/* Arithmetic mod p = 2^255-19 * Daniel Beer , 5 Jan 2014 * * This file is in the public domain. */ #include "f25519.h" const uint8_t f25519_one[F25519_SIZE] = {1}; void f25519_load(uint8_t *x, uint32_t c) { int i; for (i = 0; i < sizeof(c); i++) { x[i] = c; c >>= 8; } for (; i < F25519_SIZE; i++) x[i] = 0; } void f25519_normalize(uint8_t *x) { uint8_t minusp[F25519_SIZE]; uint16_t c; int i; /* Reduce using 2^255 = 19 mod p */ c = (x[31] >> 7) * 19; x[31] &= 127; for (i = 0; i < F25519_SIZE; i++) { c += x[i]; x[i] = c; c >>= 8; } /* The number is now less than 2^255 + 18, and therefore less than * 2p. Try subtracting p, and conditionally load the subtracted * value if underflow did not occur. */ c = 19; for (i = 0; i + 1 < F25519_SIZE; i++) { c += x[i]; minusp[i] = c; c >>= 8; } c += ((uint16_t)x[i]) - 128; minusp[31] = c; /* Load x-p if no underflow */ f25519_select(x, minusp, x, (c >> 15) & 1); } uint8_t f25519_eq(const uint8_t *x, const uint8_t *y) { uint8_t sum = 0; int i; for (i = 0; i < F25519_SIZE; i++) sum |= x[i] ^ y[i]; sum |= (sum >> 4); sum |= (sum >> 2); sum |= (sum >> 1); return (sum ^ 1) & 1; } void f25519_select(uint8_t *dst, const uint8_t *zero, const uint8_t *one, uint8_t condition) { const uint8_t mask = -condition; int i; for (i = 0; i < F25519_SIZE; i++) dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i])); } void f25519_add(uint8_t *r, const uint8_t *a, const uint8_t *b) { uint16_t c = 0; int i; /* Add */ for (i = 0; i < F25519_SIZE; i++) { c >>= 8; c += ((uint16_t)a[i]) + ((uint16_t)b[i]); r[i] = c; } /* Reduce with 2^255 = 19 mod p */ r[31] &= 127; c = (c >> 7) * 19; for (i = 0; i < F25519_SIZE; i++) { c += r[i]; r[i] = c; c >>= 8; } } void f25519_sub(uint8_t *r, const uint8_t *a, const uint8_t *b) { uint32_t c = 0; int i; /* Calculate a + 2p - b, to avoid underflow */ c = 218; for (i = 0; i + 1 < F25519_SIZE; i++) { c += 65280 + ((uint32_t)a[i]) - ((uint32_t)b[i]); r[i] = c; c >>= 8; } c += ((uint32_t)a[31]) - ((uint32_t)b[31]); r[31] = c & 127; c = (c >> 7) * 19; for (i = 0; i < F25519_SIZE; i++) { c += r[i]; r[i] = c; c >>= 8; } } void f25519_neg(uint8_t *r, const uint8_t *a) { uint32_t c = 0; int i; /* Calculate 2p - a, to avoid underflow */ c = 218; for (i = 0; i + 1 < F25519_SIZE; i++) { c += 65280 - ((uint32_t)a[i]); r[i] = c; c >>= 8; } c -= ((uint32_t)a[31]); r[31] = c & 127; c = (c >> 7) * 19; for (i = 0; i < F25519_SIZE; i++) { c += r[i]; r[i] = c; c >>= 8; } } void f25519_mul__distinct(uint8_t *r, const uint8_t *a, const uint8_t *b) { uint32_t c = 0; int i; for (i = 0; i < F25519_SIZE; i++) { int j; c >>= 8; for (j = 0; j <= i; j++) c += ((uint32_t)a[j]) * ((uint32_t)b[i - j]); for (; j < F25519_SIZE; j++) c += ((uint32_t)a[j]) * ((uint32_t)b[i + F25519_SIZE - j]) * 38; r[i] = c; } r[31] &= 127; c = (c >> 7) * 19; for (i = 0; i < F25519_SIZE; i++) { c += r[i]; r[i] = c; c >>= 8; } } static void f25519_mul_c(uint8_t *r, const uint8_t *a, uint32_t b) { uint32_t c = 0; int i; for (i = 0; i < F25519_SIZE; i++) { c >>= 8; c += b * ((uint32_t)a[i]); r[i] = c; } r[31] &= 127; c >>= 7; c *= 19; for (i = 0; i < F25519_SIZE; i++) { c += r[i]; r[i] = c; c >>= 8; } } void f25519_inv__distinct(uint8_t *r, const uint8_t *x) { uint8_t s[F25519_SIZE]; int i; /* This is a prime field, so by Fermat's little theorem: * * x^(p-1) = 1 mod p * * Therefore, raise to (p-2) = 2^255-21 to get a multiplicative * inverse. * * This is a 255-bit binary number with the digits: * * 11111111... 01011 * * We compute the result by the usual binary chain, but * alternate between keeping the accumulator in r and s, so as * to avoid copying temporaries. */ /* 1 1 */ f25519_mul__distinct(s, x, x); f25519_mul__distinct(r, s, x); /* 1 x 248 */ for (i = 0; i < 248; i++) { f25519_mul__distinct(s, r, r); f25519_mul__distinct(r, s, x); } /* 0 */ f25519_mul__distinct(s, r, r); /* 1 */ f25519_mul__distinct(r, s, s); f25519_mul__distinct(s, r, x); /* 0 */ f25519_mul__distinct(r, s, s); /* 1 */ f25519_mul__distinct(s, r, r); f25519_mul__distinct(r, s, x); /* 1 */ f25519_mul__distinct(s, r, r); f25519_mul__distinct(r, s, x); } /* Raise x to the power of (p-5)/8 = 2^252-3, using s for temporary * storage. */ static void exp2523(uint8_t *r, const uint8_t *x, uint8_t *s) { int i; /* This number is a 252-bit number with the binary expansion: * * 111111... 01 */ /* 1 1 */ f25519_mul__distinct(r, x, x); f25519_mul__distinct(s, r, x); /* 1 x 248 */ for (i = 0; i < 248; i++) { f25519_mul__distinct(r, s, s); f25519_mul__distinct(s, r, x); } /* 0 */ f25519_mul__distinct(r, s, s); /* 1 */ f25519_mul__distinct(s, r, r); f25519_mul__distinct(r, s, x); } void f25519_sqrt(uint8_t *r, const uint8_t *a) { uint8_t v[F25519_SIZE]; uint8_t i[F25519_SIZE]; uint8_t x[F25519_SIZE]; uint8_t y[F25519_SIZE]; /* v = (2a)^((p-5)/8) [x = 2a] */ f25519_mul_c(x, a, 2); exp2523(v, x, y); /* i = 2av^2 - 1 */ f25519_mul__distinct(y, v, v); f25519_mul__distinct(i, x, y); f25519_load(y, 1); f25519_sub(i, i, y); /* r = avi */ f25519_mul__distinct(x, v, a); f25519_mul__distinct(r, x, i); }