format, sp->socket, mbuf, start_time, sender_time, ubuf, nbuf, report_sender); } } } else { /* Sender summary, UDP. */ if (sender_packet_count - sender_omitted_packet_count > 0) { lost_percent = 100.0 * (sp->cnt_error - sp->omitted_cnt_error) / (sender_packet_count - sender_omitted_packet_count); } else { lost_percent = 0.0; } if (test->json_output) { /* * For historical reasons, we only emit one JSON * object for the UDP summary, and it contains * information for both the sender and receiver * side. * * The JSON format as currently defined only includes one * value for the number of packets. We usually want that * to be the sender's value (how many packets were sent * by the sender). However this value might not be * available on the receiver in certain circumstances * specifically on the server side for a normal test or * the client side for a reverse-mode test. If this * is the case, then use the receiver's count of packets * instead. */ int64_t packet_count = sender_packet_count ? sender_packet_count : receiver_packet_count; cJSON_AddItemToObject(json_summary_stream, "udp", iperf_json_printf("socket: %d start: %f end: %f seconds: %f bytes: %d bits_per_second: %f jitter_ms: %f lost_packets: %d packets: %d lost_percent: %f out_of_order: %d sender: %b", (int64_t) sp->socket, (double) start_time, (double) sender_time, (double) sender_time, (int64_t) bytes_sent, bandwidth * 8, (double) sp->jitter * 1000.0, (int64_t) (sp->cnt_error - sp->omitted_cnt_error), (int64_t) (packet_count - sp->omitted_packet_count), (double) lost_percent, (int64_t) (sp->outoforder_packets - sp->omitted_outoforder_packets), stream_must_be_sender)); } else { /* * Due to ordering of messages on the control channel, * the server cannot report on client-side summary * statistics. If we're the server, omit one set of * summary statistics to avoid giving meaningless * results. */ if (test->role == 's' && !sp->sender) { if (test->verbose) iperf_printf(test, report_sender_not_available_format, sp->socket); } else { iperf_printf(test, report_bw_udp_format, sp->socket, mbuf, start_time, sender_time, ubuf, nbuf, 0.0, (int64_t) 0, (sender_packet_count - sender_omitted_packet_count), (double) 0, report_sender); } if ((sp->outoforder_packets - sp->omitted_outoforder_packets) > 0) iperf_printf(test, report_sum_outoforder, mbuf, start_time, sender_time, (sp->outoforder_packets - sp->omitted_outoforder_packets)); } } if (sp->diskfile_fd >= 0) { if (fstat(sp->diskfile_fd, &sb) == 0) { /* In the odd case that it's a zero-sized file, say it was all transferred. */ int percent_sent = 100, percent_received = 100; if (sb.st_size > 0) { percent_sent = (int) ( ( (double) bytes_sent / (double) sb.st_size ) * 100.0 ); percent_received = (int) ( ( (double) bytes_received / (double) sb.st_size ) * 100.0 ); } unit_snprintf(sbuf, UNIT_LEN, (double) sb.st_size, 'A'); if (test->json_output) cJSON_AddItemToObject(json_summary_stream, "diskfile", iperf_json_printf("sent: %d received: %d size: %d percent_sent: %d percent_received: %d filename: %s", (int64_t) bytes_sent, (int64_t) bytes_received, (int64_t) sb.st_size, (int64_t) percent_sent, (int64_t) percent_received, test->diskfile_name)); else if (stream_must_be_sender) { iperf_printf(test, report_diskfile, ubuf, sbuf, percent_sent, test->diskfile_name); } else { unit_snprintf(ubuf, UNIT_LEN, (double) bytes_received, 'A'); iperf_printf(test, report_diskfile, ubuf, sbuf, percent_received, test->diskfile_name); } } } unit_snprintf(ubuf, UNIT_LEN, (double) bytes_received, 'A'); if (receiver_time > 0) { bandwidth = (double) bytes_received / (double) receiver_time; } else { bandwidth = 0.0; } unit_snprintf(nbuf, UNIT_LEN, bandwidth, test->settings->unit_format); if (test->protocol->id == Ptcp || test->protocol->id == Psctp) { /* Receiver summary, TCP and SCTP */ if (test->json_output) cJSON_AddItemToObject(json_summary_stream, report_receiver, iperf_json_printf("socket: %d start: %f end: %f seconds: %f bytes: %d bits_per_second: %f sender: %b", (int64_t) sp->socket, (double) start_time, (double) receiver_time, (double) end_time, (int64_t) bytes_received, bandwidth * 8, stream_must_be_sender)); else if (test->role == 's' && sp->sender) { if (test->verbose) iperf_printf(test, report_receiver_not_available_format, sp->socket); } else { iperf_printf(test, report_bw_format, sp->socket, mbuf, start_time, receiver_time, ubuf, nbuf, report_receiver); } } else { /* * Receiver summary, UDP. Note that JSON was emitted with * the sender summary, so we only deal with human-readable * data here. */ if (! test->json_output) { if (receiver_packet_count - receiver_omitted_packet_count > 0 && sp->omitted_cnt_error > -1) { lost_percent = 100.0 * (sp->cnt_error - sp->omitted_cnt_error) / (receiver_packet_count - receiver_omitted_packet_count); } else { lost_percent = 0.0; } if (test->role == 's' && sp->sender) { if (test->verbose) iperf_printf(test, report_receiver_not_available_format, sp->socket); } else { if (sp->omitted_cnt_error > -1) { iperf_printf(test, report_bw_udp_format, sp->socket, mbuf, start_time, receiver_time, ubuf, nbuf, sp->jitter * 1000.0, (sp->cnt_error - sp->omitted_cnt_error), (receiver_packet_count - receiver_omitted_packet_count), lost_percent, report_receiver); } else { iperf_printf(test, report_bw_udp_format_no_omitted_error, sp->socket, mbuf, start_time, receiver_time, ubuf, nbuf, sp->jitter * 1000.0, (receiver_packet_count - receiver_omitted_packet_count), report_receiver); } } } } } } } if (test->num_streams > 1 || test->json_output) { /* * With BIDIR give a different JSON object name to the one sent/receive sums. * The different name is given to the data sent from the server, which is * the "reverse" channel. This makes sure that the name reported on the server * and client are compatible, and the names are the same as with non-bidir, * except for when reverse is used. */ sum_name = "sum"; sum_sent_name = "sum_sent"; sum_received_name = "sum_received"; if (test->mode == BIDIRECTIONAL) { if ((test->role == 'c' && !stream_must_be_sender) || (test->role != 'c' && stream_must_be_sender)) { sum_name = "sum_bidir_reverse"; sum_sent_name = "sum_sent_bidir_reverse"; sum_received_name = "sum_received_bidir_reverse"; } } unit_snprintf(ubuf, UNIT_LEN, (double) total_sent, 'A'); /* If no tests were run, arbitrarily set bandwidth to 0. */ if (sender_time > 0.0) { bandwidth = (double) total_sent / (double) sender_time; } else { bandwidth = 0.0; } unit_snprintf(nbuf, UNIT_LEN, bandwidth, test->settings->unit_format); if (test->protocol->id == Ptcp || test->protocol->id == Psctp) { if (test->sender_has_retransmits) { /* Summary sum, TCP with retransmits. */ if (test->json_output) cJSON_AddItemToObject(test->json_end, sum_sent_name, iperf_json_printf("start: %f end: %f seconds: %f bytes: %d bits_per_second: %f retransmits: %d sender: %b", (double) start_time, (double) sender_time, (double) sender_time, (int64_t) total_sent, bandwidth * 8, (int64_t) total_retransmits, stream_must_be_sender)); else if (test->role == 's' && !stream_must_be_sender) { if (test->verbose) iperf_printf(test, report_sender_not_available_summary_format, "SUM"); } else { iperf_printf(test, report_sum_bw_retrans_format, mbuf, start_time, sender_time, ubuf, nbuf, (int)total_retransmits, report_sender); } } else { /* Summary sum, TCP without retransmits. */ if (test->json_output) cJSON_AddItemToObject(test->json_end, sum_sent_name, iperf_json_printf("start: %f end: %f seconds: %f bytes: %d bits_per_second: %f sender: %b", (double) start_time, (double) sender_time, (double) sender_time, (int64_t) total_sent, bandwidth * 8, stream_must_be_sender)); else if (test->role == 's' && !stream_must_be_sender) { if (test->verbose) iperf_printf(test, report_sender_not_available_summary_format, "SUM"); } else { iperf_printf(test, report_sum_bw_format, mbuf, start_time, sender_time, ubuf, nbuf, report_sender); } } unit_snprintf(ubuf, UNIT_LEN, (double) total_received, 'A'); /* If no tests were run, set received bandwidth to 0 */ if (receiver_time > 0.0) { bandwidth = (double) total_received / (double) receiver_time; } else { bandwidth = 0.0; } unit_snprintf(nbuf, UNIT_LEN, bandwidth, test->settings->unit_format); if (test->json_output) cJSON_AddItemToObject(test->json_end, sum_received_name, iperf_json_printf("start: %f end: %f seconds: %f bytes: %d bits_per_second: %f sender: %b", (double) start_time, (double) receiver_time, (double) receiver_time, (int64_t) total_received, bandwidth * 8, stream_must_be_sender)); else if (test->role == 's' && stream_must_be_sender) { if (test->verbose) iperf_printf(test, report_receiver_not_available_summary_format, "SUM"); } else { iperf_printf(test, report_sum_bw_format, mbuf, start_time, receiver_time, ubuf, nbuf, report_receiver); } } else { /* Summary sum, UDP. */ avg_jitter /= test->num_streams; /* If no packets were sent, arbitrarily set loss percentage to 0. */ if (total_packets > 0) { lost_percent = 100.0 * lost_packets / total_packets; } else { lost_percent = 0.0; } if (test->json_output) { /* * Original, summary structure. Using this * structure is not recommended due to * ambiguities between the sender and receiver. */ cJSON_AddItemToObject(test->json_end, sum_name, iperf_json_printf("start: %f end: %f seconds: %f bytes: %d bits_per_second: %f jitter_ms: %f lost_packets: %d packets: %d lost_percent: %f sender: %b", (double) start_time, (double) receiver_time, (double) receiver_time, (int64_t) total_sent, bandwidth * 8, (double) avg_jitter * 1000.0, (int64_t) lost_packets, (int64_t) total_packets, (double) lost_percent, stream_must_be_sender)); /* * Separate sum_sent and sum_received structures. * Using these structures to get the most complete * information about UDP transfer. */ cJSON_AddItemToObject(test->json_end, sum_sent_name, iperf_json_printf("start: %f end: %f seconds: %f bytes: %d bits_per_second: %f jitter_ms: %f lost_packets: %d packets: %d lost_percent: %f sender: %b", (double) start_time, (double) sender_time, (double) sender_time, (int64_t) total_sent, (double) total_sent * 8 / sender_time, (double) 0.0, (int64_t) 0, (int64_t) sender_total_packets, (double) 0.0, 1)); cJSON_AddItemToObject(test->json_end, sum_received_name, iperf_json_printf("start: %f end: %f seconds: %f bytes: %d bits_per_second: %f jitter_ms: %f lost_packets: %d packets: %d lost_percent: %f sender: %b", (double) start_time, (double) receiver_time, (double) receiver_time, (int64_t) total_received, (double) total_received * 8 / receiver_time, (double) avg_jitter * 1000.0, (int64_t) lost_packets, (int64_t) receiver_total_packets, (double) lost_percent, 0)); } else { /* * On the client we have both sender and receiver overall summary * stats. On the server we have only the side that was on the * server. Output whatever we have. */ if (! (test->role == 's' && !stream_must_be_sender) ) { unit_snprintf(ubuf, UNIT_LEN, (double) total_sent, 'A'); iperf_printf(test, report_sum_bw_udp_format, mbuf, start_time, sender_time, ubuf, nbuf, 0.0, (int64_t) 0, sender_total_packets, 0.0, report_sender); } if (! (test->role == 's' && stream_must_be_sender) ) { unit_snprintf(ubuf, UNIT_LEN, (double) total_received, 'A'); /* Compute received bandwidth. */ if (end_time > 0.0) { bandwidth = (double) total_received / (double) receiver_time; } else { bandwidth = 0.0; } unit_snprintf(nbuf, UNIT_LEN, bandwidth, test->settings->unit_format); iperf_printf(test, report_sum_bw_udp_format, mbuf, start_time, receiver_time, ubuf, nbuf, avg_jitter * 1000.0, lost_packets, receiver_total_packets, lost_percent, report_receiver); } } } } if (test->json_output && current_mode == upper_mode) { cJSON_AddItemToObject(test->json_end, "cpu_utilization_percent", iperf_json_printf("host_total: %f host_user: %f host_system: %f remote_total: %f remote_user: %f remote_system: %f", (double) test->cpu_util[0], (double) test->cpu_util[1], (double) test->cpu_util[2], (double) test->remote_cpu_util[0], (double) test->remote_cpu_util[1], (double) test->remote_cpu_util[2])); if (test->protocol->id == Ptcp) { char *snd_congestion = NULL, *rcv_congestion = NULL; if (stream_must_be_sender) { snd_congestion = test->congestion_used; rcv_congestion = test->remote_congestion_used; } else { snd_congestion = test->remote_congestion_used; rcv_congestion = test->congestion_used; } if (snd_congestion) { cJSON_AddStringToObject(test->json_end, "sender_tcp_congestion", snd_congestion); } if (rcv_congestion) { cJSON_AddStringToObject(test->json_end, "receiver_tcp_congestion", rcv_congestion); } } } else { if (test->verbose) { if (stream_must_be_sender) { if (test->bidirectional) { iperf_printf(test, report_cpu, report_local, stream_must_be_sender?report_sender:report_receiver, test->cpu_util[0], test->cpu_util[1], test->cpu_util[2], report_remote, stream_must_be_sender?report_receiver:report_sender, test->remote_cpu_util[0], test->remote_cpu_util[1], test->remote_cpu_util[2]); iperf_printf(test, report_cpu, report_local, !stream_must_be_sender?report_sender:report_receiver, test->cpu_util[0], test->cpu_util[1], test->cpu_util[2], report_remote, !stream_must_be_sender?report_receiver:report_sender, test->remote_cpu_util[0], test->remote_cpu_util[1], test->remote_cpu_util[2]); } else iperf_printf(test, report_cpu, report_local, stream_must_be_sender?report_sender:report_receiver, test->cpu_util[0], test->cpu_util[1], test->cpu_util[2], report_remote, stream_must_be_sender?report_receiver:report_sender, test->remote_cpu_util[0], test->remote_cpu_util[1], test->remote_cpu_util[2]); } if (test->protocol->id == Ptcp) { char *snd_congestion = NULL, *rcv_congestion = NULL; if (stream_must_be_sender) { snd_congestion = test->congestion_used; rcv_congestion = test->remote_congestion_used; } else { snd_congestion = test->remote_congestion_used; rcv_congestion = test->congestion_used; } if (snd_congestion) { iperf_printf(test, "snd_tcp_congestion %s\n", snd_congestion); } if (rcv_congestion) { iperf_printf(test, "rcv_tcp_congestion %s\n", rcv_congestion); } } } /* Print server output if we're on the client and it was requested/provided */ if (test->role == 'c' && iperf_get_test_get_server_output(test) && !test->json_output) { if (test->json_server_output) { char *str = cJSON_Print(test->json_server_output); iperf_printf(test, "\nServer JSON output:\n%s\n", str); cJSON_free(str); cJSON_Delete(test->json_server_output); test->json_server_output = NULL; } if (test->server_output_text) { iperf_printf(test, "\nServer output:\n%s\n", test->server_output_text); test->server_output_text = NULL; } } } } /* Set real sender_has_retransmits for current side */ if (test->mode == BIDIRECTIONAL) test->sender_has_retransmits = tmp_sender_has_retransmits; } /**************************************************************************/ /** * Main report-printing callback. * Prints results either during a test (interval report only) or * after the entire test has been run (last interval report plus * overall summary). */ void iperf_reporter_callback(struct iperf_test *test) { switch (test->state) { case TEST_RUNNING: case STREAM_RUNNING: /* print interval results for each stream */ iperf_print_intermediate(test); break; case TEST_END: case DISPLAY_RESULTS: iperf_print_intermediate(test); iperf_print_results(test); break; } } /** * Print the interval results for one stream. * This function needs to know about the overall test so it can determine the * context for printing headers, separators, etc. */ static void print_interval_results(struct iperf_test *test, struct iperf_stream *sp, cJSON *json_interval_streams) { char ubuf[UNIT_LEN]; char nbuf[UNIT_LEN]; char cbuf[UNIT_LEN]; char mbuf[UNIT_LEN]; char zbuf[] = " "; double st = 0., et = 0.; struct iperf_time temp_time; struct iperf_interval_results *irp = NULL; double bandwidth, lost_percent; if (test->mode == BIDIRECTIONAL) { sprintf(mbuf, "[%s-%s]", sp->sender?"TX":"RX", test->role == 'c'?"C":"S"); } else { mbuf[0] = '\0'; zbuf[0] = '\0'; } irp = TAILQ_LAST(&sp->result->interval_results, irlisthead); /* get last entry in linked list */ if (irp == NULL) { iperf_err(test, "print_interval_results error: interval_results is NULL"); return; } if (!test->json_output) { /* First stream? */ if (sp == SLIST_FIRST(&test->streams)) { /* It it's the first interval, print the header; ** else if there's more than one stream, print the separator; ** else nothing. */ if (iperf_time_compare(&sp->result->start_time, &irp->interval_start_time) == 0) { if (test->protocol->id == Ptcp || test->protocol->id == Psctp) { if (test->sender_has_retransmits == 1) { if (test->bidirectional) iperf_printf(test, "%s", report_bw_retrans_cwnd_header_bidir); else iperf_printf(test, "%s", report_bw_retrans_cwnd_header); } else { if (test->bidirectional) iperf_printf(test, "%s", report_bw_header_bidir); else iperf_printf(test, "%s", report_bw_header); } } else { if (test->mode == SENDER) { iperf_printf(test, "%s", report_bw_udp_sender_header); } else if (test->mode == RECEIVER){ iperf_printf(test, "%s", report_bw_udp_header); } else { /* BIDIRECTIONAL */ iperf_printf(test, "%s", report_bw_udp_header_bidir); } } } else if (test->num_streams > 1) iperf_printf(test, "%s", report_bw_separator); } } unit_snprintf(ubuf, UNIT_LEN, (double) (irp->bytes_transferred), 'A'); if (irp->interval_duration > 0.0) { bandwidth = (double) irp->bytes_transferred / (double) irp->interval_duration; } else { bandwidth = 0.0; } unit_snprintf(nbuf, UNIT_LEN, bandwidth, test->settings->unit_format); iperf_time_diff(&sp->result->start_time, &irp->interval_start_time, &temp_time); st = iperf_time_in_secs(&temp_time); iperf_time_diff(&sp->result->start_time, &irp->interval_end_time, &temp_time); et = iperf_time_in_secs(&temp_time); if (test->protocol->id == Ptcp || test->protocol->id == Psctp) { if (test->sender_has_retransmits == 1 && sp->sender) { /* Interval, TCP with retransmits. */ if (test->json_output) cJSON_AddItemToArray(json_interval_streams, iperf_json_printf("socket: %d start: %f end: %f seconds: %f bytes: %d bits_per_second: %f retransmits: %d snd_cwnd: %d snd_wnd: %d rtt: %d rttvar: %d pmtu: %d omitted: %b sender: %b", (int64_t) sp->socket, (double) st, (double) et, (double) irp->interval_duration, (int64_t) irp->bytes_transferred, bandwidth * 8, (int64_t) irp->interval_retrans, (int64_t) irp->snd_cwnd, (int64_t) irp->snd_wnd, (int64_t) irp->rtt, (int64_t) irp->rttvar, (int64_t) irp->pmtu, irp->omitted, sp->sender)); else { unit_snprintf(cbuf, UNIT_LEN, irp->snd_cwnd, 'A'); iperf_printf(test, report_bw_retrans_cwnd_format, sp->socket, mbuf, st, et, ubuf, nbuf, irp->interval_retrans, cbuf, irp->omitted?report_omitted:""); } } else { /* Interval, TCP without retransmits. */ if (test->json_output) cJSON_AddItemToArray(json_interval_streams, iperf_json_printf("socket: %d start: %f end: %f seconds: %f bytes: %d bits_per_second: %f omitted: %b sender: %b", (int64_t) sp->socket, (double) st, (double) et, (double) irp->interval_duration, (int64_t) irp->bytes_transferred, bandwidth * 8, irp->omitted, sp->sender)); else iperf_printf(test, report_bw_format, sp->socket, mbuf, st, et, ubuf, nbuf, irp->omitted?report_omitted:""); } } else { /* Interval, UDP. */ if (sp->sender) { if (test->json_output) cJSON_AddItemToArray(json_interval_streams, iperf_json_printf("socket: %d start: %f end: %f seconds: %f bytes: %d bits_per_second: %f packets: %d omitted: %b sender: %b", (int64_t) sp->socket, (double) st, (double) et, (double) irp->interval_duration, (int64_t) irp->bytes_transferred, bandwidth * 8, (int64_t) irp->interval_packet_count, irp->omitted, sp->sender)); else iperf_printf(test, report_bw_udp_sender_format, sp->socket, mbuf, st, et, ubuf, nbuf, zbuf, irp->interval_packet_count, irp->omitted?report_omitted:""); } else { if (irp->interval_packet_count > 0) { lost_percent = 100.0 * irp->interval_cnt_error / irp->interval_packet_count; } else { lost_percent = 0.0; } if (test->json_output) cJSON_AddItemToArray(json_interval_streams, iperf_json_printf("socket: %d start: %f end: %f seconds: %f bytes: %d bits_per_second: %f jitter_ms: %f lost_packets: %d packets: %d lost_percent: %f omitted: %b sender: %b", (int64_t) sp->socket, (double) st, (double) et, (double) irp->interval_duration, (int64_t) irp->bytes_transferred, bandwidth * 8, (double) irp->jitter * 1000.0, (int64_t) irp->interval_cnt_error, (int64_t) irp->interval_packet_count, (double) lost_percent, irp->omitted, sp->sender)); else iperf_printf(test, report_bw_udp_format, sp->socket, mbuf, st, et, ubuf, nbuf, irp->jitter * 1000.0, irp->interval_cnt_error, irp->interval_packet_count, lost_percent, irp->omitted?report_omitted:""); } } if (test->logfile || test->forceflush) iflush(test); } /**************************************************************************/ void iperf_free_stream(struct iperf_stream *sp) { struct iperf_interval_results *irp, *nirp; /* XXX: need to free interval list too! */ munmap(sp->buffer, sp->test->settings->blksize); close(sp->buffer_fd); if (sp->diskfile_fd >= 0) close(sp->diskfile_fd); for (irp = TAILQ_FIRST(&sp->result->interval_results); irp != NULL; irp = nirp) { nirp = TAILQ_NEXT(irp, irlistentries); free(irp); } free(sp->result); if (sp->send_timer != NULL) tmr_cancel(sp->send_timer); free(sp); } /**************************************************************************/ struct iperf_stream * iperf_new_stream(struct iperf_test *test, int s, int sender) { struct iperf_stream *sp; int ret = 0; char template[1024]; if (test->tmp_template) { snprintf(template, sizeof(template) / sizeof(char), "%s", test->tmp_template); } else { //find the system temporary dir *unix, windows, cygwin support char* tempdir = getenv("TMPDIR"); if (tempdir == 0){ tempdir = getenv("TEMP"); } if (tempdir == 0){ tempdir = getenv("TMP"); } if (tempdir == 0){ #if defined(__ANDROID__) tempdir = "/data/local/tmp"; #else tempdir = "/tmp"; #endif } snprintf(template, sizeof(template) / sizeof(char), "%s/iperf3.XXXXXX", tempdir); } sp = (struct iperf_stream *) malloc(sizeof(struct iperf_stream)); if (!sp) { i_errno = IECREATESTREAM; return NULL; } memset(sp, 0, sizeof(struct iperf_stream)); sp->sender = sender; sp->test = test; sp->settings = test->settings; sp->result = (struct iperf_stream_result *) malloc(sizeof(struct iperf_stream_result)); if (!sp->result) { free(sp); i_errno = IECREATESTREAM; return NULL; } memset(sp->result, 0, sizeof(struct iperf_stream_result)); TAILQ_INIT(&sp->result->interval_results); /* Create and randomize the buffer */ sp->buffer_fd = mkstemp(template); if (sp->buffer_fd == -1) { i_errno = IECREATESTREAM; free(sp->result); free(sp); return NULL; } if (unlink(template) < 0) { i_errno = IECREATESTREAM; free(sp->result); free(sp); return NULL; } if (ftruncate(sp->buffer_fd, test->settings->blksize) < 0) { i_errno = IECREATESTREAM; free(sp->result); free(sp); return NULL; } sp->buffer = (char *) mmap(NULL, test->settings->blksize, PROT_READ|PROT_WRITE, MAP_PRIVATE, sp->buffer_fd, 0); if (sp->buffer == MAP_FAILED) { i_errno = IECREATESTREAM; free(sp->result); free(sp); return NULL; } sp->pending_size = 0; /* Set socket */ sp->socket = s; sp->snd = test->protocol->send; sp->rcv = test->protocol->recv; if (test->diskfile_name != (char*) 0) { sp->diskfile_fd = open(test->diskfile_name, sender ? O_RDONLY : (O_WRONLY|O_CREAT|O_TRUNC), S_IRUSR|S_IWUSR); if (sp->diskfile_fd == -1) { i_errno = IEFILE; munmap(sp->buffer, sp->test->settings->blksize); free(sp->result); free(sp); return NULL; } sp->snd2 = sp->snd; sp->snd = diskfile_send; sp->rcv2 = sp->rcv; sp->rcv = diskfile_recv; } else sp->diskfile_fd = -1; /* Initialize stream */ if (test->repeating_payload) fill_with_repeating_pattern(sp->buffer, test->settings->blksize); else ret = readentropy(sp->buffer, test->settings->blksize); if ((ret < 0) || (iperf_init_stream(sp, test) < 0)) { close(sp->buffer_fd); munmap(sp->buffer, sp->test->settings->blksize); free(sp->result); free(sp); return NULL; } iperf_add_stream(test, sp); return sp; } /**************************************************************************/ int iperf_common_sockopts(struct iperf_test *test, int s) { int opt; /* Set IP TOS */ if ((opt = test->settings->tos)) { if (getsockdomain(s) == AF_INET6) { #ifdef IPV6_TCLASS if (setsockopt(s, IPPROTO_IPV6, IPV6_TCLASS, &opt, sizeof(opt)) < 0) { i_errno = IESETCOS; return -1; } /* if the control connection was established with a mapped v4 address then set IP_TOS on v6 stream socket as well */ if (iperf_get_mapped_v4(test)) { if (setsockopt(s, IPPROTO_IP, IP_TOS, &opt, sizeof(opt)) < 0) { /* ignore any failure of v4 TOS in IPv6 case */ } } #else i_errno = IESETCOS; return -1; #endif } else { if (setsockopt(s, IPPROTO_IP, IP_TOS, &opt, sizeof(opt)) < 0) { i_errno = IESETTOS; return -1; } } } return 0; } /**************************************************************************/ int iperf_init_stream(struct iperf_stream *sp, struct iperf_test *test) { int opt; socklen_t len; len = sizeof(struct sockaddr_storage); if (getsockname(sp->socket, (struct sockaddr *) &sp->local_addr, &len) < 0) { i_errno = IEINITSTREAM; return -1; } len = sizeof(struct sockaddr_storage); if (getpeername(sp->socket, (struct sockaddr *) &sp->remote_addr, &len) < 0) { i_errno = IEINITSTREAM; return -1; } #if defined(HAVE_DONT_FRAGMENT) /* Set Don't Fragment (DF). Only applicable to IPv4/UDP tests. */ if (iperf_get_test_protocol_id(test) == Pudp && getsockdomain(sp->socket) == AF_INET && iperf_get_dont_fragment(test)) { /* * There are multiple implementations of this feature depending on the OS. * We need to handle separately Linux, UNIX, and Windows, as well as * the case that DF isn't supported at all (such as on macOS). */ #if defined(IP_MTU_DISCOVER) /* Linux version of IP_DONTFRAG */ opt = IP_PMTUDISC_DO; if (setsockopt(sp->socket, IPPROTO_IP, IP_MTU_DISCOVER, &opt, sizeof(opt)) < 0) { i_errno = IESETDONTFRAGMENT; return -1; } #else #if defined(IP_DONTFRAG) /* UNIX does IP_DONTFRAG */ opt = 1; if (setsockopt(sp->socket, IPPROTO_IP, IP_DONTFRAG, &opt, sizeof(opt)) < 0) { i_errno = IESETDONTFRAGMENT; return -1; } #else #if defined(IP_DONTFRAGMENT) /* Windows does IP_DONTFRAGMENT */ opt = 1; if (setsockopt(sp->socket, IPPROTO_IP, IP_DONTFRAGMENT, &opt, sizeof(opt)) < 0) { i_errno = IESETDONTFRAGMENT; return -1; } #else i_errno = IESETDONTFRAGMENT; return -1; #endif /* IP_DONTFRAGMENT */ #endif /* IP_DONTFRAG */ #endif /* IP_MTU_DISCOVER */ } #endif /* HAVE_DONT_FRAGMENT */ return 0; } /**************************************************************************/ void iperf_add_stream(struct iperf_test *test, struct iperf_stream *sp) { int i; struct iperf_stream *n, *prev; if (SLIST_EMPTY(&test->streams)) { SLIST_INSERT_HEAD(&test->streams, sp, streams); sp->id = 1; } else { // for (n = test->streams, i = 2; n->next; n = n->next, ++i); // NOTE: this would ideally be set to 1, however this will not // be changed since it is not causing a significant problem // and changing it would break multi-stream tests between old // and new iperf3 versions. i = 2; prev = NULL; SLIST_FOREACH(n, &test->streams, streams) { prev = n; ++i; } if (prev) { SLIST_INSERT_AFTER(prev, sp, streams); sp->id = i; } } } /* This pair of routines gets inserted into the snd/rcv function pointers ** when there's a -F flag. They handle the file stuff and call the real ** snd/rcv functions, which have been saved in snd2/rcv2. ** ** The advantage of doing it this way is that in the much more common ** case of no -F flag, there is zero extra overhead. */ static int diskfile_send(struct iperf_stream *sp) { int r; int buffer_left = sp->diskfile_left; // represents total data in buffer to be sent out static int rtot; /* if needed, read enough data from the disk to fill up the buffer */ if (sp->diskfile_left < sp->test->settings->blksize && !sp->test->done) { r = read(sp->diskfile_fd, sp->buffer, sp->test->settings->blksize - sp->diskfile_left); buffer_left += r; rtot += r; if (sp->test->debug) { printf("read %d bytes from file, %d total\n", r, rtot); } // If the buffer doesn't contain a full buffer at this point, // adjust the size of the data to send. if (buffer_left != sp->test->settings->blksize) { if (sp->test->debug) printf("possible eof\n"); // setting data size to be sent, // which is less than full block/buffer size // (to be used by iperf_tcp_send, etc.) sp->pending_size = buffer_left; } // If there's no work left, we're done. if (buffer_left == 0) { sp->test->done = 1; if (sp->test->debug) printf("done\n"); } } // If there's no data left in the file or in the buffer, we're done. // No more data available to be sent. // Return without sending data to the network if( sp->test->done || buffer_left == 0 ){ if (sp->test->debug) printf("already done\n"); sp->test->done = 1; return 0; } r = sp->snd2(sp); if (r < 0) { return r; } /* * Compute how much data is in the buffer but didn't get sent. * If there are bytes that got left behind, slide them to the * front of the buffer so they can hopefully go out on the next * pass. */ sp->diskfile_left = buffer_left - r; if (sp->diskfile_left && sp->diskfile_left < sp->test->settings->blksize) { memcpy(sp->buffer, sp->buffer + (sp->test->settings->blksize - sp->diskfile_left), sp->diskfile_left); if (sp->test->debug) printf("Shifting %d bytes by %d\n", sp->diskfile_left, (sp->test->settings->blksize - sp->diskfile_left)); } return r; } static int diskfile_recv(struct iperf_stream *sp) { int r; r = sp->rcv2(sp); if (r > 0) { // NOTE: Currently ignoring the return value of writing to disk (void) (write(sp->diskfile_fd, sp->buffer, r) + 1); } return r; } void iperf_catch_sigend(void (*handler)(int)) { #ifdef SIGINT signal(SIGINT, handler); #endif #ifdef SIGTERM signal(SIGTERM, handler); #endif #ifdef SIGHUP signal(SIGHUP, handler); #endif } /** * Called as a result of getting a signal. * Depending on the current state of the test (and the role of this * process) compute and report one more set of ending statistics * before cleaning up and exiting. */ void iperf_got_sigend(struct iperf_test *test) { /* * If we're the client, or if we're a server and running a test, * then dump out the accumulated stats so far. */ if (test->role == 'c' || (test->role == 's' && test->state == TEST_RUNNING)) { test->done = 1; cpu_util(test->cpu_util); test->stats_callback(test); test->state = DISPLAY_RESULTS; /* change local state only */ if (test->on_test_finish) test->on_test_finish(test); test->reporter_callback(test); } if (test->ctrl_sck >= 0) { test->state = (test->role == 'c') ? CLIENT_TERMINATE : SERVER_TERMINATE; (void) Nwrite(test->ctrl_sck, (char*) &test->state, sizeof(signed char), Ptcp); } i_errno = (test->role == 'c') ? IECLIENTTERM : IESERVERTERM; iperf_errexit(test, "interrupt - %s", iperf_strerror(i_errno)); } /* Try to write a PID file if requested, return -1 on an error. */ int iperf_create_pidfile(struct iperf_test *test) { if (test->pidfile) { int fd; char buf[8]; /* See if the file already exists and we can read it. */ fd = open(test->pidfile, O_RDONLY, 0); if (fd >= 0) { if (read(fd, buf, sizeof(buf) - 1) >= 0) { /* We read some bytes, see if they correspond to a valid PID */ pid_t pid; pid = atoi(buf); if (pid > 0) { /* See if the process exists. */ #if (defined(__vxworks)) || (defined(__VXWORKS__)) #if (defined(_WRS_KERNEL)) && (defined(_WRS_CONFIG_LP64)) if (kill((_Vx_TASK_ID)pid, 0) == 0) { #else if (kill(pid, 0) == 0) { #endif // _WRS_KERNEL and _WRS_CONFIG_LP64 #else if (kill(pid, 0) == 0) { #endif // __vxworks or __VXWORKS__ /* * Make sure not to try to delete existing PID file by * scribbling over the pathname we'd use to refer to it. * Then exit with an error. */ free(test->pidfile); test->pidfile = NULL; iperf_errexit(test, "Another instance of iperf3 appears to be running"); } } } } /* * File didn't exist, we couldn't read it, or it didn't correspond to * a running process. Try to create it. */ fd = open(test->pidfile, O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR|S_IWUSR); if (fd < 0) { return -1; } snprintf(buf, sizeof(buf), "%d", getpid()); /* no trailing newline */ if (write(fd, buf, strlen(buf)) < 0) { (void)close(fd); return -1; } if (close(fd) < 0) { return -1; }; } return 0; } /* Get rid of a PID file, return -1 on error. */ int iperf_delete_pidfile(struct iperf_test *test) { if (test->pidfile) { if (unlink(test->pidfile) < 0) { return -1; } } return 0; } int iperf_json_start(struct iperf_test *test) { test->json_top = cJSON_CreateObject(); if (test->json_top == NULL) return -1; test->json_start = cJSON_CreateObject(); if (test->json_start == NULL) return -1; cJSON_AddItemToObject(test->json_top, "start", test->json_start); test->json_connected = cJSON_CreateArray(); if (test->json_connected == NULL) return -1; cJSON_AddItemToObject(test->json_start, "connected", test->json_connected); test->json_intervals = cJSON_CreateArray(); if (test->json_intervals == NULL) return -1; cJSON_AddItemToObject(test->json_top, "intervals", test->json_intervals); test->json_end = cJSON_CreateObject(); if (test->json_end == NULL) return -1; cJSON_AddItemToObject(test->json_top, "end", test->json_end); return 0; } int iperf_json_finish(struct iperf_test *test) { if (test->json_top) { if (test->title) { cJSON_AddStringToObject(test->json_top, "title", test->title); } if (test->extra_data) { cJSON_AddStringToObject(test->json_top, "extra_data", test->extra_data); } /* Include server output */ if (test->json_server_output) { cJSON_AddItemToObject(test->json_top, "server_output_json", test->json_server_output); } if (test->server_output_text) { cJSON_AddStringToObject(test->json_top, "server_output_text", test->server_output_text); } /* --json-stream, so we print various individual objects */ if (test->json_stream) { cJSON *error = cJSON_GetObjectItem(test->json_top, "error"); if (error) { JSONStream_Output(test, "error", error); } if (test->json_server_output) { JSONStream_Output(test, "server_output_json", test->json_server_output); } if (test->server_output_text) { JSONStream_Output(test, "server_output_text", cJSON_CreateString(test->server_output_text)); } JSONStream_Output(test, "end", test->json_end); } /* Original --json output, single monolithic object */ else { /* * Get ASCII rendering of JSON structure. Then make our * own copy of it and return the storage that cJSON * allocated on our behalf. We keep our own copy * around. */ char *str = cJSON_Print(test->json_top); if (str == NULL) { return -1; } test->json_output_string = strdup(str); cJSON_free(str); if (test->json_output_string == NULL) { return -1; } if (pthread_mutex_lock(&(test->print_mutex)) != 0) { perror("iperf_json_finish: pthread_mutex_lock"); } fprintf(test->outfile, "%s\n", test->json_output_string); if (pthread_mutex_unlock(&(test->print_mutex)) != 0) { perror("iperf_json_finish: pthread_mutex_unlock"); } iflush(test); } cJSON_Delete(test->json_top); } test->json_top = test->json_start = test->json_connected = test->json_intervals = test->json_server_output = test->json_end = NULL; return 0; } /* CPU affinity stuff - Linux, FreeBSD, and Windows only. */ int iperf_setaffinity(struct iperf_test *test, int affinity) { #if defined(HAVE_SCHED_SETAFFINITY) cpu_set_t cpu_set; CPU_ZERO(&cpu_set); CPU_SET(affinity, &cpu_set); if (sched_setaffinity(0, sizeof(cpu_set_t), &cpu_set) != 0) { i_errno = IEAFFINITY; return -1; } return 0; #elif defined(HAVE_CPUSET_SETAFFINITY) cpuset_t cpumask; if(cpuset_getaffinity(CPU_LEVEL_WHICH, CPU_WHICH_PID, -1, sizeof(cpuset_t), &test->cpumask) != 0) { i_errno = IEAFFINITY; return -1; } CPU_ZERO(&cpumask); CPU_SET(affinity, &cpumask); if(cpuset_setaffinity(CPU_LEVEL_WHICH,CPU_WHICH_PID, -1, sizeof(cpuset_t), &cpumask) != 0) { i_errno = IEAFFINITY; return -1; } return 0; #elif defined(HAVE_SETPROCESSAFFINITYMASK) HANDLE process = GetCurrentProcess(); DWORD_PTR processAffinityMask = 1 << affinity; if (SetProcessAffinityMask(process, processAffinityMask) == 0) { i_errno = IEAFFINITY; return -1; } return 0; #else /* neither HAVE_SCHED_SETAFFINITY nor HAVE_CPUSET_SETAFFINITY nor HAVE_SETPROCESSAFFINITYMASK */ i_errno = IEAFFINITY; return -1; #endif /* neither HAVE_SCHED_SETAFFINITY nor HAVE_CPUSET_SETAFFINITY nor HAVE_SETPROCESSAFFINITYMASK */ } int iperf_clearaffinity(struct iperf_test *test) { #if defined(HAVE_SCHED_SETAFFINITY) cpu_set_t cpu_set; int i; CPU_ZERO(&cpu_set); for (i = 0; i < CPU_SETSIZE; ++i) CPU_SET(i, &cpu_set); if (sched_setaffinity(0, sizeof(cpu_set_t), &cpu_set) != 0) { i_errno = IEAFFINITY; return -1; } return 0; #elif defined(HAVE_CPUSET_SETAFFINITY) if(cpuset_setaffinity(CPU_LEVEL_WHICH,CPU_WHICH_PID, -1, sizeof(cpuset_t), &test->cpumask) != 0) { i_errno = IEAFFINITY; return -1; } return 0; #elif defined(HAVE_SETPROCESSAFFINITYMASK) HANDLE process = GetCurrentProcess(); DWORD_PTR processAffinityMask; DWORD_PTR lpSystemAffinityMask; if (GetProcessAffinityMask(process, &processAffinityMask, &lpSystemAffinityMask) == 0 || SetProcessAffinityMask(process, lpSystemAffinityMask) == 0) { i_errno = IEAFFINITY; return -1; } return 0; #else /* neither HAVE_SCHED_SETAFFINITY nor HAVE_CPUSET_SETAFFINITY nor HAVE_SETPROCESSAFFINITYMASK */ i_errno = IEAFFINITY; return -1; #endif /* neither HAVE_SCHED_SETAFFINITY nor HAVE_CPUSET_SETAFFINITY nor HAVE_SETPROCESSAFFINITYMASK */ } static char iperf_timestr[100]; static char linebuffer[1024]; int iperf_printf(struct iperf_test *test, const char* format, ...) { va_list argp; int r = 0, r0; time_t now; struct tm *ltm = NULL; char *ct = NULL; if (pthread_mutex_lock(&(test->print_mutex)) != 0) { perror("iperf_print: pthread_mutex_lock"); } /* Timestamp if requested */ if (iperf_get_test_timestamps(test)) { time(&now); ltm = localtime(&now); strftime(iperf_timestr, sizeof(iperf_timestr), iperf_get_test_timestamp_format(test), ltm); ct = iperf_timestr; } /* * There are roughly two use cases here. If we're the client, * want to print stuff directly to the output stream. * If we're the sender we might need to buffer up output to send * to the client. * * This doesn't make a whole lot of difference except there are * some chunks of output on the client (on particular the whole * of the server output with --get-server-output) that could * easily exceed the size of the line buffer, but which don't need * to be buffered up anyway. */ if (test->role == 'c') { if (ct) { r0 = fprintf(test->outfile, "%s", ct); if (r0 < 0) { r = r0; goto bottom; } r += r0; } if (test->title) { r0 = fprintf(test->outfile, "%s: ", test->title); if (r0 < 0) { r = r0; goto bottom; } r += r0; } va_start(argp, format); r0 = vfprintf(test->outfile, format, argp); va_end(argp); if (r0 < 0) { r = r0; goto bottom; } r += r0; } else if (test->role == 's') { if (ct) { r0 = snprintf(linebuffer, sizeof(linebuffer), "%s", ct); if (r0 < 0) { r = r0; goto bottom; } r += r0; } /* Should always be true as long as sizeof(ct) < sizeof(linebuffer) */ if (r < sizeof(linebuffer)) { va_start(argp, format); r0 = vsnprintf(linebuffer + r, sizeof(linebuffer) - r, format, argp); va_end(argp); if (r0 < 0) { r = r0; goto bottom; } r += r0; } fprintf(test->outfile, "%s", linebuffer); if (test->role == 's' && iperf_get_test_get_server_output(test)) { struct iperf_textline *l = (struct iperf_textline *) malloc(sizeof(struct iperf_textline)); l->line = strdup(linebuffer); TAILQ_INSERT_TAIL(&(test->server_output_list), l, textlineentries); } } bottom: if (pthread_mutex_unlock(&(test->print_mutex)) != 0) { perror("iperf_print: pthread_mutex_unlock"); } return r; } int iflush(struct iperf_test *test) { int rc2; int rc; rc = pthread_mutex_lock(&(test->print_mutex)); if (rc != 0) { errno = rc; perror("iflush: pthread_mutex_lock"); } rc2 = fflush(test->outfile); rc = pthread_mutex_unlock(&(test->print_mutex)); if (rc != 0) { errno = rc; perror("iflush: pthread_mutex_unlock"); } return rc2; }