// The template and inlines for the -*- C++ -*- valarray class. // Copyright (C) 1997-2023 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file include/valarray * This is a Standard C++ Library header. */ // Written by Gabriel Dos Reis #ifndef _GLIBCXX_VALARRAY #define _GLIBCXX_VALARRAY 1 #pragma GCC system_header #include // dependant #include #include #include #include #if __cplusplus >= 201103L #include #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION template class _Expr; template class _ValArray; namespace __detail { template class _Meta, class _Dom> struct _UnClos; template class _Meta1, template class _Meta2, class _Dom1, class _Dom2> struct _BinClos; template class _Meta, class _Dom> struct _SClos; template class _Meta, class _Dom> struct _GClos; template class _Meta, class _Dom> struct _IClos; template class _Meta, class _Dom> struct _ValFunClos; template class _Meta, class _Dom> struct _RefFunClos; } // namespace __detail using __detail::_UnClos; using __detail::_BinClos; using __detail::_SClos; using __detail::_GClos; using __detail::_IClos; using __detail::_ValFunClos; using __detail::_RefFunClos; template class valarray; // An array of type _Tp class slice; // BLAS-like slice out of an array template class slice_array; class gslice; // generalized slice out of an array template class gslice_array; template class mask_array; // masked array template class indirect_array; // indirected array _GLIBCXX_END_NAMESPACE_VERSION } // namespace #include #include namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION /** * @defgroup numeric_arrays Numeric Arrays * @ingroup numerics * * Classes and functions for representing and manipulating arrays of elements. * @{ */ /** * @brief Smart array designed to support numeric processing. * * A valarray is an array that provides constraints intended to allow for * effective optimization of numeric array processing by reducing the * aliasing that can result from pointer representations. It represents a * one-dimensional array from which different multidimensional subsets can * be accessed and modified. * * @tparam _Tp Type of object in the array. */ template class valarray { template struct _UnaryOp { typedef typename __fun<_Op, _Tp>::result_type __rt; typedef _Expr<_UnClos<_Op, _ValArray, _Tp>, __rt> _Rt; }; public: typedef _Tp value_type; // _lib.valarray.cons_ construct/destroy: /// Construct an empty array. valarray() _GLIBCXX_NOTHROW; /// Construct an array with @a n elements. explicit valarray(size_t); /// Construct an array with @a n elements initialized to @a t. valarray(const _Tp&, size_t); /// Construct an array initialized to the first @a n elements of @a t. valarray(const _Tp* __restrict__, size_t); /// Copy constructor. valarray(const valarray&); #if __cplusplus >= 201103L /// Move constructor. valarray(valarray&&) noexcept; #endif /// Construct an array with the same size and values in @a sa. valarray(const slice_array<_Tp>&); /// Construct an array with the same size and values in @a ga. valarray(const gslice_array<_Tp>&); /// Construct an array with the same size and values in @a ma. valarray(const mask_array<_Tp>&); /// Construct an array with the same size and values in @a ia. valarray(const indirect_array<_Tp>&); #if __cplusplus >= 201103L /// Construct an array with an initializer_list of values. valarray(initializer_list<_Tp>); #endif template valarray(const _Expr<_Dom, _Tp>& __e); ~valarray() _GLIBCXX_NOEXCEPT; // _lib.valarray.assign_ assignment: /** * @brief Assign elements to an array. * * Assign elements of array to values in @a v. * * @param __v Valarray to get values from. */ valarray<_Tp>& operator=(const valarray<_Tp>& __v); #if __cplusplus >= 201103L /** * @brief Move assign elements to an array. * * Move assign elements of array to values in @a v. * * @param __v Valarray to get values from. */ valarray<_Tp>& operator=(valarray<_Tp>&& __v) noexcept; #endif /** * @brief Assign elements to a value. * * Assign all elements of array to @a t. * * @param __t Value for elements. */ valarray<_Tp>& operator=(const _Tp& __t); /** * @brief Assign elements to an array subset. * * Assign elements of array to values in @a sa. Results are undefined * if @a sa does not have the same size as this array. * * @param __sa Array slice to get values from. */ valarray<_Tp>& operator=(const slice_array<_Tp>& __sa); /** * @brief Assign elements to an array subset. * * Assign elements of array to values in @a ga. Results are undefined * if @a ga does not have the same size as this array. * * @param __ga Array slice to get values from. */ valarray<_Tp>& operator=(const gslice_array<_Tp>& __ga); /** * @brief Assign elements to an array subset. * * Assign elements of array to values in @a ma. Results are undefined * if @a ma does not have the same size as this array. * * @param __ma Array slice to get values from. */ valarray<_Tp>& operator=(const mask_array<_Tp>& __ma); /** * @brief Assign elements to an array subset. * * Assign elements of array to values in @a ia. Results are undefined * if @a ia does not have the same size as this array. * * @param __ia Array slice to get values from. */ valarray<_Tp>& operator=(const indirect_array<_Tp>& __ia); #if __cplusplus >= 201103L /** * @brief Assign elements to an initializer_list. * * Assign elements of array to values in @a __l. Results are undefined * if @a __l does not have the same size as this array. * * @param __l initializer_list to get values from. */ valarray& operator=(initializer_list<_Tp> __l); #endif template valarray<_Tp>& operator= (const _Expr<_Dom, _Tp>&); // _lib.valarray.access_ element access: /** * Return a reference to the i'th array element. * * @param __i Index of element to return. * @return Reference to the i'th element. */ _Tp& operator[](size_t __i) _GLIBCXX_NOTHROW; // _GLIBCXX_RESOLVE_LIB_DEFECTS // 389. Const overload of valarray::operator[] returns by value. const _Tp& operator[](size_t) const _GLIBCXX_NOTHROW; // _lib.valarray.sub_ subset operations: /** * @brief Return an array subset. * * Returns a new valarray containing the elements of the array * indicated by the slice argument. The new valarray has the same size * as the input slice. @see slice. * * @param __s The source slice. * @return New valarray containing elements in @a __s. */ _Expr<_SClos<_ValArray, _Tp>, _Tp> operator[](slice __s) const; /** * @brief Return a reference to an array subset. * * Returns a new valarray containing the elements of the array * indicated by the slice argument. The new valarray has the same size * as the input slice. @see slice. * * @param __s The source slice. * @return New valarray containing elements in @a __s. */ slice_array<_Tp> operator[](slice __s); /** * @brief Return an array subset. * * Returns a slice_array referencing the elements of the array * indicated by the slice argument. @see gslice. * * @param __s The source slice. * @return Slice_array referencing elements indicated by @a __s. */ _Expr<_GClos<_ValArray, _Tp>, _Tp> operator[](const gslice& __s) const; /** * @brief Return a reference to an array subset. * * Returns a new valarray containing the elements of the array * indicated by the gslice argument. The new valarray has * the same size as the input gslice. @see gslice. * * @param __s The source gslice. * @return New valarray containing elements in @a __s. */ gslice_array<_Tp> operator[](const gslice& __s); /** * @brief Return an array subset. * * Returns a new valarray containing the elements of the array * indicated by the argument. The input is a valarray of bool which * represents a bitmask indicating which elements should be copied into * the new valarray. Each element of the array is added to the return * valarray if the corresponding element of the argument is true. * * @param __m The valarray bitmask. * @return New valarray containing elements indicated by @a __m. */ valarray<_Tp> operator[](const valarray& __m) const; /** * @brief Return a reference to an array subset. * * Returns a new mask_array referencing the elements of the array * indicated by the argument. The input is a valarray of bool which * represents a bitmask indicating which elements are part of the * subset. Elements of the array are part of the subset if the * corresponding element of the argument is true. * * @param __m The valarray bitmask. * @return New valarray containing elements indicated by @a __m. */ mask_array<_Tp> operator[](const valarray& __m); /** * @brief Return an array subset. * * Returns a new valarray containing the elements of the array * indicated by the argument. The elements in the argument are * interpreted as the indices of elements of this valarray to copy to * the return valarray. * * @param __i The valarray element index list. * @return New valarray containing elements in @a __s. */ _Expr<_IClos<_ValArray, _Tp>, _Tp> operator[](const valarray& __i) const; /** * @brief Return a reference to an array subset. * * Returns an indirect_array referencing the elements of the array * indicated by the argument. The elements in the argument are * interpreted as the indices of elements of this valarray to include * in the subset. The returned indirect_array refers to these * elements. * * @param __i The valarray element index list. * @return Indirect_array referencing elements in @a __i. */ indirect_array<_Tp> operator[](const valarray& __i); // _lib.valarray.unary_ unary operators: /// Return a new valarray by applying unary + to each element. typename _UnaryOp<__unary_plus>::_Rt operator+() const; /// Return a new valarray by applying unary - to each element. typename _UnaryOp<__negate>::_Rt operator-() const; /// Return a new valarray by applying unary ~ to each element. typename _UnaryOp<__bitwise_not>::_Rt operator~() const; /// Return a new valarray by applying unary ! to each element. typename _UnaryOp<__logical_not>::_Rt operator!() const; // _lib.valarray.cassign_ computed assignment: /// Multiply each element of array by @a t. valarray<_Tp>& operator*=(const _Tp&); /// Divide each element of array by @a t. valarray<_Tp>& operator/=(const _Tp&); /// Set each element e of array to e % @a t. valarray<_Tp>& operator%=(const _Tp&); /// Add @a t to each element of array. valarray<_Tp>& operator+=(const _Tp&); /// Subtract @a t to each element of array. valarray<_Tp>& operator-=(const _Tp&); /// Set each element e of array to e ^ @a t. valarray<_Tp>& operator^=(const _Tp&); /// Set each element e of array to e & @a t. valarray<_Tp>& operator&=(const _Tp&); /// Set each element e of array to e | @a t. valarray<_Tp>& operator|=(const _Tp&); /// Left shift each element e of array by @a t bits. valarray<_Tp>& operator<<=(const _Tp&); /// Right shift each element e of array by @a t bits. valarray<_Tp>& operator>>=(const _Tp&); /// Multiply elements of array by corresponding elements of @a v. valarray<_Tp>& operator*=(const valarray<_Tp>&); /// Divide elements of array by corresponding elements of @a v. valarray<_Tp>& operator/=(const valarray<_Tp>&); /// Modulo elements of array by corresponding elements of @a v. valarray<_Tp>& operator%=(const valarray<_Tp>&); /// Add corresponding elements of @a v to elements of array. valarray<_Tp>& operator+=(const valarray<_Tp>&); /// Subtract corresponding elements of @a v from elements of array. valarray<_Tp>& operator-=(const valarray<_Tp>&); /// Logical xor corresponding elements of @a v with elements of array. valarray<_Tp>& operator^=(const valarray<_Tp>&); /// Logical or corresponding elements of @a v with elements of array. valarray<_Tp>& operator|=(const valarray<_Tp>&); /// Logical and corresponding elements of @a v with elements of array. valarray<_Tp>& operator&=(const valarray<_Tp>&); /// Left shift elements of array by corresponding elements of @a v. valarray<_Tp>& operator<<=(const valarray<_Tp>&); /// Right shift elements of array by corresponding elements of @a v. valarray<_Tp>& operator>>=(const valarray<_Tp>&); template valarray<_Tp>& operator*=(const _Expr<_Dom, _Tp>&); template valarray<_Tp>& operator/=(const _Expr<_Dom, _Tp>&); template valarray<_Tp>& operator%=(const _Expr<_Dom, _Tp>&); template valarray<_Tp>& operator+=(const _Expr<_Dom, _Tp>&); template valarray<_Tp>& operator-=(const _Expr<_Dom, _Tp>&); template valarray<_Tp>& operator^=(const _Expr<_Dom, _Tp>&); template valarray<_Tp>& operator|=(const _Expr<_Dom, _Tp>&); template valarray<_Tp>& operator&=(const _Expr<_Dom, _Tp>&); template valarray<_Tp>& operator<<=(const _Expr<_Dom, _Tp>&); template valarray<_Tp>& operator>>=(const _Expr<_Dom, _Tp>&); // _lib.valarray.members_ member functions: #if __cplusplus >= 201103L /// Swap. void swap(valarray<_Tp>& __v) noexcept; #endif /// Return the number of elements in array. size_t size() const; /** * @brief Return the sum of all elements in the array. * * Accumulates the sum of all elements into a Tp using +=. The order * of adding the elements is unspecified. */ _Tp sum() const; /// Return the minimum element using operator<(). _Tp min() const; /// Return the maximum element using operator<(). _Tp max() const; /** * @brief Return a shifted array. * * A new valarray is constructed as a copy of this array with elements * in shifted positions. For an element with index i, the new position * is i - n. The new valarray has the same size as the current one. * New elements without a value are set to 0. Elements whose new * position is outside the bounds of the array are discarded. * * Positive arguments shift toward index 0, discarding elements [0, n). * Negative arguments discard elements from the top of the array. * * @param __n Number of element positions to shift. * @return New valarray with elements in shifted positions. */ valarray<_Tp> shift (int __n) const; /** * @brief Return a rotated array. * * A new valarray is constructed as a copy of this array with elements * in shifted positions. For an element with index i, the new position * is (i - n) % size(). The new valarray has the same size as the * current one. Elements that are shifted beyond the array bounds are * shifted into the other end of the array. No elements are lost. * * Positive arguments shift toward index 0, wrapping around the top. * Negative arguments shift towards the top, wrapping around to 0. * * @param __n Number of element positions to rotate. * @return New valarray with elements in shifted positions. */ valarray<_Tp> cshift(int __n) const; /** * @brief Apply a function to the array. * * Returns a new valarray with elements assigned to the result of * applying __func to the corresponding element of this array. The new * array has the same size as this one. * * @param __func Function of Tp returning Tp to apply. * @return New valarray with transformed elements. */ _Expr<_ValFunClos<_ValArray, _Tp>, _Tp> apply(_Tp __func(_Tp)) const; /** * @brief Apply a function to the array. * * Returns a new valarray with elements assigned to the result of * applying __func to the corresponding element of this array. The new * array has the same size as this one. * * @param __func Function of const Tp& returning Tp to apply. * @return New valarray with transformed elements. */ _Expr<_RefFunClos<_ValArray, _Tp>, _Tp> apply(_Tp __func(const _Tp&)) const; /** * @brief Resize array. * * Resize this array to @a size and set all elements to @a c. All * references and iterators are invalidated. * * @param __size New array size. * @param __c New value for all elements. */ void resize(size_t __size, _Tp __c = _Tp()); private: size_t _M_size; _Tp* __restrict__ _M_data; friend struct _Array<_Tp>; }; #if __cpp_deduction_guides >= 201606 template valarray(const _Tp(&)[_Nm], size_t) -> valarray<_Tp>; #endif template inline const _Tp& valarray<_Tp>::operator[](size_t __i) const _GLIBCXX_NOTHROW { __glibcxx_requires_subscript(__i); return _M_data[__i]; } template inline _Tp& valarray<_Tp>::operator[](size_t __i) _GLIBCXX_NOTHROW { __glibcxx_requires_subscript(__i); return _M_data[__i]; } /// @} group numeric_arrays _GLIBCXX_END_NAMESPACE_VERSION } // namespace #include #include #include #include #include #include namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION /** * @addtogroup numeric_arrays * @{ */ template inline valarray<_Tp>::valarray() _GLIBCXX_NOTHROW : _M_size(0), _M_data(0) {} template inline valarray<_Tp>::valarray(size_t __n) : _M_size(__n), _M_data(__valarray_get_storage<_Tp>(__n)) { std::__valarray_default_construct(_M_data, _M_data + __n); } template inline valarray<_Tp>::valarray(const _Tp& __t, size_t __n) : _M_size(__n), _M_data(__valarray_get_storage<_Tp>(__n)) { std::__valarray_fill_construct(_M_data, _M_data + __n, __t); } template inline valarray<_Tp>::valarray(const _Tp* __restrict__ __p, size_t __n) : _M_size(__n), _M_data(__valarray_get_storage<_Tp>(__n)) { __glibcxx_assert(__p != 0 || __n == 0); std::__valarray_copy_construct(__p, __p + __n, _M_data); } template inline valarray<_Tp>::valarray(const valarray<_Tp>& __v) : _M_size(__v._M_size), _M_data(__valarray_get_storage<_Tp>(__v._M_size)) { std::__valarray_copy_construct(__v._M_data, __v._M_data + _M_size, _M_data); } #if __cplusplus >= 201103L template inline valarray<_Tp>::valarray(valarray<_Tp>&& __v) noexcept : _M_size(__v._M_size), _M_data(__v._M_data) { __v._M_size = 0; __v._M_data = 0; } #endif template inline valarray<_Tp>::valarray(const slice_array<_Tp>& __sa) : _M_size(__sa._M_sz), _M_data(__valarray_get_storage<_Tp>(__sa._M_sz)) { std::__valarray_copy_construct (__sa._M_array, __sa._M_sz, __sa._M_stride, _Array<_Tp>(_M_data)); } template inline valarray<_Tp>::valarray(const gslice_array<_Tp>& __ga) : _M_size(__ga._M_index.size()), _M_data(__valarray_get_storage<_Tp>(_M_size)) { std::__valarray_copy_construct (__ga._M_array, _Array(__ga._M_index), _Array<_Tp>(_M_data), _M_size); } template inline valarray<_Tp>::valarray(const mask_array<_Tp>& __ma) : _M_size(__ma._M_sz), _M_data(__valarray_get_storage<_Tp>(__ma._M_sz)) { std::__valarray_copy_construct (__ma._M_array, __ma._M_mask, _Array<_Tp>(_M_data), _M_size); } template inline valarray<_Tp>::valarray(const indirect_array<_Tp>& __ia) : _M_size(__ia._M_sz), _M_data(__valarray_get_storage<_Tp>(__ia._M_sz)) { std::__valarray_copy_construct (__ia._M_array, __ia._M_index, _Array<_Tp>(_M_data), _M_size); } #if __cplusplus >= 201103L template inline valarray<_Tp>::valarray(initializer_list<_Tp> __l) : _M_size(__l.size()), _M_data(__valarray_get_storage<_Tp>(__l.size())) { std::__valarray_copy_construct(__l.begin(), __l.end(), _M_data); } #endif template template inline valarray<_Tp>::valarray(const _Expr<_Dom, _Tp>& __e) : _M_size(__e.size()), _M_data(__valarray_get_storage<_Tp>(_M_size)) { std::__valarray_copy_construct(__e, _M_size, _Array<_Tp>(_M_data)); } template inline valarray<_Tp>::~valarray() _GLIBCXX_NOEXCEPT { std::__valarray_destroy_elements(_M_data, _M_data + _M_size); std::__valarray_release_memory(_M_data); } template inline valarray<_Tp>& valarray<_Tp>::operator=(const valarray<_Tp>& __v) { // _GLIBCXX_RESOLVE_LIB_DEFECTS // 630. arrays of valarray. if (_M_size == __v._M_size) std::__valarray_copy(__v._M_data, _M_size, _M_data); else { if (_M_data) { std::__valarray_destroy_elements(_M_data, _M_data + _M_size); std::__valarray_release_memory(_M_data); } _M_size = __v._M_size; _M_data = __valarray_get_storage<_Tp>(_M_size); std::__valarray_copy_construct(__v._M_data, __v._M_data + _M_size, _M_data); } return *this; } #if __cplusplus >= 201103L template inline valarray<_Tp>& valarray<_Tp>::operator=(valarray<_Tp>&& __v) noexcept { if (_M_data) { std::__valarray_destroy_elements(_M_data, _M_data + _M_size); std::__valarray_release_memory(_M_data); } _M_size = __v._M_size; _M_data = __v._M_data; __v._M_size = 0; __v._M_data = 0; return *this; } template inline valarray<_Tp>& valarray<_Tp>::operator=(initializer_list<_Tp> __l) { // _GLIBCXX_RESOLVE_LIB_DEFECTS // 630. arrays of valarray. if (_M_size == __l.size()) std::__valarray_copy(__l.begin(), __l.size(), _M_data); else { if (_M_data) { std::__valarray_destroy_elements(_M_data, _M_data + _M_size); std::__valarray_release_memory(_M_data); } _M_size = __l.size(); _M_data = __valarray_get_storage<_Tp>(_M_size); std::__valarray_copy_construct(__l.begin(), __l.begin() + _M_size, _M_data); } return *this; } #endif template inline valarray<_Tp>& valarray<_Tp>::operator=(const _Tp& __t) { std::__valarray_fill(_M_data, _M_size, __t); return *this; } template inline valarray<_Tp>& valarray<_Tp>::operator=(const slice_array<_Tp>& __sa) { __glibcxx_assert(_M_size == __sa._M_sz); std::__valarray_copy(__sa._M_array, __sa._M_sz, __sa._M_stride, _Array<_Tp>(_M_data)); return *this; } template inline valarray<_Tp>& valarray<_Tp>::operator=(const gslice_array<_Tp>& __ga) { __glibcxx_assert(_M_size == __ga._M_index.size()); std::__valarray_copy(__ga._M_array, _Array(__ga._M_index), _Array<_Tp>(_M_data), _M_size); return *this; } template inline valarray<_Tp>& valarray<_Tp>::operator=(const mask_array<_Tp>& __ma) { __glibcxx_assert(_M_size == __ma._M_sz); std::__valarray_copy(__ma._M_array, __ma._M_mask, _Array<_Tp>(_M_data), _M_size); return *this; } template inline valarray<_Tp>& valarray<_Tp>::operator=(const indirect_array<_Tp>& __ia) { __glibcxx_assert(_M_size == __ia._M_sz); std::__valarray_copy(__ia._M_array, __ia._M_index, _Array<_Tp>(_M_data), _M_size); return *this; } template template inline valarray<_Tp>& valarray<_Tp>::operator=(const _Expr<_Dom, _Tp>& __e) { // _GLIBCXX_RESOLVE_LIB_DEFECTS // 630. arrays of valarray. if (_M_size == __e.size()) { // Copy manually instead of using __valarray_copy, because __e might // alias _M_data and the _Array param type of __valarray_copy uses // restrict which doesn't allow aliasing. for (size_t __i = 0; __i < _M_size; ++__i) _M_data[__i] = __e[__i]; } else { if (_M_data) { std::__valarray_destroy_elements(_M_data, _M_data + _M_size); std::__valarray_release_memory(_M_data); } _M_size = __e.size(); _M_data = __valarray_get_storage<_Tp>(_M_size); std::__valarray_copy_construct(__e, _M_size, _Array<_Tp>(_M_data)); } return *this; } template inline _Expr<_SClos<_ValArray,_Tp>, _Tp> valarray<_Tp>::operator[](slice __s) const { typedef _SClos<_ValArray,_Tp> _Closure; return _Expr<_Closure, _Tp>(_Closure (_Array<_Tp>(_M_data), __s)); } template inline slice_array<_Tp> valarray<_Tp>::operator[](slice __s) { return slice_array<_Tp>(_Array<_Tp>(_M_data), __s); } template inline _Expr<_GClos<_ValArray,_Tp>, _Tp> valarray<_Tp>::operator[](const gslice& __gs) const { typedef _GClos<_ValArray,_Tp> _Closure; return _Expr<_Closure, _Tp> (_Closure(_Array<_Tp>(_M_data), __gs._M_index->_M_index)); } template inline gslice_array<_Tp> valarray<_Tp>::operator[](const gslice& __gs) { return gslice_array<_Tp> (_Array<_Tp>(_M_data), __gs._M_index->_M_index); } template inline valarray<_Tp> valarray<_Tp>::operator[](const valarray& __m) const { size_t __s = 0; size_t __e = __m.size(); for (size_t __i=0; __i<__e; ++__i) if (__m[__i]) ++__s; __glibcxx_assert(__s <= _M_size); return valarray<_Tp>(mask_array<_Tp>(_Array<_Tp>(_M_data), __s, _Array (__m))); } template inline mask_array<_Tp> valarray<_Tp>::operator[](const valarray& __m) { size_t __s = 0; size_t __e = __m.size(); for (size_t __i=0; __i<__e; ++__i) if (__m[__i]) ++__s; __glibcxx_assert(__s <= _M_size); return mask_array<_Tp>(_Array<_Tp>(_M_data), __s, _Array(__m)); } template inline _Expr<_IClos<_ValArray,_Tp>, _Tp> valarray<_Tp>::operator[](const valarray& __i) const { typedef _IClos<_ValArray,_Tp> _Closure; return _Expr<_Closure, _Tp>(_Closure(*this, __i)); } template inline indirect_array<_Tp> valarray<_Tp>::operator[](const valarray& __i) { return indirect_array<_Tp>(_Array<_Tp>(_M_data), __i.size(), _Array(__i)); } #if __cplusplus >= 201103L template inline void valarray<_Tp>::swap(valarray<_Tp>& __v) noexcept { std::swap(_M_size, __v._M_size); std::swap(_M_data, __v._M_data); } #endif template inline size_t valarray<_Tp>::size() const { return _M_size; } template inline _Tp valarray<_Tp>::sum() const { __glibcxx_assert(_M_size > 0); return std::__valarray_sum(_M_data, _M_data + _M_size); } template inline valarray<_Tp> valarray<_Tp>::shift(int __n) const { valarray<_Tp> __ret; if (_M_size == 0) return __ret; _Tp* __restrict__ __tmp_M_data = std::__valarray_get_storage<_Tp>(_M_size); if (__n == 0) std::__valarray_copy_construct(_M_data, _M_data + _M_size, __tmp_M_data); else if (__n > 0) // shift left { if (size_t(__n) > _M_size) __n = int(_M_size); std::__valarray_copy_construct(_M_data + __n, _M_data + _M_size, __tmp_M_data); std::__valarray_default_construct(__tmp_M_data + _M_size - __n, __tmp_M_data + _M_size); } else // shift right { if (-size_t(__n) > _M_size) __n = -int(_M_size); std::__valarray_copy_construct(_M_data, _M_data + _M_size + __n, __tmp_M_data - __n); std::__valarray_default_construct(__tmp_M_data, __tmp_M_data - __n); } __ret._M_size = _M_size; __ret._M_data = __tmp_M_data; return __ret; } template inline valarray<_Tp> valarray<_Tp>::cshift(int __n) const { valarray<_Tp> __ret; if (_M_size == 0) return __ret; _Tp* __restrict__ __tmp_M_data = std::__valarray_get_storage<_Tp>(_M_size); if (__n == 0) std::__valarray_copy_construct(_M_data, _M_data + _M_size, __tmp_M_data); else if (__n > 0) // cshift left { if (size_t(__n) > _M_size) __n = int(__n % _M_size); std::__valarray_copy_construct(_M_data, _M_data + __n, __tmp_M_data + _M_size - __n); std::__valarray_copy_construct(_M_data + __n, _M_data + _M_size, __tmp_M_data); } else // cshift right { if (-size_t(__n) > _M_size) __n = -int(-size_t(__n) % _M_size); std::__valarray_copy_construct(_M_data + _M_size + __n, _M_data + _M_size, __tmp_M_data); std::__valarray_copy_construct(_M_data, _M_data + _M_size + __n, __tmp_M_data - __n); } __ret._M_size = _M_size; __ret._M_data = __tmp_M_data; return __ret; } template inline void valarray<_Tp>::resize(size_t __n, _Tp __c) { // This complication is so to make valarray > work // even though it is not required by the standard. Nobody should // be saying valarray > anyway. See the specs. std::__valarray_destroy_elements(_M_data, _M_data + _M_size); if (_M_size != __n) { std::__valarray_release_memory(_M_data); _M_size = __n; _M_data = __valarray_get_storage<_Tp>(__n); } std::__valarray_fill_construct(_M_data, _M_data + __n, __c); } template inline _Tp valarray<_Tp>::min() const { __glibcxx_assert(_M_size > 0); return *std::min_element(_M_data, _M_data + _M_size); } template inline _Tp valarray<_Tp>::max() const { __glibcxx_assert(_M_size > 0); return *std::max_element(_M_data, _M_data + _M_size); } template inline _Expr<_ValFunClos<_ValArray, _Tp>, _Tp> valarray<_Tp>::apply(_Tp __func(_Tp)) const { typedef _ValFunClos<_ValArray, _Tp> _Closure; return _Expr<_Closure, _Tp>(_Closure(*this, __func)); } template inline _Expr<_RefFunClos<_ValArray, _Tp>, _Tp> valarray<_Tp>::apply(_Tp __func(const _Tp &)) const { typedef _RefFunClos<_ValArray, _Tp> _Closure; return _Expr<_Closure, _Tp>(_Closure(*this, __func)); } /// @cond undocumented #define _DEFINE_VALARRAY_UNARY_OPERATOR(_Op, _Name) \ template \ inline typename valarray<_Tp>::template _UnaryOp<_Name>::_Rt \ valarray<_Tp>::operator _Op() const \ { \ typedef _UnClos<_Name, _ValArray, _Tp> _Closure; \ typedef typename __fun<_Name, _Tp>::result_type _Rt; \ return _Expr<_Closure, _Rt>(_Closure(*this)); \ } _DEFINE_VALARRAY_UNARY_OPERATOR(+, __unary_plus) _DEFINE_VALARRAY_UNARY_OPERATOR(-, __negate) _DEFINE_VALARRAY_UNARY_OPERATOR(~, __bitwise_not) _DEFINE_VALARRAY_UNARY_OPERATOR (!, __logical_not) #undef _DEFINE_VALARRAY_UNARY_OPERATOR #define _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(_Op, _Name) \ template \ inline valarray<_Tp>& \ valarray<_Tp>::operator _Op##=(const _Tp &__t) \ { \ _Array_augmented_##_Name(_Array<_Tp>(_M_data), _M_size, __t); \ return *this; \ } \ \ template \ inline valarray<_Tp>& \ valarray<_Tp>::operator _Op##=(const valarray<_Tp> &__v) \ { \ __glibcxx_assert(_M_size == __v._M_size); \ _Array_augmented_##_Name(_Array<_Tp>(_M_data), _M_size, \ _Array<_Tp>(__v._M_data)); \ return *this; \ } _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(+, __plus) _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(-, __minus) _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(*, __multiplies) _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(/, __divides) _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(%, __modulus) _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(^, __bitwise_xor) _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(&, __bitwise_and) _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(|, __bitwise_or) _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(<<, __shift_left) _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(>>, __shift_right) #undef _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT #define _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(_Op, _Name) \ template template \ inline valarray<_Tp>& \ valarray<_Tp>::operator _Op##=(const _Expr<_Dom, _Tp>& __e) \ { \ _Array_augmented_##_Name(_Array<_Tp>(_M_data), __e, _M_size); \ return *this; \ } _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(+, __plus) _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(-, __minus) _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(*, __multiplies) _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(/, __divides) _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(%, __modulus) _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(^, __bitwise_xor) _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(&, __bitwise_and) _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(|, __bitwise_or) _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(<<, __shift_left) _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(>>, __shift_right) #undef _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT #define _DEFINE_BINARY_OPERATOR(_Op, _Name) \ template \ inline _Expr<_BinClos<_Name, _ValArray, _ValArray, _Tp, _Tp>, \ typename __fun<_Name, _Tp>::result_type> \ operator _Op(const valarray<_Tp>& __v, const valarray<_Tp>& __w) \ { \ __glibcxx_assert(__v.size() == __w.size()); \ typedef _BinClos<_Name, _ValArray, _ValArray, _Tp, _Tp> _Closure; \ typedef typename __fun<_Name, _Tp>::result_type _Rt; \ return _Expr<_Closure, _Rt>(_Closure(__v, __w)); \ } \ \ template \ inline _Expr<_BinClos<_Name, _ValArray,_Constant, _Tp, _Tp>, \ typename __fun<_Name, _Tp>::result_type> \ operator _Op(const valarray<_Tp>& __v, \ const typename valarray<_Tp>::value_type& __t) \ { \ typedef _BinClos<_Name, _ValArray, _Constant, _Tp, _Tp> _Closure; \ typedef typename __fun<_Name, _Tp>::result_type _Rt; \ return _Expr<_Closure, _Rt>(_Closure(__v, __t)); \ } \ \ template \ inline _Expr<_BinClos<_Name, _Constant, _ValArray, _Tp, _Tp>, \ typename __fun<_Name, _Tp>::result_type> \ operator _Op(const typename valarray<_Tp>::value_type& __t, \ const valarray<_Tp>& __v) \ { \ typedef _BinClos<_Name, _Constant, _ValArray, _Tp, _Tp> _Closure; \ typedef typename __fun<_Name, _Tp>::result_type _Rt; \ return _Expr<_Closure, _Rt>(_Closure(__t, __v)); \ } _DEFINE_BINARY_OPERATOR(+, __plus) _DEFINE_BINARY_OPERATOR(-, __minus) _DEFINE_BINARY_OPERATOR(*, __multiplies) _DEFINE_BINARY_OPERATOR(/, __divides) _DEFINE_BINARY_OPERATOR(%, __modulus) _DEFINE_BINARY_OPERATOR(^, __bitwise_xor) _DEFINE_BINARY_OPERATOR(&, __bitwise_and) _DEFINE_BINARY_OPERATOR(|, __bitwise_or) _DEFINE_BINARY_OPERATOR(<<, __shift_left) _DEFINE_BINARY_OPERATOR(>>, __shift_right) _DEFINE_BINARY_OPERATOR(&&, __logical_and) _DEFINE_BINARY_OPERATOR(||, __logical_or) _DEFINE_BINARY_OPERATOR(==, __equal_to) _DEFINE_BINARY_OPERATOR(!=, __not_equal_to) _DEFINE_BINARY_OPERATOR(<, __less) _DEFINE_BINARY_OPERATOR(>, __greater) _DEFINE_BINARY_OPERATOR(<=, __less_equal) _DEFINE_BINARY_OPERATOR(>=, __greater_equal) #undef _DEFINE_BINARY_OPERATOR /// @endcond #if __cplusplus >= 201103L /** * @brief Return an iterator pointing to the first element of * the valarray. * @param __va valarray. */ template [[__nodiscard__]] inline _Tp* begin(valarray<_Tp>& __va) noexcept { return __va.size() ? std::__addressof(__va[0]) : nullptr; } /** * @brief Return an iterator pointing to the first element of * the const valarray. * @param __va valarray. */ template [[__nodiscard__]] inline const _Tp* begin(const valarray<_Tp>& __va) noexcept { return __va.size() ? std::__addressof(__va[0]) : nullptr; } /** * @brief Return an iterator pointing to one past the last element of * the valarray. * @param __va valarray. */ template [[__nodiscard__]] inline _Tp* end(valarray<_Tp>& __va) noexcept { if (auto __n = __va.size()) return std::__addressof(__va[0]) + __n; else return nullptr; } /** * @brief Return an iterator pointing to one past the last element of * the const valarray. * @param __va valarray. */ template [[__nodiscard__]] inline const _Tp* end(const valarray<_Tp>& __va) noexcept { if (auto __n = __va.size()) return std::__addressof(__va[0]) + __n; else return nullptr; } #endif // C++11 /// @} group numeric_arrays _GLIBCXX_END_NAMESPACE_VERSION } // namespace #endif /* _GLIBCXX_VALARRAY */