// SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/kernel/module.c * * Copyright (C) 2002 Russell King. * Modified for nommu by Hyok S. Choi * * Module allocation method suggested by Andi Kleen. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_XIP_KERNEL /* * The XIP kernel text is mapped in the module area for modules and * some other stuff to work without any indirect relocations. * MODULES_VADDR is redefined here and not in asm/memory.h to avoid * recompiling the whole kernel when CONFIG_XIP_KERNEL is turned on/off. */ #undef MODULES_VADDR #define MODULES_VADDR (((unsigned long)_exiprom + ~PMD_MASK) & PMD_MASK) #endif #ifdef CONFIG_MMU void *module_alloc(unsigned long size) { gfp_t gfp_mask = GFP_KERNEL; void *p; /* Silence the initial allocation */ if (IS_ENABLED(CONFIG_ARM_MODULE_PLTS)) gfp_mask |= __GFP_NOWARN; p = __vmalloc_node_range(size, 1, MODULES_VADDR, MODULES_END, gfp_mask, PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE, __builtin_return_address(0)); if (!IS_ENABLED(CONFIG_ARM_MODULE_PLTS) || p) return p; return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE, __builtin_return_address(0)); } #endif bool module_init_section(const char *name) { return strstarts(name, ".init") || strstarts(name, ".ARM.extab.init") || strstarts(name, ".ARM.exidx.init"); } bool module_exit_section(const char *name) { return strstarts(name, ".exit") || strstarts(name, ".ARM.extab.exit") || strstarts(name, ".ARM.exidx.exit"); } #ifdef CONFIG_ARM_HAS_GROUP_RELOCS /* * This implements the partitioning algorithm for group relocations as * documented in the ARM AArch32 ELF psABI (IHI 0044). * * A single PC-relative symbol reference is divided in up to 3 add or subtract * operations, where the final one could be incorporated into a load/store * instruction with immediate offset. E.g., * * ADD Rd, PC, #... or ADD Rd, PC, #... * ADD Rd, Rd, #... ADD Rd, Rd, #... * LDR Rd, [Rd, #...] ADD Rd, Rd, #... * * The latter has a guaranteed range of only 16 MiB (3x8 == 24 bits), so it is * of limited use in the kernel. However, the ADD/ADD/LDR combo has a range of * -/+ 256 MiB, (2x8 + 12 == 28 bits), which means it has sufficient range for * any in-kernel symbol reference (unless module PLTs are being used). * * The main advantage of this approach over the typical pattern using a literal * load is that literal loads may miss in the D-cache, and generally lead to * lower cache efficiency for variables that are referenced often from many * different places in the code. */ static u32 get_group_rem(u32 group, u32 *offset) { u32 val = *offset; u32 shift; do { shift = val ? (31 - __fls(val)) & ~1 : 32; *offset = val; if (!val) break; val &= 0xffffff >> shift; } while (group--); return shift; } #endif int apply_relocate(Elf32_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relindex, struct module *module) { Elf32_Shdr *symsec = sechdrs + symindex; Elf32_Shdr *relsec = sechdrs + relindex; Elf32_Shdr *dstsec = sechdrs + relsec->sh_info; Elf32_Rel *rel = (void *)relsec->sh_addr; unsigned int i; for (i = 0; i < relsec->sh_size / sizeof(Elf32_Rel); i++, rel++) { unsigned long loc; Elf32_Sym *sym; const char *symname; #ifdef CONFIG_ARM_HAS_GROUP_RELOCS u32 shift, group = 1; #endif s32 offset; u32 tmp; #ifdef CONFIG_THUMB2_KERNEL u32 upper, lower, sign, j1, j2; #endif offset = ELF32_R_SYM(rel->r_info); if (offset < 0 || offset > (symsec->sh_size / sizeof(Elf32_Sym))) { pr_err("%s: section %u reloc %u: bad relocation sym offset\n", module->name, relindex, i); return -ENOEXEC; } sym = ((Elf32_Sym *)symsec->sh_addr) + offset; symname = strtab + sym->st_name; if (rel->r_offset < 0 || rel->r_offset > dstsec->sh_size - sizeof(u32)) { pr_err("%s: section %u reloc %u sym '%s': out of bounds relocation, offset %d size %u\n", module->name, relindex, i, symname, rel->r_offset, dstsec->sh_size); return -ENOEXEC; } if ((IS_ERR_VALUE(sym->st_value) || !sym->st_value) && ELF_ST_BIND(sym->st_info) == STB_WEAK) continue; loc = dstsec->sh_addr + rel->r_offset; switch (ELF32_R_TYPE(rel->r_info)) { case R_ARM_NONE: /* ignore */ break; case R_ARM_ABS32: case R_ARM_TARGET1: *(u32 *)loc += sym->st_value; break; case R_ARM_PC24: case R_ARM_CALL: case R_ARM_JUMP24: if (sym->st_value & 3) { pr_err("%s: section %u reloc %u sym '%s': unsupported interworking call (ARM -> Thumb)\n", module->name, relindex, i, symname); return -ENOEXEC; } offset = __mem_to_opcode_arm(*(u32 *)loc); offset = (offset & 0x00ffffff) << 2; offset = sign_extend32(offset, 25); offset += sym->st_value - loc; /* * Route through a PLT entry if 'offset' exceeds the * supported range. Note that 'offset + loc + 8' * contains the absolute jump target, i.e., * @sym + addend, corrected for the +8 PC bias. */ if (IS_ENABLED(CONFIG_ARM_MODULE_PLTS) && (offset <= (s32)0xfe000000 || offset >= (s32)0x02000000)) offset = get_module_plt(module, loc, offset + loc + 8) - loc - 8; if (offset <= (s32)0xfe000000 || offset >= (s32)0x02000000) { pr_err("%s: section %u reloc %u sym '%s': relocation %u out of range (%#lx -> %#x)\n", module->name, relindex, i, symname, ELF32_R_TYPE(rel->r_info), loc, sym->st_value); return -ENOEXEC; } offset >>= 2; offset &= 0x00ffffff; *(u32 *)loc &= __opcode_to_mem_arm(0xff000000); *(u32 *)loc |= __opcode_to_mem_arm(offset); break; case R_ARM_V4BX: /* Preserve Rm and the condition code. Alter * other bits to re-code instruction as * MOV PC,Rm. */ *(u32 *)loc &= __opcode_to_mem_arm(0xf000000f); *(u32 *)loc |= __opcode_to_mem_arm(0x01a0f000); break; case R_ARM_PREL31: offset = (*(s32 *)loc << 1) >> 1; /* sign extend */ offset += sym->st_value - loc; if (offset >= 0x40000000 || offset < -0x40000000) { pr_err("%s: section %u reloc %u sym '%s': relocation %u out of range (%#lx -> %#x)\n", module->name, relindex, i, symname, ELF32_R_TYPE(rel->r_info), loc, sym->st_value); return -ENOEXEC; } *(u32 *)loc &= 0x80000000; *(u32 *)loc |= offset & 0x7fffffff; break; case R_ARM_REL32: *(u32 *)loc += sym->st_value - loc; break; case R_ARM_MOVW_ABS_NC: case R_ARM_MOVT_ABS: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: offset = tmp = __mem_to_opcode_arm(*(u32 *)loc); offset = ((offset & 0xf0000) >> 4) | (offset & 0xfff); offset = sign_extend32(offset, 15); offset += sym->st_value; if (ELF32_R_TYPE(rel->r_info) == R_ARM_MOVT_PREL || ELF32_R_TYPE(rel->r_info) == R_ARM_MOVW_PREL_NC) offset -= loc; if (ELF32_R_TYPE(rel->r_info) == R_ARM_MOVT_ABS || ELF32_R_TYPE(rel->r_info) == R_ARM_MOVT_PREL) offset >>= 16; tmp &= 0xfff0f000; tmp |= ((offset & 0xf000) << 4) | (offset & 0x0fff); *(u32 *)loc = __opcode_to_mem_arm(tmp); break; #ifdef CONFIG_ARM_HAS_GROUP_RELOCS case R_ARM_ALU_PC_G0_NC: group = 0; fallthrough; case R_ARM_ALU_PC_G1_NC: tmp = __mem_to_opcode_arm(*(u32 *)loc); offset = ror32(tmp & 0xff, (tmp & 0xf00) >> 7); if (tmp & BIT(22)) offset = -offset; offset += sym->st_value - loc; if (offset < 0) { offset = -offset; tmp = (tmp & ~BIT(23)) | BIT(22); // SUB opcode } else { tmp = (tmp & ~BIT(22)) | BIT(23); // ADD opcode } shift = get_group_rem(group, &offset); if (shift < 24) { offset >>= 24 - shift; offset |= (shift + 8) << 7; } *(u32 *)loc = __opcode_to_mem_arm((tmp & ~0xfff) | offset); break; case R_ARM_LDR_PC_G2: tmp = __mem_to_opcode_arm(*(u32 *)loc); offset = tmp & 0xfff; if (~tmp & BIT(23)) // U bit cleared? offset = -offset; offset += sym->st_value - loc; if (offset < 0) { offset = -offset; tmp &= ~BIT(23); // clear U bit } else { tmp |= BIT(23); // set U bit } get_group_rem(2, &offset); if (offset > 0xfff) { pr_err("%s: section %u reloc %u sym '%s': relocation %u out of range (%#lx -> %#x)\n", module->name, relindex, i, symname, ELF32_R_TYPE(rel->r_info), loc, sym->st_value); return -ENOEXEC; } *(u32 *)loc = __opcode_to_mem_arm((tmp & ~0xfff) | offset); break; #endif #ifdef CONFIG_THUMB2_KERNEL case R_ARM_THM_CALL: case R_ARM_THM_JUMP24: /* * For function symbols, only Thumb addresses are * allowed (no interworking). * * For non-function symbols, the destination * has no specific ARM/Thumb disposition, so * the branch is resolved under the assumption * that interworking is not required. */ if (ELF32_ST_TYPE(sym->st_info) == STT_FUNC && !(sym->st_value & 1)) { pr_err("%s: section %u reloc %u sym '%s': unsupported interworking call (Thumb -> ARM)\n", module->name, relindex, i, symname); return -ENOEXEC; } upper = __mem_to_opcode_thumb16(*(u16 *)loc); lower = __mem_to_opcode_thumb16(*(u16 *)(loc + 2)); /* * 25 bit signed address range (Thumb-2 BL and B.W * instructions): * S:I1:I2:imm10:imm11:0 * where: * S = upper[10] = offset[24] * I1 = ~(J1 ^ S) = offset[23] * I2 = ~(J2 ^ S) = offset[22] * imm10 = upper[9:0] = offset[21:12] * imm11 = lower[10:0] = offset[11:1] * J1 = lower[13] * J2 = lower[11] */ sign = (upper >> 10) & 1; j1 = (lower >> 13) & 1; j2 = (lower >> 11) & 1; offset = (sign << 24) | ((~(j1 ^ sign) & 1) << 23) | ((~(j2 ^ sign) & 1) << 22) | ((upper & 0x03ff) << 12) | ((lower & 0x07ff) << 1); offset = sign_extend32(offset, 24); offset += sym->st_value - loc; /* * Route through a PLT entry if 'offset' exceeds the * supported range. */ if (IS_ENABLED(CONFIG_ARM_MODULE_PLTS) && (offset <= (s32)0xff000000 || offset >= (s32)0x01000000)) offset = get_module_plt(module, loc, offset + loc + 4) - loc - 4; if (offset <= (s32)0xff000000 || offset >= (s32)0x01000000) { pr_err("%s: section %u reloc %u sym '%s': relocation %u out of range (%#lx -> %#x)\n", module->name, relindex, i, symname, ELF32_R_TYPE(rel->r_info), loc, sym->st_value); return -ENOEXEC; } sign = (offset >> 24) & 1; j1 = sign ^ (~(offset >> 23) & 1); j2 = sign ^ (~(offset >> 22) & 1); upper = (u16)((upper & 0xf800) | (sign << 10) | ((offset >> 12) & 0x03ff)); lower = (u16)((lower & 0xd000) | (j1 << 13) | (j2 << 11) | ((offset >> 1) & 0x07ff)); *(u16 *)loc = __opcode_to_mem_thumb16(upper); *(u16 *)(loc + 2) = __opcode_to_mem_thumb16(lower); break; case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: upper = __mem_to_opcode_thumb16(*(u16 *)loc); lower = __mem_to_opcode_thumb16(*(u16 *)(loc + 2)); /* * MOVT/MOVW instructions encoding in Thumb-2: * * i = upper[10] * imm4 = upper[3:0] * imm3 = lower[14:12] * imm8 = lower[7:0] * * imm16 = imm4:i:imm3:imm8 */ offset = ((upper & 0x000f) << 12) | ((upper & 0x0400) << 1) | ((lower & 0x7000) >> 4) | (lower & 0x00ff); offset = sign_extend32(offset, 15); offset += sym->st_value; if (ELF32_R_TYPE(rel->r_info) == R_ARM_THM_MOVT_PREL || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_MOVW_PREL_NC) offset -= loc; if (ELF32_R_TYPE(rel->r_info) == R_ARM_THM_MOVT_ABS || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_MOVT_PREL) offset >>= 16; upper = (u16)((upper & 0xfbf0) | ((offset & 0xf000) >> 12) | ((offset & 0x0800) >> 1)); lower = (u16)((lower & 0x8f00) | ((offset & 0x0700) << 4) | (offset & 0x00ff)); *(u16 *)loc = __opcode_to_mem_thumb16(upper); *(u16 *)(loc + 2) = __opcode_to_mem_thumb16(lower); break; #endif default: pr_err("%s: unknown relocation: %u\n", module->name, ELF32_R_TYPE(rel->r_info)); return -ENOEXEC; } } return 0; } struct mod_unwind_map { const Elf_Shdr *unw_sec; const Elf_Shdr *txt_sec; }; static const Elf_Shdr *find_mod_section(const Elf32_Ehdr *hdr, const Elf_Shdr *sechdrs, const char *name) { const Elf_Shdr *s, *se; const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) if (strcmp(name, secstrs + s->sh_name) == 0) return s; return NULL; } extern void fixup_pv_table(const void *, unsigned long); extern void fixup_smp(const void *, unsigned long); int module_finalize(const Elf32_Ehdr *hdr, const Elf_Shdr *sechdrs, struct module *mod) { const Elf_Shdr *s = NULL; #ifdef CONFIG_ARM_UNWIND const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; const Elf_Shdr *sechdrs_end = sechdrs + hdr->e_shnum; struct list_head *unwind_list = &mod->arch.unwind_list; INIT_LIST_HEAD(unwind_list); mod->arch.init_table = NULL; for (s = sechdrs; s < sechdrs_end; s++) { const char *secname = secstrs + s->sh_name; const char *txtname; const Elf_Shdr *txt_sec; if (!(s->sh_flags & SHF_ALLOC) || s->sh_type != ELF_SECTION_UNWIND) continue; if (!strcmp(".ARM.exidx", secname)) txtname = ".text"; else txtname = secname + strlen(".ARM.exidx"); txt_sec = find_mod_section(hdr, sechdrs, txtname); if (txt_sec) { struct unwind_table *table = unwind_table_add(s->sh_addr, s->sh_size, txt_sec->sh_addr, txt_sec->sh_size); list_add(&table->mod_list, unwind_list); /* save init table for module_arch_freeing_init */ if (strcmp(".ARM.exidx.init.text", secname) == 0) mod->arch.init_table = table; } } #endif #ifdef CONFIG_ARM_PATCH_PHYS_VIRT s = find_mod_section(hdr, sechdrs, ".pv_table"); if (s) fixup_pv_table((void *)s->sh_addr, s->sh_size); #endif s = find_mod_section(hdr, sechdrs, ".alt.smp.init"); if (s && !is_smp()) #ifdef CONFIG_SMP_ON_UP fixup_smp((void *)s->sh_addr, s->sh_size); #else return -EINVAL; #endif return 0; } void module_arch_cleanup(struct module *mod) { #ifdef CONFIG_ARM_UNWIND struct unwind_table *tmp; struct unwind_table *n; list_for_each_entry_safe(tmp, n, &mod->arch.unwind_list, mod_list) { list_del(&tmp->mod_list); unwind_table_del(tmp); } mod->arch.init_table = NULL; #endif } void __weak module_arch_freeing_init(struct module *mod) { #ifdef CONFIG_ARM_UNWIND struct unwind_table *init = mod->arch.init_table; if (init) { mod->arch.init_table = NULL; list_del(&init->mod_list); unwind_table_del(init); } #endif }