// SPDX-License-Identifier: GPL-2.0 /* * * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. * * TODO: Merge attr_set_size/attr_data_get_block/attr_allocate_frame? */ #include #include #include #include "debug.h" #include "ntfs.h" #include "ntfs_fs.h" /* * You can set external NTFS_MIN_LOG2_OF_CLUMP/NTFS_MAX_LOG2_OF_CLUMP to manage * preallocate algorithm. */ #ifndef NTFS_MIN_LOG2_OF_CLUMP #define NTFS_MIN_LOG2_OF_CLUMP 16 #endif #ifndef NTFS_MAX_LOG2_OF_CLUMP #define NTFS_MAX_LOG2_OF_CLUMP 26 #endif // 16M #define NTFS_CLUMP_MIN (1 << (NTFS_MIN_LOG2_OF_CLUMP + 8)) // 16G #define NTFS_CLUMP_MAX (1ull << (NTFS_MAX_LOG2_OF_CLUMP + 8)) static inline u64 get_pre_allocated(u64 size) { u32 clump; u8 align_shift; u64 ret; if (size <= NTFS_CLUMP_MIN) { clump = 1 << NTFS_MIN_LOG2_OF_CLUMP; align_shift = NTFS_MIN_LOG2_OF_CLUMP; } else if (size >= NTFS_CLUMP_MAX) { clump = 1 << NTFS_MAX_LOG2_OF_CLUMP; align_shift = NTFS_MAX_LOG2_OF_CLUMP; } else { align_shift = NTFS_MIN_LOG2_OF_CLUMP - 1 + __ffs(size >> (8 + NTFS_MIN_LOG2_OF_CLUMP)); clump = 1u << align_shift; } ret = (((size + clump - 1) >> align_shift)) << align_shift; return ret; } /* * attr_load_runs - Load all runs stored in @attr. */ static int attr_load_runs(struct ATTRIB *attr, struct ntfs_inode *ni, struct runs_tree *run, const CLST *vcn) { int err; CLST svcn = le64_to_cpu(attr->nres.svcn); CLST evcn = le64_to_cpu(attr->nres.evcn); u32 asize; u16 run_off; if (svcn >= evcn + 1 || run_is_mapped_full(run, svcn, evcn)) return 0; if (vcn && (evcn < *vcn || *vcn < svcn)) return -EINVAL; asize = le32_to_cpu(attr->size); run_off = le16_to_cpu(attr->nres.run_off); if (run_off > asize) return -EINVAL; err = run_unpack_ex(run, ni->mi.sbi, ni->mi.rno, svcn, evcn, vcn ? *vcn : svcn, Add2Ptr(attr, run_off), asize - run_off); if (err < 0) return err; return 0; } /* * run_deallocate_ex - Deallocate clusters. */ static int run_deallocate_ex(struct ntfs_sb_info *sbi, struct runs_tree *run, CLST vcn, CLST len, CLST *done, bool trim) { int err = 0; CLST vcn_next, vcn0 = vcn, lcn, clen, dn = 0; size_t idx; if (!len) goto out; if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx)) { failed: run_truncate(run, vcn0); err = -EINVAL; goto out; } for (;;) { if (clen > len) clen = len; if (!clen) { err = -EINVAL; goto out; } if (lcn != SPARSE_LCN) { if (sbi) { /* mark bitmap range [lcn + clen) as free and trim clusters. */ mark_as_free_ex(sbi, lcn, clen, trim); } dn += clen; } len -= clen; if (!len) break; vcn_next = vcn + clen; if (!run_get_entry(run, ++idx, &vcn, &lcn, &clen) || vcn != vcn_next) { /* Save memory - don't load entire run. */ goto failed; } } out: if (done) *done += dn; return err; } /* * attr_allocate_clusters - Find free space, mark it as used and store in @run. */ int attr_allocate_clusters(struct ntfs_sb_info *sbi, struct runs_tree *run, CLST vcn, CLST lcn, CLST len, CLST *pre_alloc, enum ALLOCATE_OPT opt, CLST *alen, const size_t fr, CLST *new_lcn, CLST *new_len) { int err; CLST flen, vcn0 = vcn, pre = pre_alloc ? *pre_alloc : 0; size_t cnt = run->count; for (;;) { err = ntfs_look_for_free_space(sbi, lcn, len + pre, &lcn, &flen, opt); if (err == -ENOSPC && pre) { pre = 0; if (*pre_alloc) *pre_alloc = 0; continue; } if (err) goto out; if (vcn == vcn0) { /* Return the first fragment. */ if (new_lcn) *new_lcn = lcn; if (new_len) *new_len = flen; } /* Add new fragment into run storage. */ if (!run_add_entry(run, vcn, lcn, flen, opt & ALLOCATE_MFT)) { /* Undo last 'ntfs_look_for_free_space' */ mark_as_free_ex(sbi, lcn, len, false); err = -ENOMEM; goto out; } if (opt & ALLOCATE_ZERO) { u8 shift = sbi->cluster_bits - SECTOR_SHIFT; err = blkdev_issue_zeroout(sbi->sb->s_bdev, (sector_t)lcn << shift, (sector_t)flen << shift, GFP_NOFS, 0); if (err) goto out; } vcn += flen; if (flen >= len || (opt & ALLOCATE_MFT) || (fr && run->count - cnt >= fr)) { *alen = vcn - vcn0; return 0; } len -= flen; } out: /* Undo 'ntfs_look_for_free_space' */ if (vcn - vcn0) { run_deallocate_ex(sbi, run, vcn0, vcn - vcn0, NULL, false); run_truncate(run, vcn0); } return err; } /* * attr_make_nonresident * * If page is not NULL - it is already contains resident data * and locked (called from ni_write_frame()). */ int attr_make_nonresident(struct ntfs_inode *ni, struct ATTRIB *attr, struct ATTR_LIST_ENTRY *le, struct mft_inode *mi, u64 new_size, struct runs_tree *run, struct ATTRIB **ins_attr, struct page *page) { struct ntfs_sb_info *sbi; struct ATTRIB *attr_s; struct MFT_REC *rec; u32 used, asize, rsize, aoff; bool is_data; CLST len, alen; char *next; int err; if (attr->non_res) { *ins_attr = attr; return 0; } sbi = mi->sbi; rec = mi->mrec; attr_s = NULL; used = le32_to_cpu(rec->used); asize = le32_to_cpu(attr->size); next = Add2Ptr(attr, asize); aoff = PtrOffset(rec, attr); rsize = le32_to_cpu(attr->res.data_size); is_data = attr->type == ATTR_DATA && !attr->name_len; /* len - how many clusters required to store 'rsize' bytes */ if (is_attr_compressed(attr)) { u8 shift = sbi->cluster_bits + NTFS_LZNT_CUNIT; len = ((rsize + (1u << shift) - 1) >> shift) << NTFS_LZNT_CUNIT; } else { len = bytes_to_cluster(sbi, rsize); } run_init(run); /* Make a copy of original attribute. */ attr_s = kmemdup(attr, asize, GFP_NOFS); if (!attr_s) { err = -ENOMEM; goto out; } if (!len) { /* Empty resident -> Empty nonresident. */ alen = 0; } else { const char *data = resident_data(attr); err = attr_allocate_clusters(sbi, run, 0, 0, len, NULL, ALLOCATE_DEF, &alen, 0, NULL, NULL); if (err) goto out1; if (!rsize) { /* Empty resident -> Non empty nonresident. */ } else if (!is_data) { err = ntfs_sb_write_run(sbi, run, 0, data, rsize, 0); if (err) goto out2; } else if (!page) { char *kaddr; page = grab_cache_page(ni->vfs_inode.i_mapping, 0); if (!page) { err = -ENOMEM; goto out2; } kaddr = kmap_atomic(page); memcpy(kaddr, data, rsize); memset(kaddr + rsize, 0, PAGE_SIZE - rsize); kunmap_atomic(kaddr); flush_dcache_page(page); SetPageUptodate(page); set_page_dirty(page); unlock_page(page); put_page(page); } } /* Remove original attribute. */ used -= asize; memmove(attr, Add2Ptr(attr, asize), used - aoff); rec->used = cpu_to_le32(used); mi->dirty = true; if (le) al_remove_le(ni, le); err = ni_insert_nonresident(ni, attr_s->type, attr_name(attr_s), attr_s->name_len, run, 0, alen, attr_s->flags, &attr, NULL, NULL); if (err) goto out3; kfree(attr_s); attr->nres.data_size = cpu_to_le64(rsize); attr->nres.valid_size = attr->nres.data_size; *ins_attr = attr; if (is_data) ni->ni_flags &= ~NI_FLAG_RESIDENT; /* Resident attribute becomes non resident. */ return 0; out3: attr = Add2Ptr(rec, aoff); memmove(next, attr, used - aoff); memcpy(attr, attr_s, asize); rec->used = cpu_to_le32(used + asize); mi->dirty = true; out2: /* Undo: do not trim new allocated clusters. */ run_deallocate(sbi, run, false); run_close(run); out1: kfree(attr_s); out: return err; } /* * attr_set_size_res - Helper for attr_set_size(). */ static int attr_set_size_res(struct ntfs_inode *ni, struct ATTRIB *attr, struct ATTR_LIST_ENTRY *le, struct mft_inode *mi, u64 new_size, struct runs_tree *run, struct ATTRIB **ins_attr) { struct ntfs_sb_info *sbi = mi->sbi; struct MFT_REC *rec = mi->mrec; u32 used = le32_to_cpu(rec->used); u32 asize = le32_to_cpu(attr->size); u32 aoff = PtrOffset(rec, attr); u32 rsize = le32_to_cpu(attr->res.data_size); u32 tail = used - aoff - asize; char *next = Add2Ptr(attr, asize); s64 dsize = ALIGN(new_size, 8) - ALIGN(rsize, 8); if (dsize < 0) { memmove(next + dsize, next, tail); } else if (dsize > 0) { if (used + dsize > sbi->max_bytes_per_attr) return attr_make_nonresident(ni, attr, le, mi, new_size, run, ins_attr, NULL); memmove(next + dsize, next, tail); memset(next, 0, dsize); } if (new_size > rsize) memset(Add2Ptr(resident_data(attr), rsize), 0, new_size - rsize); rec->used = cpu_to_le32(used + dsize); attr->size = cpu_to_le32(asize + dsize); attr->res.data_size = cpu_to_le32(new_size); mi->dirty = true; *ins_attr = attr; return 0; } /* * attr_set_size - Change the size of attribute. * * Extend: * - Sparse/compressed: No allocated clusters. * - Normal: Append allocated and preallocated new clusters. * Shrink: * - No deallocate if @keep_prealloc is set. */ int attr_set_size(struct ntfs_inode *ni, enum ATTR_TYPE type, const __le16 *name, u8 name_len, struct runs_tree *run, u64 new_size, const u64 *new_valid, bool keep_prealloc, struct ATTRIB **ret) { int err = 0; struct ntfs_sb_info *sbi = ni->mi.sbi; u8 cluster_bits = sbi->cluster_bits; bool is_mft = ni->mi.rno == MFT_REC_MFT && type == ATTR_DATA && !name_len; u64 old_valid, old_size, old_alloc, new_alloc, new_alloc_tmp; struct ATTRIB *attr = NULL, *attr_b; struct ATTR_LIST_ENTRY *le, *le_b; struct mft_inode *mi, *mi_b; CLST alen, vcn, lcn, new_alen, old_alen, svcn, evcn; CLST next_svcn, pre_alloc = -1, done = 0; bool is_ext, is_bad = false; bool dirty = false; u32 align; struct MFT_REC *rec; again: alen = 0; le_b = NULL; attr_b = ni_find_attr(ni, NULL, &le_b, type, name, name_len, NULL, &mi_b); if (!attr_b) { err = -ENOENT; goto bad_inode; } if (!attr_b->non_res) { err = attr_set_size_res(ni, attr_b, le_b, mi_b, new_size, run, &attr_b); if (err) return err; /* Return if file is still resident. */ if (!attr_b->non_res) { dirty = true; goto ok1; } /* Layout of records may be changed, so do a full search. */ goto again; } is_ext = is_attr_ext(attr_b); align = sbi->cluster_size; if (is_ext) align <<= attr_b->nres.c_unit; old_valid = le64_to_cpu(attr_b->nres.valid_size); old_size = le64_to_cpu(attr_b->nres.data_size); old_alloc = le64_to_cpu(attr_b->nres.alloc_size); again_1: old_alen = old_alloc >> cluster_bits; new_alloc = (new_size + align - 1) & ~(u64)(align - 1); new_alen = new_alloc >> cluster_bits; if (keep_prealloc && new_size < old_size) { attr_b->nres.data_size = cpu_to_le64(new_size); mi_b->dirty = dirty = true; goto ok; } vcn = old_alen - 1; svcn = le64_to_cpu(attr_b->nres.svcn); evcn = le64_to_cpu(attr_b->nres.evcn); if (svcn <= vcn && vcn <= evcn) { attr = attr_b; le = le_b; mi = mi_b; } else if (!le_b) { err = -EINVAL; goto bad_inode; } else { le = le_b; attr = ni_find_attr(ni, attr_b, &le, type, name, name_len, &vcn, &mi); if (!attr) { err = -EINVAL; goto bad_inode; } next_le_1: svcn = le64_to_cpu(attr->nres.svcn); evcn = le64_to_cpu(attr->nres.evcn); } /* * Here we have: * attr,mi,le - last attribute segment (containing 'vcn'). * attr_b,mi_b,le_b - base (primary) attribute segment. */ next_le: rec = mi->mrec; err = attr_load_runs(attr, ni, run, NULL); if (err) goto out; if (new_size > old_size) { CLST to_allocate; size_t free; if (new_alloc <= old_alloc) { attr_b->nres.data_size = cpu_to_le64(new_size); mi_b->dirty = dirty = true; goto ok; } /* * Add clusters. In simple case we have to: * - allocate space (vcn, lcn, len) * - update packed run in 'mi' * - update attr->nres.evcn * - update attr_b->nres.data_size/attr_b->nres.alloc_size */ to_allocate = new_alen - old_alen; add_alloc_in_same_attr_seg: lcn = 0; if (is_mft) { /* MFT allocates clusters from MFT zone. */ pre_alloc = 0; } else if (is_ext) { /* No preallocate for sparse/compress. */ pre_alloc = 0; } else if (pre_alloc == -1) { pre_alloc = 0; if (type == ATTR_DATA && !name_len && sbi->options->prealloc) { pre_alloc = bytes_to_cluster( sbi, get_pre_allocated( new_size)) - new_alen; } /* Get the last LCN to allocate from. */ if (old_alen && !run_lookup_entry(run, vcn, &lcn, NULL, NULL)) { lcn = SPARSE_LCN; } if (lcn == SPARSE_LCN) lcn = 0; else if (lcn) lcn += 1; free = wnd_zeroes(&sbi->used.bitmap); if (to_allocate > free) { err = -ENOSPC; goto out; } if (pre_alloc && to_allocate + pre_alloc > free) pre_alloc = 0; } vcn = old_alen; if (is_ext) { if (!run_add_entry(run, vcn, SPARSE_LCN, to_allocate, false)) { err = -ENOMEM; goto out; } alen = to_allocate; } else { /* ~3 bytes per fragment. */ err = attr_allocate_clusters( sbi, run, vcn, lcn, to_allocate, &pre_alloc, is_mft ? ALLOCATE_MFT : ALLOCATE_DEF, &alen, is_mft ? 0 : (sbi->record_size - le32_to_cpu(rec->used) + 8) / 3 + 1, NULL, NULL); if (err) goto out; } done += alen; vcn += alen; if (to_allocate > alen) to_allocate -= alen; else to_allocate = 0; pack_runs: err = mi_pack_runs(mi, attr, run, vcn - svcn); if (err) goto undo_1; next_svcn = le64_to_cpu(attr->nres.evcn) + 1; new_alloc_tmp = (u64)next_svcn << cluster_bits; attr_b->nres.alloc_size = cpu_to_le64(new_alloc_tmp); mi_b->dirty = dirty = true; if (next_svcn >= vcn && !to_allocate) { /* Normal way. Update attribute and exit. */ attr_b->nres.data_size = cpu_to_le64(new_size); goto ok; } /* At least two MFT to avoid recursive loop. */ if (is_mft && next_svcn == vcn && ((u64)done << sbi->cluster_bits) >= 2 * sbi->record_size) { new_size = new_alloc_tmp; attr_b->nres.data_size = attr_b->nres.alloc_size; goto ok; } if (le32_to_cpu(rec->used) < sbi->record_size) { old_alen = next_svcn; evcn = old_alen - 1; goto add_alloc_in_same_attr_seg; } attr_b->nres.data_size = attr_b->nres.alloc_size; if (new_alloc_tmp < old_valid) attr_b->nres.valid_size = attr_b->nres.data_size; if (type == ATTR_LIST) { err = ni_expand_list(ni); if (err) goto undo_2; if (next_svcn < vcn) goto pack_runs; /* Layout of records is changed. */ goto again; } if (!ni->attr_list.size) { err = ni_create_attr_list(ni); /* In case of error layout of records is not changed. */ if (err) goto undo_2; /* Layout of records is changed. */ } if (next_svcn >= vcn) { /* This is MFT data, repeat. */ goto again; } /* Insert new attribute segment. */ err = ni_insert_nonresident(ni, type, name, name_len, run, next_svcn, vcn - next_svcn, attr_b->flags, &attr, &mi, NULL); /* * Layout of records maybe changed. * Find base attribute to update. */ le_b = NULL; attr_b = ni_find_attr(ni, NULL, &le_b, type, name, name_len, NULL, &mi_b); if (!attr_b) { err = -EINVAL; goto bad_inode; } if (err) { /* ni_insert_nonresident failed. */ attr = NULL; goto undo_2; } /* keep runs for $MFT::$ATTR_DATA and $MFT::$ATTR_BITMAP. */ if (ni->mi.rno != MFT_REC_MFT) run_truncate_head(run, evcn + 1); svcn = le64_to_cpu(attr->nres.svcn); evcn = le64_to_cpu(attr->nres.evcn); /* * Attribute is in consistency state. * Save this point to restore to if next steps fail. */ old_valid = old_size = old_alloc = (u64)vcn << cluster_bits; attr_b->nres.valid_size = attr_b->nres.data_size = attr_b->nres.alloc_size = cpu_to_le64(old_size); mi_b->dirty = dirty = true; goto again_1; } if (new_size != old_size || (new_alloc != old_alloc && !keep_prealloc)) { /* * Truncate clusters. In simple case we have to: * - update packed run in 'mi' * - update attr->nres.evcn * - update attr_b->nres.data_size/attr_b->nres.alloc_size * - mark and trim clusters as free (vcn, lcn, len) */ CLST dlen = 0; vcn = max(svcn, new_alen); new_alloc_tmp = (u64)vcn << cluster_bits; if (vcn > svcn) { err = mi_pack_runs(mi, attr, run, vcn - svcn); if (err) goto out; } else if (le && le->vcn) { u16 le_sz = le16_to_cpu(le->size); /* * NOTE: List entries for one attribute are always * the same size. We deal with last entry (vcn==0) * and it is not first in entries array * (list entry for std attribute always first). * So it is safe to step back. */ mi_remove_attr(NULL, mi, attr); if (!al_remove_le(ni, le)) { err = -EINVAL; goto bad_inode; } le = (struct ATTR_LIST_ENTRY *)((u8 *)le - le_sz); } else { attr->nres.evcn = cpu_to_le64((u64)vcn - 1); mi->dirty = true; } attr_b->nres.alloc_size = cpu_to_le64(new_alloc_tmp); if (vcn == new_alen) { attr_b->nres.data_size = cpu_to_le64(new_size); if (new_size < old_valid) attr_b->nres.valid_size = attr_b->nres.data_size; } else { if (new_alloc_tmp <= le64_to_cpu(attr_b->nres.data_size)) attr_b->nres.data_size = attr_b->nres.alloc_size; if (new_alloc_tmp < le64_to_cpu(attr_b->nres.valid_size)) attr_b->nres.valid_size = attr_b->nres.alloc_size; } mi_b->dirty = dirty = true; err = run_deallocate_ex(sbi, run, vcn, evcn - vcn + 1, &dlen, true); if (err) goto out; if (is_ext) { /* dlen - really deallocated clusters. */ le64_sub_cpu(&attr_b->nres.total_size, ((u64)dlen << cluster_bits)); } run_truncate(run, vcn); if (new_alloc_tmp <= new_alloc) goto ok; old_size = new_alloc_tmp; vcn = svcn - 1; if (le == le_b) { attr = attr_b; mi = mi_b; evcn = svcn - 1; svcn = 0; goto next_le; } if (le->type != type || le->name_len != name_len || memcmp(le_name(le), name, name_len * sizeof(short))) { err = -EINVAL; goto bad_inode; } err = ni_load_mi(ni, le, &mi); if (err) goto out; attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id); if (!attr) { err = -EINVAL; goto bad_inode; } goto next_le_1; } ok: if (new_valid) { __le64 valid = cpu_to_le64(min(*new_valid, new_size)); if (attr_b->nres.valid_size != valid) { attr_b->nres.valid_size = valid; mi_b->dirty = true; } } ok1: if (ret) *ret = attr_b; if (((type == ATTR_DATA && !name_len) || (type == ATTR_ALLOC && name == I30_NAME))) { /* Update inode_set_bytes. */ if (attr_b->non_res) { new_alloc = le64_to_cpu(attr_b->nres.alloc_size); if (inode_get_bytes(&ni->vfs_inode) != new_alloc) { inode_set_bytes(&ni->vfs_inode, new_alloc); dirty = true; } } /* Don't forget to update duplicate information in parent. */ if (dirty) { ni->ni_flags |= NI_FLAG_UPDATE_PARENT; mark_inode_dirty(&ni->vfs_inode); } } return 0; undo_2: vcn -= alen; attr_b->nres.data_size = cpu_to_le64(old_size); attr_b->nres.valid_size = cpu_to_le64(old_valid); attr_b->nres.alloc_size = cpu_to_le64(old_alloc); /* Restore 'attr' and 'mi'. */ if (attr) goto restore_run; if (le64_to_cpu(attr_b->nres.svcn) <= svcn && svcn <= le64_to_cpu(attr_b->nres.evcn)) { attr = attr_b; le = le_b; mi = mi_b; } else if (!le_b) { err = -EINVAL; goto bad_inode; } else { le = le_b; attr = ni_find_attr(ni, attr_b, &le, type, name, name_len, &svcn, &mi); if (!attr) goto bad_inode; } restore_run: if (mi_pack_runs(mi, attr, run, evcn - svcn + 1)) is_bad = true; undo_1: run_deallocate_ex(sbi, run, vcn, alen, NULL, false); run_truncate(run, vcn); out: if (is_bad) { bad_inode: _ntfs_bad_inode(&ni->vfs_inode); } return err; } /* * attr_data_get_block - Returns 'lcn' and 'len' for given 'vcn'. * * @new == NULL means just to get current mapping for 'vcn' * @new != NULL means allocate real cluster if 'vcn' maps to hole * @zero - zeroout new allocated clusters * * NOTE: * - @new != NULL is called only for sparsed or compressed attributes. * - new allocated clusters are zeroed via blkdev_issue_zeroout. */ int attr_data_get_block(struct ntfs_inode *ni, CLST vcn, CLST clen, CLST *lcn, CLST *len, bool *new, bool zero) { int err = 0; struct runs_tree *run = &ni->file.run; struct ntfs_sb_info *sbi; u8 cluster_bits; struct ATTRIB *attr, *attr_b; struct ATTR_LIST_ENTRY *le, *le_b; struct mft_inode *mi, *mi_b; CLST hint, svcn, to_alloc, evcn1, next_svcn, asize, end, vcn0, alen; CLST alloc, evcn; unsigned fr; u64 total_size, total_size0; int step = 0; if (new) *new = false; /* Try to find in cache. */ down_read(&ni->file.run_lock); if (!run_lookup_entry(run, vcn, lcn, len, NULL)) *len = 0; up_read(&ni->file.run_lock); if (*len && (*lcn != SPARSE_LCN || !new)) return 0; /* Fast normal way without allocation. */ /* No cluster in cache or we need to allocate cluster in hole. */ sbi = ni->mi.sbi; cluster_bits = sbi->cluster_bits; ni_lock(ni); down_write(&ni->file.run_lock); /* Repeat the code above (under write lock). */ if (!run_lookup_entry(run, vcn, lcn, len, NULL)) *len = 0; if (*len) { if (*lcn != SPARSE_LCN || !new) goto out; /* normal way without allocation. */ if (clen > *len) clen = *len; } le_b = NULL; attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b); if (!attr_b) { err = -ENOENT; goto out; } if (!attr_b->non_res) { *lcn = RESIDENT_LCN; *len = 1; goto out; } asize = le64_to_cpu(attr_b->nres.alloc_size) >> cluster_bits; if (vcn >= asize) { if (new) { err = -EINVAL; } else { *len = 1; *lcn = SPARSE_LCN; } goto out; } svcn = le64_to_cpu(attr_b->nres.svcn); evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1; attr = attr_b; le = le_b; mi = mi_b; if (le_b && (vcn < svcn || evcn1 <= vcn)) { attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn, &mi); if (!attr) { err = -EINVAL; goto out; } svcn = le64_to_cpu(attr->nres.svcn); evcn1 = le64_to_cpu(attr->nres.evcn) + 1; } /* Load in cache actual information. */ err = attr_load_runs(attr, ni, run, NULL); if (err) goto out; /* Check for compressed frame. */ err = attr_is_frame_compressed(ni, attr, vcn >> NTFS_LZNT_CUNIT, &hint); if (err) goto out; if (hint) { /* if frame is compressed - don't touch it. */ *lcn = COMPRESSED_LCN; *len = hint; err = -EOPNOTSUPP; goto out; } if (!*len) { if (run_lookup_entry(run, vcn, lcn, len, NULL)) { if (*lcn != SPARSE_LCN || !new) goto ok; /* Slow normal way without allocation. */ if (clen > *len) clen = *len; } else if (!new) { /* Here we may return -ENOENT. * In any case caller gets zero length. */ goto ok; } } if (!is_attr_ext(attr_b)) { /* The code below only for sparsed or compressed attributes. */ err = -EINVAL; goto out; } vcn0 = vcn; to_alloc = clen; fr = (sbi->record_size - le32_to_cpu(mi->mrec->used) + 8) / 3 + 1; /* Allocate frame aligned clusters. * ntfs.sys usually uses 16 clusters per frame for sparsed or compressed. * ntfs3 uses 1 cluster per frame for new created sparsed files. */ if (attr_b->nres.c_unit) { CLST clst_per_frame = 1u << attr_b->nres.c_unit; CLST cmask = ~(clst_per_frame - 1); /* Get frame aligned vcn and to_alloc. */ vcn = vcn0 & cmask; to_alloc = ((vcn0 + clen + clst_per_frame - 1) & cmask) - vcn; if (fr < clst_per_frame) fr = clst_per_frame; zero = true; /* Check if 'vcn' and 'vcn0' in different attribute segments. */ if (vcn < svcn || evcn1 <= vcn) { /* Load attribute for truncated vcn. */ attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn, &mi); if (!attr) { err = -EINVAL; goto out; } svcn = le64_to_cpu(attr->nres.svcn); evcn1 = le64_to_cpu(attr->nres.evcn) + 1; err = attr_load_runs(attr, ni, run, NULL); if (err) goto out; } } if (vcn + to_alloc > asize) to_alloc = asize - vcn; /* Get the last LCN to allocate from. */ hint = 0; if (vcn > evcn1) { if (!run_add_entry(run, evcn1, SPARSE_LCN, vcn - evcn1, false)) { err = -ENOMEM; goto out; } } else if (vcn && !run_lookup_entry(run, vcn - 1, &hint, NULL, NULL)) { hint = -1; } /* Allocate and zeroout new clusters. */ err = attr_allocate_clusters(sbi, run, vcn, hint + 1, to_alloc, NULL, zero ? ALLOCATE_ZERO : ALLOCATE_DEF, &alen, fr, lcn, len); if (err) goto out; *new = true; step = 1; end = vcn + alen; /* Save 'total_size0' to restore if error. */ total_size0 = le64_to_cpu(attr_b->nres.total_size); total_size = total_size0 + ((u64)alen << cluster_bits); if (vcn != vcn0) { if (!run_lookup_entry(run, vcn0, lcn, len, NULL)) { err = -EINVAL; goto out; } if (*lcn == SPARSE_LCN) { /* Internal error. Should not happened. */ WARN_ON(1); err = -EINVAL; goto out; } /* Check case when vcn0 + len overlaps new allocated clusters. */ if (vcn0 + *len > end) *len = end - vcn0; } repack: err = mi_pack_runs(mi, attr, run, max(end, evcn1) - svcn); if (err) goto out; attr_b->nres.total_size = cpu_to_le64(total_size); inode_set_bytes(&ni->vfs_inode, total_size); ni->ni_flags |= NI_FLAG_UPDATE_PARENT; mi_b->dirty = true; mark_inode_dirty(&ni->vfs_inode); /* Stored [vcn : next_svcn) from [vcn : end). */ next_svcn = le64_to_cpu(attr->nres.evcn) + 1; if (end <= evcn1) { if (next_svcn == evcn1) { /* Normal way. Update attribute and exit. */ goto ok; } /* Add new segment [next_svcn : evcn1 - next_svcn). */ if (!ni->attr_list.size) { err = ni_create_attr_list(ni); if (err) goto undo1; /* Layout of records is changed. */ le_b = NULL; attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b); if (!attr_b) { err = -ENOENT; goto out; } attr = attr_b; le = le_b; mi = mi_b; goto repack; } } /* * The code below may require additional cluster (to extend attribute list) * and / or one MFT record * It is too complex to undo operations if -ENOSPC occurs deep inside * in 'ni_insert_nonresident'. * Return in advance -ENOSPC here if there are no free cluster and no free MFT. */ if (!ntfs_check_for_free_space(sbi, 1, 1)) { /* Undo step 1. */ err = -ENOSPC; goto undo1; } step = 2; svcn = evcn1; /* Estimate next attribute. */ attr = ni_find_attr(ni, attr, &le, ATTR_DATA, NULL, 0, &svcn, &mi); if (!attr) { /* Insert new attribute segment. */ goto ins_ext; } /* Try to update existed attribute segment. */ alloc = bytes_to_cluster(sbi, le64_to_cpu(attr_b->nres.alloc_size)); evcn = le64_to_cpu(attr->nres.evcn); if (end < next_svcn) end = next_svcn; while (end > evcn) { /* Remove segment [svcn : evcn). */ mi_remove_attr(NULL, mi, attr); if (!al_remove_le(ni, le)) { err = -EINVAL; goto out; } if (evcn + 1 >= alloc) { /* Last attribute segment. */ evcn1 = evcn + 1; goto ins_ext; } if (ni_load_mi(ni, le, &mi)) { attr = NULL; goto out; } attr = mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, &le->id); if (!attr) { err = -EINVAL; goto out; } svcn = le64_to_cpu(attr->nres.svcn); evcn = le64_to_cpu(attr->nres.evcn); } if (end < svcn) end = svcn; err = attr_load_runs(attr, ni, run, &end); if (err) goto out; evcn1 = evcn + 1; attr->nres.svcn = cpu_to_le64(next_svcn); err = mi_pack_runs(mi, attr, run, evcn1 - next_svcn); if (err) goto out; le->vcn = cpu_to_le64(next_svcn); ni->attr_list.dirty = true; mi->dirty = true; next_svcn = le64_to_cpu(attr->nres.evcn) + 1; ins_ext: if (evcn1 > next_svcn) { err = ni_insert_nonresident(ni, ATTR_DATA, NULL, 0, run, next_svcn, evcn1 - next_svcn, attr_b->flags, &attr, &mi, NULL); if (err) goto out; } ok: run_truncate_around(run, vcn); out: if (err && step > 1) { /* Too complex to restore. */ _ntfs_bad_inode(&ni->vfs_inode); } up_write(&ni->file.run_lock); ni_unlock(ni); return err; undo1: /* Undo step1. */ attr_b->nres.total_size = cpu_to_le64(total_size0); inode_set_bytes(&ni->vfs_inode, total_size0); if (run_deallocate_ex(sbi, run, vcn, alen, NULL, false) || !run_add_entry(run, vcn, SPARSE_LCN, alen, false) || mi_pack_runs(mi, attr, run, max(end, evcn1) - svcn)) { _ntfs_bad_inode(&ni->vfs_inode); } goto out; } int attr_data_read_resident(struct ntfs_inode *ni, struct page *page) { u64 vbo; struct ATTRIB *attr; u32 data_size; attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, NULL); if (!attr) return -EINVAL; if (attr->non_res) return E_NTFS_NONRESIDENT; vbo = page->index << PAGE_SHIFT; data_size = le32_to_cpu(attr->res.data_size); if (vbo < data_size) { const char *data = resident_data(attr); char *kaddr = kmap_atomic(page); u32 use = data_size - vbo; if (use > PAGE_SIZE) use = PAGE_SIZE; memcpy(kaddr, data + vbo, use); memset(kaddr + use, 0, PAGE_SIZE - use); kunmap_atomic(kaddr); flush_dcache_page(page); SetPageUptodate(page); } else if (!PageUptodate(page)) { zero_user_segment(page, 0, PAGE_SIZE); SetPageUptodate(page); } return 0; } int attr_data_write_resident(struct ntfs_inode *ni, struct page *page) { u64 vbo; struct mft_inode *mi; struct ATTRIB *attr; u32 data_size; attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); if (!attr) return -EINVAL; if (attr->non_res) { /* Return special error code to check this case. */ return E_NTFS_NONRESIDENT; } vbo = page->index << PAGE_SHIFT; data_size = le32_to_cpu(attr->res.data_size); if (vbo < data_size) { char *data = resident_data(attr); char *kaddr = kmap_atomic(page); u32 use = data_size - vbo; if (use > PAGE_SIZE) use = PAGE_SIZE; memcpy(data + vbo, kaddr, use); kunmap_atomic(kaddr); mi->dirty = true; } ni->i_valid = data_size; return 0; } /* * attr_load_runs_vcn - Load runs with VCN. */ int attr_load_runs_vcn(struct ntfs_inode *ni, enum ATTR_TYPE type, const __le16 *name, u8 name_len, struct runs_tree *run, CLST vcn) { struct ATTRIB *attr; int err; CLST svcn, evcn; u16 ro; if (!ni) { /* Is record corrupted? */ return -ENOENT; } attr = ni_find_attr(ni, NULL, NULL, type, name, name_len, &vcn, NULL); if (!attr) { /* Is record corrupted? */ return -ENOENT; } svcn = le64_to_cpu(attr->nres.svcn); evcn = le64_to_cpu(attr->nres.evcn); if (evcn < vcn || vcn < svcn) { /* Is record corrupted? */ return -EINVAL; } ro = le16_to_cpu(attr->nres.run_off); if (ro > le32_to_cpu(attr->size)) return -EINVAL; err = run_unpack_ex(run, ni->mi.sbi, ni->mi.rno, svcn, evcn, svcn, Add2Ptr(attr, ro), le32_to_cpu(attr->size) - ro); if (err < 0) return err; return 0; } /* * attr_load_runs_range - Load runs for given range [from to). */ int attr_load_runs_range(struct ntfs_inode *ni, enum ATTR_TYPE type, const __le16 *name, u8 name_len, struct runs_tree *run, u64 from, u64 to) { struct ntfs_sb_info *sbi = ni->mi.sbi; u8 cluster_bits = sbi->cluster_bits; CLST vcn; CLST vcn_last = (to - 1) >> cluster_bits; CLST lcn, clen; int err; for (vcn = from >> cluster_bits; vcn <= vcn_last; vcn += clen) { if (!run_lookup_entry(run, vcn, &lcn, &clen, NULL)) { err = attr_load_runs_vcn(ni, type, name, name_len, run, vcn); if (err) return err; clen = 0; /* Next run_lookup_entry(vcn) must be success. */ } } return 0; } #ifdef CONFIG_NTFS3_LZX_XPRESS /* * attr_wof_frame_info * * Read header of Xpress/LZX file to get info about frame. */ int attr_wof_frame_info(struct ntfs_inode *ni, struct ATTRIB *attr, struct runs_tree *run, u64 frame, u64 frames, u8 frame_bits, u32 *ondisk_size, u64 *vbo_data) { struct ntfs_sb_info *sbi = ni->mi.sbi; u64 vbo[2], off[2], wof_size; u32 voff; u8 bytes_per_off; char *addr; struct page *page; int i, err; __le32 *off32; __le64 *off64; if (ni->vfs_inode.i_size < 0x100000000ull) { /* File starts with array of 32 bit offsets. */ bytes_per_off = sizeof(__le32); vbo[1] = frame << 2; *vbo_data = frames << 2; } else { /* File starts with array of 64 bit offsets. */ bytes_per_off = sizeof(__le64); vbo[1] = frame << 3; *vbo_data = frames << 3; } /* * Read 4/8 bytes at [vbo - 4(8)] == offset where compressed frame starts. * Read 4/8 bytes at [vbo] == offset where compressed frame ends. */ if (!attr->non_res) { if (vbo[1] + bytes_per_off > le32_to_cpu(attr->res.data_size)) { ntfs_inode_err(&ni->vfs_inode, "is corrupted"); return -EINVAL; } addr = resident_data(attr); if (bytes_per_off == sizeof(__le32)) { off32 = Add2Ptr(addr, vbo[1]); off[0] = vbo[1] ? le32_to_cpu(off32[-1]) : 0; off[1] = le32_to_cpu(off32[0]); } else { off64 = Add2Ptr(addr, vbo[1]); off[0] = vbo[1] ? le64_to_cpu(off64[-1]) : 0; off[1] = le64_to_cpu(off64[0]); } *vbo_data += off[0]; *ondisk_size = off[1] - off[0]; return 0; } wof_size = le64_to_cpu(attr->nres.data_size); down_write(&ni->file.run_lock); page = ni->file.offs_page; if (!page) { page = alloc_page(GFP_KERNEL); if (!page) { err = -ENOMEM; goto out; } page->index = -1; ni->file.offs_page = page; } lock_page(page); addr = page_address(page); if (vbo[1]) { voff = vbo[1] & (PAGE_SIZE - 1); vbo[0] = vbo[1] - bytes_per_off; i = 0; } else { voff = 0; vbo[0] = 0; off[0] = 0; i = 1; } do { pgoff_t index = vbo[i] >> PAGE_SHIFT; if (index != page->index) { u64 from = vbo[i] & ~(u64)(PAGE_SIZE - 1); u64 to = min(from + PAGE_SIZE, wof_size); err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), run, from, to); if (err) goto out1; err = ntfs_bio_pages(sbi, run, &page, 1, from, to - from, REQ_OP_READ); if (err) { page->index = -1; goto out1; } page->index = index; } if (i) { if (bytes_per_off == sizeof(__le32)) { off32 = Add2Ptr(addr, voff); off[1] = le32_to_cpu(*off32); } else { off64 = Add2Ptr(addr, voff); off[1] = le64_to_cpu(*off64); } } else if (!voff) { if (bytes_per_off == sizeof(__le32)) { off32 = Add2Ptr(addr, PAGE_SIZE - sizeof(u32)); off[0] = le32_to_cpu(*off32); } else { off64 = Add2Ptr(addr, PAGE_SIZE - sizeof(u64)); off[0] = le64_to_cpu(*off64); } } else { /* Two values in one page. */ if (bytes_per_off == sizeof(__le32)) { off32 = Add2Ptr(addr, voff); off[0] = le32_to_cpu(off32[-1]); off[1] = le32_to_cpu(off32[0]); } else { off64 = Add2Ptr(addr, voff); off[0] = le64_to_cpu(off64[-1]); off[1] = le64_to_cpu(off64[0]); } break; } } while (++i < 2); *vbo_data += off[0]; *ondisk_size = off[1] - off[0]; out1: unlock_page(page); out: up_write(&ni->file.run_lock); return err; } #endif /* * attr_is_frame_compressed - Used to detect compressed frame. */ int attr_is_frame_compressed(struct ntfs_inode *ni, struct ATTRIB *attr, CLST frame, CLST *clst_data) { int err; u32 clst_frame; CLST clen, lcn, vcn, alen, slen, vcn_next; size_t idx; struct runs_tree *run; *clst_data = 0; if (!is_attr_compressed(attr)) return 0; if (!attr->non_res) return 0; clst_frame = 1u << attr->nres.c_unit; vcn = frame * clst_frame; run = &ni->file.run; if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx)) { err = attr_load_runs_vcn(ni, attr->type, attr_name(attr), attr->name_len, run, vcn); if (err) return err; if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx)) return -EINVAL; } if (lcn == SPARSE_LCN) { /* Sparsed frame. */ return 0; } if (clen >= clst_frame) { /* * The frame is not compressed 'cause * it does not contain any sparse clusters. */ *clst_data = clst_frame; return 0; } alen = bytes_to_cluster(ni->mi.sbi, le64_to_cpu(attr->nres.alloc_size)); slen = 0; *clst_data = clen; /* * The frame is compressed if *clst_data + slen >= clst_frame. * Check next fragments. */ while ((vcn += clen) < alen) { vcn_next = vcn; if (!run_get_entry(run, ++idx, &vcn, &lcn, &clen) || vcn_next != vcn) { err = attr_load_runs_vcn(ni, attr->type, attr_name(attr), attr->name_len, run, vcn_next); if (err) return err; vcn = vcn_next; if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx)) return -EINVAL; } if (lcn == SPARSE_LCN) { slen += clen; } else { if (slen) { /* * Data_clusters + sparse_clusters = * not enough for frame. */ return -EINVAL; } *clst_data += clen; } if (*clst_data + slen >= clst_frame) { if (!slen) { /* * There is no sparsed clusters in this frame * so it is not compressed. */ *clst_data = clst_frame; } else { /* Frame is compressed. */ } break; } } return 0; } /* * attr_allocate_frame - Allocate/free clusters for @frame. * * Assumed: down_write(&ni->file.run_lock); */ int attr_allocate_frame(struct ntfs_inode *ni, CLST frame, size_t compr_size, u64 new_valid) { int err = 0; struct runs_tree *run = &ni->file.run; struct ntfs_sb_info *sbi = ni->mi.sbi; struct ATTRIB *attr = NULL, *attr_b; struct ATTR_LIST_ENTRY *le, *le_b; struct mft_inode *mi, *mi_b; CLST svcn, evcn1, next_svcn, len; CLST vcn, end, clst_data; u64 total_size, valid_size, data_size; le_b = NULL; attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b); if (!attr_b) return -ENOENT; if (!is_attr_ext(attr_b)) return -EINVAL; vcn = frame << NTFS_LZNT_CUNIT; total_size = le64_to_cpu(attr_b->nres.total_size); svcn = le64_to_cpu(attr_b->nres.svcn); evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1; data_size = le64_to_cpu(attr_b->nres.data_size); if (svcn <= vcn && vcn < evcn1) { attr = attr_b; le = le_b; mi = mi_b; } else if (!le_b) { err = -EINVAL; goto out; } else { le = le_b; attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn, &mi); if (!attr) { err = -EINVAL; goto out; } svcn = le64_to_cpu(attr->nres.svcn); evcn1 = le64_to_cpu(attr->nres.evcn) + 1; } err = attr_load_runs(attr, ni, run, NULL); if (err) goto out; err = attr_is_frame_compressed(ni, attr_b, frame, &clst_data); if (err) goto out; total_size -= (u64)clst_data << sbi->cluster_bits; len = bytes_to_cluster(sbi, compr_size); if (len == clst_data) goto out; if (len < clst_data) { err = run_deallocate_ex(sbi, run, vcn + len, clst_data - len, NULL, true); if (err) goto out; if (!run_add_entry(run, vcn + len, SPARSE_LCN, clst_data - len, false)) { err = -ENOMEM; goto out; } end = vcn + clst_data; /* Run contains updated range [vcn + len : end). */ } else { CLST alen, hint = 0; /* Get the last LCN to allocate from. */ if (vcn + clst_data && !run_lookup_entry(run, vcn + clst_data - 1, &hint, NULL, NULL)) { hint = -1; } err = attr_allocate_clusters(sbi, run, vcn + clst_data, hint + 1, len - clst_data, NULL, ALLOCATE_DEF, &alen, 0, NULL, NULL); if (err) goto out; end = vcn + len; /* Run contains updated range [vcn + clst_data : end). */ } total_size += (u64)len << sbi->cluster_bits; repack: err = mi_pack_runs(mi, attr, run, max(end, evcn1) - svcn); if (err) goto out; attr_b->nres.total_size = cpu_to_le64(total_size); inode_set_bytes(&ni->vfs_inode, total_size); ni->ni_flags |= NI_FLAG_UPDATE_PARENT; mi_b->dirty = true; mark_inode_dirty(&ni->vfs_inode); /* Stored [vcn : next_svcn) from [vcn : end). */ next_svcn = le64_to_cpu(attr->nres.evcn) + 1; if (end <= evcn1) { if (next_svcn == evcn1) { /* Normal way. Update attribute and exit. */ goto ok; } /* Add new segment [next_svcn : evcn1 - next_svcn). */ if (!ni->attr_list.size) { err = ni_create_attr_list(ni); if (err) goto out; /* Layout of records is changed. */ le_b = NULL; attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b); if (!attr_b) { err = -ENOENT; goto out; } attr = attr_b; le = le_b; mi = mi_b; goto repack; } } svcn = evcn1; /* Estimate next attribute. */ attr = ni_find_attr(ni, attr, &le, ATTR_DATA, NULL, 0, &svcn, &mi); if (attr) { CLST alloc = bytes_to_cluster( sbi, le64_to_cpu(attr_b->nres.alloc_size)); CLST evcn = le64_to_cpu(attr->nres.evcn); if (end < next_svcn) end = next_svcn; while (end > evcn) { /* Remove segment [svcn : evcn). */ mi_remove_attr(NULL, mi, attr); if (!al_remove_le(ni, le)) { err = -EINVAL; goto out; } if (evcn + 1 >= alloc) { /* Last attribute segment. */ evcn1 = evcn + 1; goto ins_ext; } if (ni_load_mi(ni, le, &mi)) { attr = NULL; goto out; } attr = mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, &le->id); if (!attr) { err = -EINVAL; goto out; } svcn = le64_to_cpu(attr->nres.svcn); evcn = le64_to_cpu(attr->nres.evcn); } if (end < svcn) end = svcn; err = attr_load_runs(attr, ni, run, &end); if (err) goto out; evcn1 = evcn + 1; attr->nres.svcn = cpu_to_le64(next_svcn); err = mi_pack_runs(mi, attr, run, evcn1 - next_svcn); if (err) goto out; le->vcn = cpu_to_le64(next_svcn); ni->attr_list.dirty = true; mi->dirty = true; next_svcn = le64_to_cpu(attr->nres.evcn) + 1; } ins_ext: if (evcn1 > next_svcn) { err = ni_insert_nonresident(ni, ATTR_DATA, NULL, 0, run, next_svcn, evcn1 - next_svcn, attr_b->flags, &attr, &mi, NULL); if (err) goto out; } ok: run_truncate_around(run, vcn); out: if (attr_b) { if (new_valid > data_size) new_valid = data_size; valid_size = le64_to_cpu(attr_b->nres.valid_size); if (new_valid != valid_size) { attr_b->nres.valid_size = cpu_to_le64(valid_size); mi_b->dirty = true; } } return err; } /* * attr_collapse_range - Collapse range in file. */ int attr_collapse_range(struct ntfs_inode *ni, u64 vbo, u64 bytes) { int err = 0; struct runs_tree *run = &ni->file.run; struct ntfs_sb_info *sbi = ni->mi.sbi; struct ATTRIB *attr = NULL, *attr_b; struct ATTR_LIST_ENTRY *le, *le_b; struct mft_inode *mi, *mi_b; CLST svcn, evcn1, len, dealloc, alen; CLST vcn, end; u64 valid_size, data_size, alloc_size, total_size; u32 mask; __le16 a_flags; if (!bytes) return 0; le_b = NULL; attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b); if (!attr_b) return -ENOENT; if (!attr_b->non_res) { /* Attribute is resident. Nothing to do? */ return 0; } data_size = le64_to_cpu(attr_b->nres.data_size); alloc_size = le64_to_cpu(attr_b->nres.alloc_size); a_flags = attr_b->flags; if (is_attr_ext(attr_b)) { total_size = le64_to_cpu(attr_b->nres.total_size); mask = (sbi->cluster_size << attr_b->nres.c_unit) - 1; } else { total_size = alloc_size; mask = sbi->cluster_mask; } if ((vbo & mask) || (bytes & mask)) { /* Allow to collapse only cluster aligned ranges. */ return -EINVAL; } if (vbo > data_size) return -EINVAL; down_write(&ni->file.run_lock); if (vbo + bytes >= data_size) { u64 new_valid = min(ni->i_valid, vbo); /* Simple truncate file at 'vbo'. */ truncate_setsize(&ni->vfs_inode, vbo); err = attr_set_size(ni, ATTR_DATA, NULL, 0, &ni->file.run, vbo, &new_valid, true, NULL); if (!err && new_valid < ni->i_valid) ni->i_valid = new_valid; goto out; } /* * Enumerate all attribute segments and collapse. */ alen = alloc_size >> sbi->cluster_bits; vcn = vbo >> sbi->cluster_bits; len = bytes >> sbi->cluster_bits; end = vcn + len; dealloc = 0; svcn = le64_to_cpu(attr_b->nres.svcn); evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1; if (svcn <= vcn && vcn < evcn1) { attr = attr_b; le = le_b; mi = mi_b; } else if (!le_b) { err = -EINVAL; goto out; } else { le = le_b; attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn, &mi); if (!attr) { err = -EINVAL; goto out; } svcn = le64_to_cpu(attr->nres.svcn); evcn1 = le64_to_cpu(attr->nres.evcn) + 1; } for (;;) { if (svcn >= end) { /* Shift VCN- */ attr->nres.svcn = cpu_to_le64(svcn - len); attr->nres.evcn = cpu_to_le64(evcn1 - 1 - len); if (le) { le->vcn = attr->nres.svcn; ni->attr_list.dirty = true; } mi->dirty = true; } else if (svcn < vcn || end < evcn1) { CLST vcn1, eat, next_svcn; /* Collapse a part of this attribute segment. */ err = attr_load_runs(attr, ni, run, &svcn); if (err) goto out; vcn1 = max(vcn, svcn); eat = min(end, evcn1) - vcn1; err = run_deallocate_ex(sbi, run, vcn1, eat, &dealloc, true); if (err) goto out; if (!run_collapse_range(run, vcn1, eat)) { err = -ENOMEM; goto out; } if (svcn >= vcn) { /* Shift VCN */ attr->nres.svcn = cpu_to_le64(vcn); if (le) { le->vcn = attr->nres.svcn; ni->attr_list.dirty = true; } } err = mi_pack_runs(mi, attr, run, evcn1 - svcn - eat); if (err) goto out; next_svcn = le64_to_cpu(attr->nres.evcn) + 1; if (next_svcn + eat < evcn1) { err = ni_insert_nonresident( ni, ATTR_DATA, NULL, 0, run, next_svcn, evcn1 - eat - next_svcn, a_flags, &attr, &mi, &le); if (err) goto out; /* Layout of records maybe changed. */ attr_b = NULL; } /* Free all allocated memory. */ run_truncate(run, 0); } else { u16 le_sz; u16 roff = le16_to_cpu(attr->nres.run_off); if (roff > le32_to_cpu(attr->size)) { err = -EINVAL; goto out; } run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn1 - 1, svcn, Add2Ptr(attr, roff), le32_to_cpu(attr->size) - roff); /* Delete this attribute segment. */ mi_remove_attr(NULL, mi, attr); if (!le) break; le_sz = le16_to_cpu(le->size); if (!al_remove_le(ni, le)) { err = -EINVAL; goto out; } if (evcn1 >= alen) break; if (!svcn) { /* Load next record that contains this attribute. */ if (ni_load_mi(ni, le, &mi)) { err = -EINVAL; goto out; } /* Look for required attribute. */ attr = mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, &le->id); if (!attr) { err = -EINVAL; goto out; } goto next_attr; } le = (struct ATTR_LIST_ENTRY *)((u8 *)le - le_sz); } if (evcn1 >= alen) break; attr = ni_enum_attr_ex(ni, attr, &le, &mi); if (!attr) { err = -EINVAL; goto out; } next_attr: svcn = le64_to_cpu(attr->nres.svcn); evcn1 = le64_to_cpu(attr->nres.evcn) + 1; } if (!attr_b) { le_b = NULL; attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b); if (!attr_b) { err = -ENOENT; goto out; } } data_size -= bytes; valid_size = ni->i_valid; if (vbo + bytes <= valid_size) valid_size -= bytes; else if (vbo < valid_size) valid_size = vbo; attr_b->nres.alloc_size = cpu_to_le64(alloc_size - bytes); attr_b->nres.data_size = cpu_to_le64(data_size); attr_b->nres.valid_size = cpu_to_le64(min(valid_size, data_size)); total_size -= (u64)dealloc << sbi->cluster_bits; if (is_attr_ext(attr_b)) attr_b->nres.total_size = cpu_to_le64(total_size); mi_b->dirty = true; /* Update inode size. */ ni->i_valid = valid_size; i_size_write(&ni->vfs_inode, data_size); inode_set_bytes(&ni->vfs_inode, total_size); ni->ni_flags |= NI_FLAG_UPDATE_PARENT; mark_inode_dirty(&ni->vfs_inode); out: up_write(&ni->file.run_lock); if (err) _ntfs_bad_inode(&ni->vfs_inode); return err; } /* * attr_punch_hole * * Not for normal files. */ int attr_punch_hole(struct ntfs_inode *ni, u64 vbo, u64 bytes, u32 *frame_size) { int err = 0; struct runs_tree *run = &ni->file.run; struct ntfs_sb_info *sbi = ni->mi.sbi; struct ATTRIB *attr = NULL, *attr_b; struct ATTR_LIST_ENTRY *le, *le_b; struct mft_inode *mi, *mi_b; CLST svcn, evcn1, vcn, len, end, alen, hole, next_svcn; u64 total_size, alloc_size; u32 mask; __le16 a_flags; struct runs_tree run2; if (!bytes) return 0; le_b = NULL; attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b); if (!attr_b) return -ENOENT; if (!attr_b->non_res) { u32 data_size = le32_to_cpu(attr_b->res.data_size); u32 from, to; if (vbo > data_size) return 0; from = vbo; to = min_t(u64, vbo + bytes, data_size); memset(Add2Ptr(resident_data(attr_b), from), 0, to - from); return 0; } if (!is_attr_ext(attr_b)) return -EOPNOTSUPP; alloc_size = le64_to_cpu(attr_b->nres.alloc_size); total_size = le64_to_cpu(attr_b->nres.total_size); if (vbo >= alloc_size) { /* NOTE: It is allowed. */ return 0; } mask = (sbi->cluster_size << attr_b->nres.c_unit) - 1; bytes += vbo; if (bytes > alloc_size) bytes = alloc_size; bytes -= vbo; if ((vbo & mask) || (bytes & mask)) { /* We have to zero a range(s). */ if (frame_size == NULL) { /* Caller insists range is aligned. */ return -EINVAL; } *frame_size = mask + 1; return E_NTFS_NOTALIGNED; } down_write(&ni->file.run_lock); run_init(&run2); run_truncate(run, 0); /* * Enumerate all attribute segments and punch hole where necessary. */ alen = alloc_size >> sbi->cluster_bits; vcn = vbo >> sbi->cluster_bits; len = bytes >> sbi->cluster_bits; end = vcn + len; hole = 0; svcn = le64_to_cpu(attr_b->nres.svcn); evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1; a_flags = attr_b->flags; if (svcn <= vcn && vcn < evcn1) { attr = attr_b; le = le_b; mi = mi_b; } else if (!le_b) { err = -EINVAL; goto bad_inode; } else { le = le_b; attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn, &mi); if (!attr) { err = -EINVAL; goto bad_inode; } svcn = le64_to_cpu(attr->nres.svcn); evcn1 = le64_to_cpu(attr->nres.evcn) + 1; } while (svcn < end) { CLST vcn1, zero, hole2 = hole; err = attr_load_runs(attr, ni, run, &svcn); if (err) goto done; vcn1 = max(vcn, svcn); zero = min(end, evcn1) - vcn1; /* * Check range [vcn1 + zero). * Calculate how many clusters there are. * Don't do any destructive actions. */ err = run_deallocate_ex(NULL, run, vcn1, zero, &hole2, false); if (err) goto done; /* Check if required range is already hole. */ if (hole2 == hole) goto next_attr; /* Make a clone of run to undo. */ err = run_clone(run, &run2); if (err) goto done; /* Make a hole range (sparse) [vcn1 + zero). */ if (!run_add_entry(run, vcn1, SPARSE_LCN, zero, false)) { err = -ENOMEM; goto done; } /* Update run in attribute segment. */ err = mi_pack_runs(mi, attr, run, evcn1 - svcn); if (err) goto done; next_svcn = le64_to_cpu(attr->nres.evcn) + 1; if (next_svcn < evcn1) { /* Insert new attribute segment. */ err = ni_insert_nonresident(ni, ATTR_DATA, NULL, 0, run, next_svcn, evcn1 - next_svcn, a_flags, &attr, &mi, &le); if (err) goto undo_punch; /* Layout of records maybe changed. */ attr_b = NULL; } /* Real deallocate. Should not fail. */ run_deallocate_ex(sbi, &run2, vcn1, zero, &hole, true); next_attr: /* Free all allocated memory. */ run_truncate(run, 0); if (evcn1 >= alen) break; /* Get next attribute segment. */ attr = ni_enum_attr_ex(ni, attr, &le, &mi); if (!attr) { err = -EINVAL; goto bad_inode; } svcn = le64_to_cpu(attr->nres.svcn); evcn1 = le64_to_cpu(attr->nres.evcn) + 1; } done: if (!hole) goto out; if (!attr_b) { attr_b = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi_b); if (!attr_b) { err = -EINVAL; goto bad_inode; } } total_size -= (u64)hole << sbi->cluster_bits; attr_b->nres.total_size = cpu_to_le64(total_size); mi_b->dirty = true; /* Update inode size. */ inode_set_bytes(&ni->vfs_inode, total_size); ni->ni_flags |= NI_FLAG_UPDATE_PARENT; mark_inode_dirty(&ni->vfs_inode); out: run_close(&run2); up_write(&ni->file.run_lock); return err; bad_inode: _ntfs_bad_inode(&ni->vfs_inode); goto out; undo_punch: /* * Restore packed runs. * 'mi_pack_runs' should not fail, cause we restore original. */ if (mi_pack_runs(mi, attr, &run2, evcn1 - svcn)) goto bad_inode; goto done; } /* * attr_insert_range - Insert range (hole) in file. * Not for normal files. */ int attr_insert_range(struct ntfs_inode *ni, u64 vbo, u64 bytes) { int err = 0; struct runs_tree *run = &ni->file.run; struct ntfs_sb_info *sbi = ni->mi.sbi; struct ATTRIB *attr = NULL, *attr_b; struct ATTR_LIST_ENTRY *le, *le_b; struct mft_inode *mi, *mi_b; CLST vcn, svcn, evcn1, len, next_svcn; u64 data_size, alloc_size; u32 mask; __le16 a_flags; if (!bytes) return 0; le_b = NULL; attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b); if (!attr_b) return -ENOENT; if (!is_attr_ext(attr_b)) { /* It was checked above. See fallocate. */ return -EOPNOTSUPP; } if (!attr_b->non_res) { data_size = le32_to_cpu(attr_b->res.data_size); alloc_size = data_size; mask = sbi->cluster_mask; /* cluster_size - 1 */ } else { data_size = le64_to_cpu(attr_b->nres.data_size); alloc_size = le64_to_cpu(attr_b->nres.alloc_size); mask = (sbi->cluster_size << attr_b->nres.c_unit) - 1; } if (vbo > data_size) { /* Insert range after the file size is not allowed. */ return -EINVAL; } if ((vbo & mask) || (bytes & mask)) { /* Allow to insert only frame aligned ranges. */ return -EINVAL; } /* * valid_size <= data_size <= alloc_size * Check alloc_size for maximum possible. */ if (bytes > sbi->maxbytes_sparse - alloc_size) return -EFBIG; vcn = vbo >> sbi->cluster_bits; len = bytes >> sbi->cluster_bits; down_write(&ni->file.run_lock); if (!attr_b->non_res) { err = attr_set_size(ni, ATTR_DATA, NULL, 0, run, data_size + bytes, NULL, false, NULL); le_b = NULL; attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b); if (!attr_b) { err = -EINVAL; goto bad_inode; } if (err) goto out; if (!attr_b->non_res) { /* Still resident. */ char *data = Add2Ptr(attr_b, le16_to_cpu(attr_b->res.data_off)); memmove(data + bytes, data, bytes); memset(data, 0, bytes); goto done; } /* Resident files becomes nonresident. */ data_size = le64_to_cpu(attr_b->nres.data_size); alloc_size = le64_to_cpu(attr_b->nres.alloc_size); } /* * Enumerate all attribute segments and shift start vcn. */ a_flags = attr_b->flags; svcn = le64_to_cpu(attr_b->nres.svcn); evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1; if (svcn <= vcn && vcn < evcn1) { attr = attr_b; le = le_b; mi = mi_b; } else if (!le_b) { err = -EINVAL; goto bad_inode; } else { le = le_b; attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn, &mi); if (!attr) { err = -EINVAL; goto bad_inode; } svcn = le64_to_cpu(attr->nres.svcn); evcn1 = le64_to_cpu(attr->nres.evcn) + 1; } run_truncate(run, 0); /* clear cached values. */ err = attr_load_runs(attr, ni, run, NULL); if (err) goto out; if (!run_insert_range(run, vcn, len)) { err = -ENOMEM; goto out; } /* Try to pack in current record as much as possible. */ err = mi_pack_runs(mi, attr, run, evcn1 + len - svcn); if (err) goto out; next_svcn = le64_to_cpu(attr->nres.evcn) + 1; while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi)) && attr->type == ATTR_DATA && !attr->name_len) { le64_add_cpu(&attr->nres.svcn, len); le64_add_cpu(&attr->nres.evcn, len); if (le) { le->vcn = attr->nres.svcn; ni->attr_list.dirty = true; } mi->dirty = true; } if (next_svcn < evcn1 + len) { err = ni_insert_nonresident(ni, ATTR_DATA, NULL, 0, run, next_svcn, evcn1 + len - next_svcn, a_flags, NULL, NULL, NULL); le_b = NULL; attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b); if (!attr_b) { err = -EINVAL; goto bad_inode; } if (err) { /* ni_insert_nonresident failed. Try to undo. */ goto undo_insert_range; } } /* * Update primary attribute segment. */ if (vbo <= ni->i_valid) ni->i_valid += bytes; attr_b->nres.data_size = cpu_to_le64(data_size + bytes); attr_b->nres.alloc_size = cpu_to_le64(alloc_size + bytes); /* ni->valid may be not equal valid_size (temporary). */ if (ni->i_valid > data_size + bytes) attr_b->nres.valid_size = attr_b->nres.data_size; else attr_b->nres.valid_size = cpu_to_le64(ni->i_valid); mi_b->dirty = true; done: i_size_write(&ni->vfs_inode, ni->vfs_inode.i_size + bytes); ni->ni_flags |= NI_FLAG_UPDATE_PARENT; mark_inode_dirty(&ni->vfs_inode); out: run_truncate(run, 0); /* clear cached values. */ up_write(&ni->file.run_lock); return err; bad_inode: _ntfs_bad_inode(&ni->vfs_inode); goto out; undo_insert_range: svcn = le64_to_cpu(attr_b->nres.svcn); evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1; if (svcn <= vcn && vcn < evcn1) { attr = attr_b; le = le_b; mi = mi_b; } else if (!le_b) { goto bad_inode; } else { le = le_b; attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn, &mi); if (!attr) { goto bad_inode; } svcn = le64_to_cpu(attr->nres.svcn); evcn1 = le64_to_cpu(attr->nres.evcn) + 1; } if (attr_load_runs(attr, ni, run, NULL)) goto bad_inode; if (!run_collapse_range(run, vcn, len)) goto bad_inode; if (mi_pack_runs(mi, attr, run, evcn1 + len - svcn)) goto bad_inode; while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi)) && attr->type == ATTR_DATA && !attr->name_len) { le64_sub_cpu(&attr->nres.svcn, len); le64_sub_cpu(&attr->nres.evcn, len); if (le) { le->vcn = attr->nres.svcn; ni->attr_list.dirty = true; } mi->dirty = true; } goto out; }