// SPDX-License-Identifier: GPL-2.0-only #include "cgroup-internal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * pidlists linger the following amount before being destroyed. The goal * is avoiding frequent destruction in the middle of consecutive read calls * Expiring in the middle is a performance problem not a correctness one. * 1 sec should be enough. */ #define CGROUP_PIDLIST_DESTROY_DELAY HZ /* Controllers blocked by the commandline in v1 */ static u16 cgroup_no_v1_mask; /* disable named v1 mounts */ static bool cgroup_no_v1_named; /* * pidlist destructions need to be flushed on cgroup destruction. Use a * separate workqueue as flush domain. */ static struct workqueue_struct *cgroup_pidlist_destroy_wq; /* protects cgroup_subsys->release_agent_path */ static DEFINE_SPINLOCK(release_agent_path_lock); bool cgroup1_ssid_disabled(int ssid) { return cgroup_no_v1_mask & (1 << ssid); } /** * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' * @from: attach to all cgroups of a given task * @tsk: the task to be attached * * Return: %0 on success or a negative errno code on failure */ int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) { struct cgroup_root *root; int retval = 0; cgroup_lock(); cgroup_attach_lock(true); for_each_root(root) { struct cgroup *from_cgrp; spin_lock_irq(&css_set_lock); from_cgrp = task_cgroup_from_root(from, root); spin_unlock_irq(&css_set_lock); retval = cgroup_attach_task(from_cgrp, tsk, false); if (retval) break; } cgroup_attach_unlock(true); cgroup_unlock(); return retval; } EXPORT_SYMBOL_GPL(cgroup_attach_task_all); /** * cgroup_transfer_tasks - move tasks from one cgroup to another * @to: cgroup to which the tasks will be moved * @from: cgroup in which the tasks currently reside * * Locking rules between cgroup_post_fork() and the migration path * guarantee that, if a task is forking while being migrated, the new child * is guaranteed to be either visible in the source cgroup after the * parent's migration is complete or put into the target cgroup. No task * can slip out of migration through forking. * * Return: %0 on success or a negative errno code on failure */ int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) { DEFINE_CGROUP_MGCTX(mgctx); struct cgrp_cset_link *link; struct css_task_iter it; struct task_struct *task; int ret; if (cgroup_on_dfl(to)) return -EINVAL; ret = cgroup_migrate_vet_dst(to); if (ret) return ret; cgroup_lock(); cgroup_attach_lock(true); /* all tasks in @from are being moved, all csets are source */ spin_lock_irq(&css_set_lock); list_for_each_entry(link, &from->cset_links, cset_link) cgroup_migrate_add_src(link->cset, to, &mgctx); spin_unlock_irq(&css_set_lock); ret = cgroup_migrate_prepare_dst(&mgctx); if (ret) goto out_err; /* * Migrate tasks one-by-one until @from is empty. This fails iff * ->can_attach() fails. */ do { css_task_iter_start(&from->self, 0, &it); do { task = css_task_iter_next(&it); } while (task && (task->flags & PF_EXITING)); if (task) get_task_struct(task); css_task_iter_end(&it); if (task) { ret = cgroup_migrate(task, false, &mgctx); if (!ret) TRACE_CGROUP_PATH(transfer_tasks, to, task, false); put_task_struct(task); } } while (task && !ret); out_err: cgroup_migrate_finish(&mgctx); cgroup_attach_unlock(true); cgroup_unlock(); return ret; } /* * Stuff for reading the 'tasks'/'procs' files. * * Reading this file can return large amounts of data if a cgroup has * *lots* of attached tasks. So it may need several calls to read(), * but we cannot guarantee that the information we produce is correct * unless we produce it entirely atomically. * */ /* which pidlist file are we talking about? */ enum cgroup_filetype { CGROUP_FILE_PROCS, CGROUP_FILE_TASKS, }; /* * A pidlist is a list of pids that virtually represents the contents of one * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, * a pair (one each for procs, tasks) for each pid namespace that's relevant * to the cgroup. */ struct cgroup_pidlist { /* * used to find which pidlist is wanted. doesn't change as long as * this particular list stays in the list. */ struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; /* array of xids */ pid_t *list; /* how many elements the above list has */ int length; /* each of these stored in a list by its cgroup */ struct list_head links; /* pointer to the cgroup we belong to, for list removal purposes */ struct cgroup *owner; /* for delayed destruction */ struct delayed_work destroy_dwork; }; /* * Used to destroy all pidlists lingering waiting for destroy timer. None * should be left afterwards. */ void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) { struct cgroup_pidlist *l, *tmp_l; mutex_lock(&cgrp->pidlist_mutex); list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); mutex_unlock(&cgrp->pidlist_mutex); flush_workqueue(cgroup_pidlist_destroy_wq); BUG_ON(!list_empty(&cgrp->pidlists)); } static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, destroy_dwork); struct cgroup_pidlist *tofree = NULL; mutex_lock(&l->owner->pidlist_mutex); /* * Destroy iff we didn't get queued again. The state won't change * as destroy_dwork can only be queued while locked. */ if (!delayed_work_pending(dwork)) { list_del(&l->links); kvfree(l->list); put_pid_ns(l->key.ns); tofree = l; } mutex_unlock(&l->owner->pidlist_mutex); kfree(tofree); } /* * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries * Returns the number of unique elements. */ static int pidlist_uniq(pid_t *list, int length) { int src, dest = 1; /* * we presume the 0th element is unique, so i starts at 1. trivial * edge cases first; no work needs to be done for either */ if (length == 0 || length == 1) return length; /* src and dest walk down the list; dest counts unique elements */ for (src = 1; src < length; src++) { /* find next unique element */ while (list[src] == list[src-1]) { src++; if (src == length) goto after; } /* dest always points to where the next unique element goes */ list[dest] = list[src]; dest++; } after: return dest; } /* * The two pid files - task and cgroup.procs - guaranteed that the result * is sorted, which forced this whole pidlist fiasco. As pid order is * different per namespace, each namespace needs differently sorted list, * making it impossible to use, for example, single rbtree of member tasks * sorted by task pointer. As pidlists can be fairly large, allocating one * per open file is dangerous, so cgroup had to implement shared pool of * pidlists keyed by cgroup and namespace. */ static int cmppid(const void *a, const void *b) { return *(pid_t *)a - *(pid_t *)b; } static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, enum cgroup_filetype type) { struct cgroup_pidlist *l; /* don't need task_nsproxy() if we're looking at ourself */ struct pid_namespace *ns = task_active_pid_ns(current); lockdep_assert_held(&cgrp->pidlist_mutex); list_for_each_entry(l, &cgrp->pidlists, links) if (l->key.type == type && l->key.ns == ns) return l; return NULL; } /* * find the appropriate pidlist for our purpose (given procs vs tasks) * returns with the lock on that pidlist already held, and takes care * of the use count, or returns NULL with no locks held if we're out of * memory. */ static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, enum cgroup_filetype type) { struct cgroup_pidlist *l; lockdep_assert_held(&cgrp->pidlist_mutex); l = cgroup_pidlist_find(cgrp, type); if (l) return l; /* entry not found; create a new one */ l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); if (!l) return l; INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); l->key.type = type; /* don't need task_nsproxy() if we're looking at ourself */ l->key.ns = get_pid_ns(task_active_pid_ns(current)); l->owner = cgrp; list_add(&l->links, &cgrp->pidlists); return l; } /* * Load a cgroup's pidarray with either procs' tgids or tasks' pids */ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, struct cgroup_pidlist **lp) { pid_t *array; int length; int pid, n = 0; /* used for populating the array */ struct css_task_iter it; struct task_struct *tsk; struct cgroup_pidlist *l; lockdep_assert_held(&cgrp->pidlist_mutex); /* * If cgroup gets more users after we read count, we won't have * enough space - tough. This race is indistinguishable to the * caller from the case that the additional cgroup users didn't * show up until sometime later on. */ length = cgroup_task_count(cgrp); array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); if (!array) return -ENOMEM; /* now, populate the array */ css_task_iter_start(&cgrp->self, 0, &it); while ((tsk = css_task_iter_next(&it))) { if (unlikely(n == length)) break; /* get tgid or pid for procs or tasks file respectively */ if (type == CGROUP_FILE_PROCS) pid = task_tgid_vnr(tsk); else pid = task_pid_vnr(tsk); if (pid > 0) /* make sure to only use valid results */ array[n++] = pid; } css_task_iter_end(&it); length = n; /* now sort & strip out duplicates (tgids or recycled thread PIDs) */ sort(array, length, sizeof(pid_t), cmppid, NULL); length = pidlist_uniq(array, length); l = cgroup_pidlist_find_create(cgrp, type); if (!l) { kvfree(array); return -ENOMEM; } /* store array, freeing old if necessary */ kvfree(l->list); l->list = array; l->length = length; *lp = l; return 0; } /* * seq_file methods for the tasks/procs files. The seq_file position is the * next pid to display; the seq_file iterator is a pointer to the pid * in the cgroup->l->list array. */ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) { /* * Initially we receive a position value that corresponds to * one more than the last pid shown (or 0 on the first call or * after a seek to the start). Use a binary-search to find the * next pid to display, if any */ struct kernfs_open_file *of = s->private; struct cgroup_file_ctx *ctx = of->priv; struct cgroup *cgrp = seq_css(s)->cgroup; struct cgroup_pidlist *l; enum cgroup_filetype type = seq_cft(s)->private; int index = 0, pid = *pos; int *iter, ret; mutex_lock(&cgrp->pidlist_mutex); /* * !NULL @ctx->procs1.pidlist indicates that this isn't the first * start() after open. If the matching pidlist is around, we can use * that. Look for it. Note that @ctx->procs1.pidlist can't be used * directly. It could already have been destroyed. */ if (ctx->procs1.pidlist) ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type); /* * Either this is the first start() after open or the matching * pidlist has been destroyed inbetween. Create a new one. */ if (!ctx->procs1.pidlist) { ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist); if (ret) return ERR_PTR(ret); } l = ctx->procs1.pidlist; if (pid) { int end = l->length; while (index < end) { int mid = (index + end) / 2; if (l->list[mid] == pid) { index = mid; break; } else if (l->list[mid] < pid) index = mid + 1; else end = mid; } } /* If we're off the end of the array, we're done */ if (index >= l->length) return NULL; /* Update the abstract position to be the actual pid that we found */ iter = l->list + index; *pos = *iter; return iter; } static void cgroup_pidlist_stop(struct seq_file *s, void *v) { struct kernfs_open_file *of = s->private; struct cgroup_file_ctx *ctx = of->priv; struct cgroup_pidlist *l = ctx->procs1.pidlist; if (l) mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, CGROUP_PIDLIST_DESTROY_DELAY); mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); } static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) { struct kernfs_open_file *of = s->private; struct cgroup_file_ctx *ctx = of->priv; struct cgroup_pidlist *l = ctx->procs1.pidlist; pid_t *p = v; pid_t *end = l->list + l->length; /* * Advance to the next pid in the array. If this goes off the * end, we're done */ p++; if (p >= end) { (*pos)++; return NULL; } else { *pos = *p; return p; } } static int cgroup_pidlist_show(struct seq_file *s, void *v) { seq_printf(s, "%d\n", *(int *)v); return 0; } static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off, bool threadgroup) { struct cgroup *cgrp; struct task_struct *task; const struct cred *cred, *tcred; ssize_t ret; bool locked; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENODEV; task = cgroup_procs_write_start(buf, threadgroup, &locked); ret = PTR_ERR_OR_ZERO(task); if (ret) goto out_unlock; /* * Even if we're attaching all tasks in the thread group, we only need * to check permissions on one of them. Check permissions using the * credentials from file open to protect against inherited fd attacks. */ cred = of->file->f_cred; tcred = get_task_cred(task); if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && !uid_eq(cred->euid, tcred->uid) && !uid_eq(cred->euid, tcred->suid)) ret = -EACCES; put_cred(tcred); if (ret) goto out_finish; ret = cgroup_attach_task(cgrp, task, threadgroup); out_finish: cgroup_procs_write_finish(task, locked); out_unlock: cgroup_kn_unlock(of->kn); return ret ?: nbytes; } static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return __cgroup1_procs_write(of, buf, nbytes, off, true); } static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return __cgroup1_procs_write(of, buf, nbytes, off, false); } static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup *cgrp; struct cgroup_file_ctx *ctx; BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); /* * Release agent gets called with all capabilities, * require capabilities to set release agent. */ ctx = of->priv; if ((ctx->ns->user_ns != &init_user_ns) || !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN)) return -EPERM; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENODEV; spin_lock(&release_agent_path_lock); strscpy(cgrp->root->release_agent_path, strstrip(buf), sizeof(cgrp->root->release_agent_path)); spin_unlock(&release_agent_path_lock); cgroup_kn_unlock(of->kn); return nbytes; } static int cgroup_release_agent_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; spin_lock(&release_agent_path_lock); seq_puts(seq, cgrp->root->release_agent_path); spin_unlock(&release_agent_path_lock); seq_putc(seq, '\n'); return 0; } static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) { seq_puts(seq, "0\n"); return 0; } static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, struct cftype *cft) { return notify_on_release(css->cgroup); } static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { if (val) set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); else clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); return 0; } static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, struct cftype *cft) { return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); } static int cgroup_clone_children_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { if (val) set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); else clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); return 0; } /* cgroup core interface files for the legacy hierarchies */ struct cftype cgroup1_base_files[] = { { .name = "cgroup.procs", .seq_start = cgroup_pidlist_start, .seq_next = cgroup_pidlist_next, .seq_stop = cgroup_pidlist_stop, .seq_show = cgroup_pidlist_show, .private = CGROUP_FILE_PROCS, .write = cgroup1_procs_write, }, { .name = "cgroup.clone_children", .read_u64 = cgroup_clone_children_read, .write_u64 = cgroup_clone_children_write, }, { .name = "cgroup.sane_behavior", .flags = CFTYPE_ONLY_ON_ROOT, .seq_show = cgroup_sane_behavior_show, }, { .name = "tasks", .seq_start = cgroup_pidlist_start, .seq_next = cgroup_pidlist_next, .seq_stop = cgroup_pidlist_stop, .seq_show = cgroup_pidlist_show, .private = CGROUP_FILE_TASKS, .write = cgroup1_tasks_write, }, { .name = "notify_on_release", .read_u64 = cgroup_read_notify_on_release, .write_u64 = cgroup_write_notify_on_release, }, { .name = "release_agent", .flags = CFTYPE_ONLY_ON_ROOT, .seq_show = cgroup_release_agent_show, .write = cgroup_release_agent_write, .max_write_len = PATH_MAX - 1, }, { } /* terminate */ }; /* Display information about each subsystem and each hierarchy */ int proc_cgroupstats_show(struct seq_file *m, void *v) { struct cgroup_subsys *ss; int i; seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); /* * Grab the subsystems state racily. No need to add avenue to * cgroup_mutex contention. */ for_each_subsys(ss, i) seq_printf(m, "%s\t%d\t%d\t%d\n", ss->legacy_name, ss->root->hierarchy_id, atomic_read(&ss->root->nr_cgrps), cgroup_ssid_enabled(i)); return 0; } /** * cgroupstats_build - build and fill cgroupstats * @stats: cgroupstats to fill information into * @dentry: A dentry entry belonging to the cgroup for which stats have * been requested. * * Build and fill cgroupstats so that taskstats can export it to user * space. * * Return: %0 on success or a negative errno code on failure */ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) { struct kernfs_node *kn = kernfs_node_from_dentry(dentry); struct cgroup *cgrp; struct css_task_iter it; struct task_struct *tsk; /* it should be kernfs_node belonging to cgroupfs and is a directory */ if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || kernfs_type(kn) != KERNFS_DIR) return -EINVAL; /* * We aren't being called from kernfs and there's no guarantee on * @kn->priv's validity. For this and css_tryget_online_from_dir(), * @kn->priv is RCU safe. Let's do the RCU dancing. */ rcu_read_lock(); cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); if (!cgrp || !cgroup_tryget(cgrp)) { rcu_read_unlock(); return -ENOENT; } rcu_read_unlock(); css_task_iter_start(&cgrp->self, 0, &it); while ((tsk = css_task_iter_next(&it))) { switch (READ_ONCE(tsk->__state)) { case TASK_RUNNING: stats->nr_running++; break; case TASK_INTERRUPTIBLE: stats->nr_sleeping++; break; case TASK_UNINTERRUPTIBLE: stats->nr_uninterruptible++; break; case TASK_STOPPED: stats->nr_stopped++; break; default: if (tsk->in_iowait) stats->nr_io_wait++; break; } } css_task_iter_end(&it); cgroup_put(cgrp); return 0; } void cgroup1_check_for_release(struct cgroup *cgrp) { if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) schedule_work(&cgrp->release_agent_work); } /* * Notify userspace when a cgroup is released, by running the * configured release agent with the name of the cgroup (path * relative to the root of cgroup file system) as the argument. * * Most likely, this user command will try to rmdir this cgroup. * * This races with the possibility that some other task will be * attached to this cgroup before it is removed, or that some other * user task will 'mkdir' a child cgroup of this cgroup. That's ok. * The presumed 'rmdir' will fail quietly if this cgroup is no longer * unused, and this cgroup will be reprieved from its death sentence, * to continue to serve a useful existence. Next time it's released, * we will get notified again, if it still has 'notify_on_release' set. * * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which * means only wait until the task is successfully execve()'d. The * separate release agent task is forked by call_usermodehelper(), * then control in this thread returns here, without waiting for the * release agent task. We don't bother to wait because the caller of * this routine has no use for the exit status of the release agent * task, so no sense holding our caller up for that. */ void cgroup1_release_agent(struct work_struct *work) { struct cgroup *cgrp = container_of(work, struct cgroup, release_agent_work); char *pathbuf, *agentbuf; char *argv[3], *envp[3]; int ret; /* snoop agent path and exit early if empty */ if (!cgrp->root->release_agent_path[0]) return; /* prepare argument buffers */ pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); agentbuf = kmalloc(PATH_MAX, GFP_KERNEL); if (!pathbuf || !agentbuf) goto out_free; spin_lock(&release_agent_path_lock); strscpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX); spin_unlock(&release_agent_path_lock); if (!agentbuf[0]) goto out_free; ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); if (ret < 0) goto out_free; argv[0] = agentbuf; argv[1] = pathbuf; argv[2] = NULL; /* minimal command environment */ envp[0] = "HOME=/"; envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; envp[2] = NULL; call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); out_free: kfree(agentbuf); kfree(pathbuf); } /* * cgroup_rename - Only allow simple rename of directories in place. */ static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name_str) { struct cgroup *cgrp = kn->priv; int ret; /* do not accept '\n' to prevent making /proc//cgroup unparsable */ if (strchr(new_name_str, '\n')) return -EINVAL; if (kernfs_type(kn) != KERNFS_DIR) return -ENOTDIR; if (kn->parent != new_parent) return -EIO; /* * We're gonna grab cgroup_mutex which nests outside kernfs * active_ref. kernfs_rename() doesn't require active_ref * protection. Break them before grabbing cgroup_mutex. */ kernfs_break_active_protection(new_parent); kernfs_break_active_protection(kn); cgroup_lock(); ret = kernfs_rename(kn, new_parent, new_name_str); if (!ret) TRACE_CGROUP_PATH(rename, cgrp); cgroup_unlock(); kernfs_unbreak_active_protection(kn); kernfs_unbreak_active_protection(new_parent); return ret; } static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) { struct cgroup_root *root = cgroup_root_from_kf(kf_root); struct cgroup_subsys *ss; int ssid; for_each_subsys(ss, ssid) if (root->subsys_mask & (1 << ssid)) seq_show_option(seq, ss->legacy_name, NULL); if (root->flags & CGRP_ROOT_NOPREFIX) seq_puts(seq, ",noprefix"); if (root->flags & CGRP_ROOT_XATTR) seq_puts(seq, ",xattr"); if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) seq_puts(seq, ",cpuset_v2_mode"); if (root->flags & CGRP_ROOT_FAVOR_DYNMODS) seq_puts(seq, ",favordynmods"); spin_lock(&release_agent_path_lock); if (strlen(root->release_agent_path)) seq_show_option(seq, "release_agent", root->release_agent_path); spin_unlock(&release_agent_path_lock); if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) seq_puts(seq, ",clone_children"); if (strlen(root->name)) seq_show_option(seq, "name", root->name); return 0; } enum cgroup1_param { Opt_all, Opt_clone_children, Opt_cpuset_v2_mode, Opt_name, Opt_none, Opt_noprefix, Opt_release_agent, Opt_xattr, Opt_favordynmods, Opt_nofavordynmods, }; const struct fs_parameter_spec cgroup1_fs_parameters[] = { fsparam_flag ("all", Opt_all), fsparam_flag ("clone_children", Opt_clone_children), fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), fsparam_string("name", Opt_name), fsparam_flag ("none", Opt_none), fsparam_flag ("noprefix", Opt_noprefix), fsparam_string("release_agent", Opt_release_agent), fsparam_flag ("xattr", Opt_xattr), fsparam_flag ("favordynmods", Opt_favordynmods), fsparam_flag ("nofavordynmods", Opt_nofavordynmods), {} }; int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); struct cgroup_subsys *ss; struct fs_parse_result result; int opt, i; opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); if (opt == -ENOPARAM) { int ret; ret = vfs_parse_fs_param_source(fc, param); if (ret != -ENOPARAM) return ret; for_each_subsys(ss, i) { if (strcmp(param->key, ss->legacy_name)) continue; if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i)) return invalfc(fc, "Disabled controller '%s'", param->key); ctx->subsys_mask |= (1 << i); return 0; } return invalfc(fc, "Unknown subsys name '%s'", param->key); } if (opt < 0) return opt; switch (opt) { case Opt_none: /* Explicitly have no subsystems */ ctx->none = true; break; case Opt_all: ctx->all_ss = true; break; case Opt_noprefix: ctx->flags |= CGRP_ROOT_NOPREFIX; break; case Opt_clone_children: ctx->cpuset_clone_children = true; break; case Opt_cpuset_v2_mode: ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; break; case Opt_xattr: ctx->flags |= CGRP_ROOT_XATTR; break; case Opt_favordynmods: ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; break; case Opt_nofavordynmods: ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; break; case Opt_release_agent: /* Specifying two release agents is forbidden */ if (ctx->release_agent) return invalfc(fc, "release_agent respecified"); /* * Release agent gets called with all capabilities, * require capabilities to set release agent. */ if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) return invalfc(fc, "Setting release_agent not allowed"); ctx->release_agent = param->string; param->string = NULL; break; case Opt_name: /* blocked by boot param? */ if (cgroup_no_v1_named) return -ENOENT; /* Can't specify an empty name */ if (!param->size) return invalfc(fc, "Empty name"); if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) return invalfc(fc, "Name too long"); /* Must match [\w.-]+ */ for (i = 0; i < param->size; i++) { char c = param->string[i]; if (isalnum(c)) continue; if ((c == '.') || (c == '-') || (c == '_')) continue; return invalfc(fc, "Invalid name"); } /* Specifying two names is forbidden */ if (ctx->name) return invalfc(fc, "name respecified"); ctx->name = param->string; param->string = NULL; break; } return 0; } static int check_cgroupfs_options(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); u16 mask = U16_MAX; u16 enabled = 0; struct cgroup_subsys *ss; int i; #ifdef CONFIG_CPUSETS mask = ~((u16)1 << cpuset_cgrp_id); #endif for_each_subsys(ss, i) if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) enabled |= 1 << i; ctx->subsys_mask &= enabled; /* * In absence of 'none', 'name=' and subsystem name options, * let's default to 'all'. */ if (!ctx->subsys_mask && !ctx->none && !ctx->name) ctx->all_ss = true; if (ctx->all_ss) { /* Mutually exclusive option 'all' + subsystem name */ if (ctx->subsys_mask) return invalfc(fc, "subsys name conflicts with all"); /* 'all' => select all the subsystems */ ctx->subsys_mask = enabled; } /* * We either have to specify by name or by subsystems. (So all * empty hierarchies must have a name). */ if (!ctx->subsys_mask && !ctx->name) return invalfc(fc, "Need name or subsystem set"); /* * Option noprefix was introduced just for backward compatibility * with the old cpuset, so we allow noprefix only if mounting just * the cpuset subsystem. */ if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) return invalfc(fc, "noprefix used incorrectly"); /* Can't specify "none" and some subsystems */ if (ctx->subsys_mask && ctx->none) return invalfc(fc, "none used incorrectly"); return 0; } int cgroup1_reconfigure(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); struct cgroup_root *root = cgroup_root_from_kf(kf_root); int ret = 0; u16 added_mask, removed_mask; cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); /* See what subsystems are wanted */ ret = check_cgroupfs_options(fc); if (ret) goto out_unlock; if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", task_tgid_nr(current), current->comm); added_mask = ctx->subsys_mask & ~root->subsys_mask; removed_mask = root->subsys_mask & ~ctx->subsys_mask; /* Don't allow flags or name to change at remount */ if ((ctx->flags ^ root->flags) || (ctx->name && strcmp(ctx->name, root->name))) { errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", ctx->flags, ctx->name ?: "", root->flags, root->name); ret = -EINVAL; goto out_unlock; } /* remounting is not allowed for populated hierarchies */ if (!list_empty(&root->cgrp.self.children)) { ret = -EBUSY; goto out_unlock; } ret = rebind_subsystems(root, added_mask); if (ret) goto out_unlock; WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); if (ctx->release_agent) { spin_lock(&release_agent_path_lock); strcpy(root->release_agent_path, ctx->release_agent); spin_unlock(&release_agent_path_lock); } trace_cgroup_remount(root); out_unlock: cgroup_unlock(); return ret; } struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { .rename = cgroup1_rename, .show_options = cgroup1_show_options, .mkdir = cgroup_mkdir, .rmdir = cgroup_rmdir, .show_path = cgroup_show_path, }; /* * The guts of cgroup1 mount - find or create cgroup_root to use. * Called with cgroup_mutex held; returns 0 on success, -E... on * error and positive - in case when the candidate is busy dying. * On success it stashes a reference to cgroup_root into given * cgroup_fs_context; that reference is *NOT* counting towards the * cgroup_root refcount. */ static int cgroup1_root_to_use(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); struct cgroup_root *root; struct cgroup_subsys *ss; int i, ret; /* First find the desired set of subsystems */ ret = check_cgroupfs_options(fc); if (ret) return ret; /* * Destruction of cgroup root is asynchronous, so subsystems may * still be dying after the previous unmount. Let's drain the * dying subsystems. We just need to ensure that the ones * unmounted previously finish dying and don't care about new ones * starting. Testing ref liveliness is good enough. */ for_each_subsys(ss, i) { if (!(ctx->subsys_mask & (1 << i)) || ss->root == &cgrp_dfl_root) continue; if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) return 1; /* restart */ cgroup_put(&ss->root->cgrp); } for_each_root(root) { bool name_match = false; if (root == &cgrp_dfl_root) continue; /* * If we asked for a name then it must match. Also, if * name matches but sybsys_mask doesn't, we should fail. * Remember whether name matched. */ if (ctx->name) { if (strcmp(ctx->name, root->name)) continue; name_match = true; } /* * If we asked for subsystems (or explicitly for no * subsystems) then they must match. */ if ((ctx->subsys_mask || ctx->none) && (ctx->subsys_mask != root->subsys_mask)) { if (!name_match) continue; return -EBUSY; } if (root->flags ^ ctx->flags) pr_warn("new mount options do not match the existing superblock, will be ignored\n"); ctx->root = root; return 0; } /* * No such thing, create a new one. name= matching without subsys * specification is allowed for already existing hierarchies but we * can't create new one without subsys specification. */ if (!ctx->subsys_mask && !ctx->none) return invalfc(fc, "No subsys list or none specified"); /* Hierarchies may only be created in the initial cgroup namespace. */ if (ctx->ns != &init_cgroup_ns) return -EPERM; root = kzalloc(sizeof(*root), GFP_KERNEL); if (!root) return -ENOMEM; ctx->root = root; init_cgroup_root(ctx); ret = cgroup_setup_root(root, ctx->subsys_mask); if (!ret) cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS); else cgroup_free_root(root); return ret; } int cgroup1_get_tree(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); int ret; /* Check if the caller has permission to mount. */ if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) return -EPERM; cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); ret = cgroup1_root_to_use(fc); if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) ret = 1; /* restart */ cgroup_unlock(); if (!ret) ret = cgroup_do_get_tree(fc); if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { fc_drop_locked(fc); ret = 1; } if (unlikely(ret > 0)) { msleep(10); return restart_syscall(); } return ret; } static int __init cgroup1_wq_init(void) { /* * Used to destroy pidlists and separate to serve as flush domain. * Cap @max_active to 1 too. */ cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 0, 1); BUG_ON(!cgroup_pidlist_destroy_wq); return 0; } core_initcall(cgroup1_wq_init); static int __init cgroup_no_v1(char *str) { struct cgroup_subsys *ss; char *token; int i; while ((token = strsep(&str, ",")) != NULL) { if (!*token) continue; if (!strcmp(token, "all")) { cgroup_no_v1_mask = U16_MAX; continue; } if (!strcmp(token, "named")) { cgroup_no_v1_named = true; continue; } for_each_subsys(ss, i) { if (strcmp(token, ss->name) && strcmp(token, ss->legacy_name)) continue; cgroup_no_v1_mask |= 1 << i; } } return 1; } __setup("cgroup_no_v1=", cgroup_no_v1);