// SPDX-License-Identifier: GPL-2.0-or-later /* * IPV4 GSO/GRO offload support * Linux INET implementation * * TCPv4 GSO/GRO support */ #include #include #include #include #include #include static void tcp_gso_tstamp(struct sk_buff *skb, unsigned int ts_seq, unsigned int seq, unsigned int mss) { while (skb) { if (before(ts_seq, seq + mss)) { skb_shinfo(skb)->tx_flags |= SKBTX_SW_TSTAMP; skb_shinfo(skb)->tskey = ts_seq; return; } skb = skb->next; seq += mss; } } static void __tcpv4_gso_segment_csum(struct sk_buff *seg, __be32 *oldip, __be32 newip, __be16 *oldport, __be16 newport) { struct tcphdr *th; struct iphdr *iph; if (*oldip == newip && *oldport == newport) return; th = tcp_hdr(seg); iph = ip_hdr(seg); inet_proto_csum_replace4(&th->check, seg, *oldip, newip, true); inet_proto_csum_replace2(&th->check, seg, *oldport, newport, false); *oldport = newport; csum_replace4(&iph->check, *oldip, newip); *oldip = newip; } static struct sk_buff *__tcpv4_gso_segment_list_csum(struct sk_buff *segs) { const struct tcphdr *th; const struct iphdr *iph; struct sk_buff *seg; struct tcphdr *th2; struct iphdr *iph2; seg = segs; th = tcp_hdr(seg); iph = ip_hdr(seg); th2 = tcp_hdr(seg->next); iph2 = ip_hdr(seg->next); if (!(*(const u32 *)&th->source ^ *(const u32 *)&th2->source) && iph->daddr == iph2->daddr && iph->saddr == iph2->saddr) return segs; while ((seg = seg->next)) { th2 = tcp_hdr(seg); iph2 = ip_hdr(seg); __tcpv4_gso_segment_csum(seg, &iph2->saddr, iph->saddr, &th2->source, th->source); __tcpv4_gso_segment_csum(seg, &iph2->daddr, iph->daddr, &th2->dest, th->dest); } return segs; } static struct sk_buff *__tcp4_gso_segment_list(struct sk_buff *skb, netdev_features_t features) { skb = skb_segment_list(skb, features, skb_mac_header_len(skb)); if (IS_ERR(skb)) return skb; return __tcpv4_gso_segment_list_csum(skb); } static struct sk_buff *tcp4_gso_segment(struct sk_buff *skb, netdev_features_t features) { if (!(skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4)) return ERR_PTR(-EINVAL); if (!pskb_may_pull(skb, sizeof(struct tcphdr))) return ERR_PTR(-EINVAL); if (skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST) { struct tcphdr *th = tcp_hdr(skb); if (skb_pagelen(skb) - th->doff * 4 == skb_shinfo(skb)->gso_size) return __tcp4_gso_segment_list(skb, features); skb->ip_summed = CHECKSUM_NONE; } if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { const struct iphdr *iph = ip_hdr(skb); struct tcphdr *th = tcp_hdr(skb); /* Set up checksum pseudo header, usually expect stack to * have done this already. */ th->check = 0; skb->ip_summed = CHECKSUM_PARTIAL; __tcp_v4_send_check(skb, iph->saddr, iph->daddr); } return tcp_gso_segment(skb, features); } struct sk_buff *tcp_gso_segment(struct sk_buff *skb, netdev_features_t features) { struct sk_buff *segs = ERR_PTR(-EINVAL); unsigned int sum_truesize = 0; struct tcphdr *th; unsigned int thlen; unsigned int seq; unsigned int oldlen; unsigned int mss; struct sk_buff *gso_skb = skb; __sum16 newcheck; bool ooo_okay, copy_destructor; __wsum delta; th = tcp_hdr(skb); thlen = th->doff * 4; if (thlen < sizeof(*th)) goto out; if (unlikely(skb_checksum_start(skb) != skb_transport_header(skb))) goto out; if (!pskb_may_pull(skb, thlen)) goto out; oldlen = ~skb->len; __skb_pull(skb, thlen); mss = skb_shinfo(skb)->gso_size; if (unlikely(skb->len <= mss)) goto out; if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { /* Packet is from an untrusted source, reset gso_segs. */ skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); segs = NULL; goto out; } copy_destructor = gso_skb->destructor == tcp_wfree; ooo_okay = gso_skb->ooo_okay; /* All segments but the first should have ooo_okay cleared */ skb->ooo_okay = 0; segs = skb_segment(skb, features); if (IS_ERR(segs)) goto out; /* Only first segment might have ooo_okay set */ segs->ooo_okay = ooo_okay; /* GSO partial and frag_list segmentation only requires splitting * the frame into an MSS multiple and possibly a remainder, both * cases return a GSO skb. So update the mss now. */ if (skb_is_gso(segs)) mss *= skb_shinfo(segs)->gso_segs; delta = (__force __wsum)htonl(oldlen + thlen + mss); skb = segs; th = tcp_hdr(skb); seq = ntohl(th->seq); if (unlikely(skb_shinfo(gso_skb)->tx_flags & SKBTX_SW_TSTAMP)) tcp_gso_tstamp(segs, skb_shinfo(gso_skb)->tskey, seq, mss); newcheck = ~csum_fold(csum_add(csum_unfold(th->check), delta)); while (skb->next) { th->fin = th->psh = 0; th->check = newcheck; if (skb->ip_summed == CHECKSUM_PARTIAL) gso_reset_checksum(skb, ~th->check); else th->check = gso_make_checksum(skb, ~th->check); seq += mss; if (copy_destructor) { skb->destructor = gso_skb->destructor; skb->sk = gso_skb->sk; sum_truesize += skb->truesize; } skb = skb->next; th = tcp_hdr(skb); th->seq = htonl(seq); th->cwr = 0; } /* Following permits TCP Small Queues to work well with GSO : * The callback to TCP stack will be called at the time last frag * is freed at TX completion, and not right now when gso_skb * is freed by GSO engine */ if (copy_destructor) { int delta; swap(gso_skb->sk, skb->sk); swap(gso_skb->destructor, skb->destructor); sum_truesize += skb->truesize; delta = sum_truesize - gso_skb->truesize; /* In some pathological cases, delta can be negative. * We need to either use refcount_add() or refcount_sub_and_test() */ if (likely(delta >= 0)) refcount_add(delta, &skb->sk->sk_wmem_alloc); else WARN_ON_ONCE(refcount_sub_and_test(-delta, &skb->sk->sk_wmem_alloc)); } delta = (__force __wsum)htonl(oldlen + (skb_tail_pointer(skb) - skb_transport_header(skb)) + skb->data_len); th->check = ~csum_fold(csum_add(csum_unfold(th->check), delta)); if (skb->ip_summed == CHECKSUM_PARTIAL) gso_reset_checksum(skb, ~th->check); else th->check = gso_make_checksum(skb, ~th->check); out: return segs; } struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th) { struct tcphdr *th2; struct sk_buff *p; list_for_each_entry(p, head, list) { if (!NAPI_GRO_CB(p)->same_flow) continue; th2 = tcp_hdr(p); if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { NAPI_GRO_CB(p)->same_flow = 0; continue; } return p; } return NULL; } struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb) { unsigned int thlen, hlen, off; struct tcphdr *th; off = skb_gro_offset(skb); hlen = off + sizeof(*th); th = skb_gro_header(skb, hlen, off); if (unlikely(!th)) return NULL; thlen = th->doff * 4; if (thlen < sizeof(*th)) return NULL; hlen = off + thlen; if (skb_gro_header_hard(skb, hlen)) { th = skb_gro_header_slow(skb, hlen, off); if (unlikely(!th)) return NULL; } skb_gro_pull(skb, thlen); return th; } struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb, struct tcphdr *th) { unsigned int thlen = th->doff * 4; struct sk_buff *pp = NULL; struct sk_buff *p; struct tcphdr *th2; unsigned int len; __be32 flags; unsigned int mss = 1; int flush = 1; int i; len = skb_gro_len(skb); flags = tcp_flag_word(th); p = tcp_gro_lookup(head, th); if (!p) goto out_check_final; /* Include the IP ID check below from the inner most IP hdr */ th2 = tcp_hdr(p); flush = NAPI_GRO_CB(p)->flush; flush |= (__force int)(flags & TCP_FLAG_CWR); flush |= (__force int)((flags ^ tcp_flag_word(th2)) & ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH)); flush |= (__force int)(th->ack_seq ^ th2->ack_seq); for (i = sizeof(*th); i < thlen; i += 4) flush |= *(u32 *)((u8 *)th + i) ^ *(u32 *)((u8 *)th2 + i); /* When we receive our second frame we can made a decision on if we * continue this flow as an atomic flow with a fixed ID or if we use * an incrementing ID. */ if (NAPI_GRO_CB(p)->flush_id != 1 || NAPI_GRO_CB(p)->count != 1 || !NAPI_GRO_CB(p)->is_atomic) flush |= NAPI_GRO_CB(p)->flush_id; else NAPI_GRO_CB(p)->is_atomic = false; mss = skb_shinfo(p)->gso_size; /* If skb is a GRO packet, make sure its gso_size matches prior packet mss. * If it is a single frame, do not aggregate it if its length * is bigger than our mss. */ if (unlikely(skb_is_gso(skb))) flush |= (mss != skb_shinfo(skb)->gso_size); else flush |= (len - 1) >= mss; flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); #ifdef CONFIG_TLS_DEVICE flush |= p->decrypted ^ skb->decrypted; #endif if (unlikely(NAPI_GRO_CB(p)->is_flist)) { flush |= (__force int)(flags ^ tcp_flag_word(th2)); flush |= skb->ip_summed != p->ip_summed; flush |= skb->csum_level != p->csum_level; flush |= !pskb_may_pull(skb, skb_gro_offset(skb)); flush |= NAPI_GRO_CB(p)->count >= 64; if (flush || skb_gro_receive_list(p, skb)) mss = 1; goto out_check_final; } if (flush || skb_gro_receive(p, skb)) { mss = 1; goto out_check_final; } tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); out_check_final: /* Force a flush if last segment is smaller than mss. */ if (unlikely(skb_is_gso(skb))) flush = len != NAPI_GRO_CB(skb)->count * skb_shinfo(skb)->gso_size; else flush = len < mss; flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST | TCP_FLAG_SYN | TCP_FLAG_FIN)); if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) pp = p; NAPI_GRO_CB(skb)->flush |= (flush != 0); return pp; } void tcp_gro_complete(struct sk_buff *skb) { struct tcphdr *th = tcp_hdr(skb); skb->csum_start = (unsigned char *)th - skb->head; skb->csum_offset = offsetof(struct tcphdr, check); skb->ip_summed = CHECKSUM_PARTIAL; skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; if (th->cwr) skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; if (skb->encapsulation) skb->inner_transport_header = skb->transport_header; } EXPORT_SYMBOL(tcp_gro_complete); static void tcp4_check_fraglist_gro(struct list_head *head, struct sk_buff *skb, struct tcphdr *th) { const struct iphdr *iph; struct sk_buff *p; struct sock *sk; struct net *net; int iif, sdif; if (!(skb->dev->features & NETIF_F_GRO_FRAGLIST)) return; p = tcp_gro_lookup(head, th); if (p) { NAPI_GRO_CB(skb)->is_flist = NAPI_GRO_CB(p)->is_flist; return; } inet_get_iif_sdif(skb, &iif, &sdif); iph = skb_gro_network_header(skb); net = dev_net(skb->dev); sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, iph->saddr, th->source, iph->daddr, ntohs(th->dest), iif, sdif); NAPI_GRO_CB(skb)->is_flist = !sk; if (sk) sock_put(sk); } INDIRECT_CALLABLE_SCOPE struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb) { struct tcphdr *th; /* Don't bother verifying checksum if we're going to flush anyway. */ if (!NAPI_GRO_CB(skb)->flush && skb_gro_checksum_validate(skb, IPPROTO_TCP, inet_gro_compute_pseudo)) goto flush; th = tcp_gro_pull_header(skb); if (!th) goto flush; tcp4_check_fraglist_gro(head, skb, th); return tcp_gro_receive(head, skb, th); flush: NAPI_GRO_CB(skb)->flush = 1; return NULL; } INDIRECT_CALLABLE_SCOPE int tcp4_gro_complete(struct sk_buff *skb, int thoff) { const struct iphdr *iph = ip_hdr(skb); struct tcphdr *th = tcp_hdr(skb); if (unlikely(NAPI_GRO_CB(skb)->is_flist)) { skb_shinfo(skb)->gso_type |= SKB_GSO_FRAGLIST | SKB_GSO_TCPV4; skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; __skb_incr_checksum_unnecessary(skb); return 0; } th->check = ~tcp_v4_check(skb->len - thoff, iph->saddr, iph->daddr, 0); skb_shinfo(skb)->gso_type |= SKB_GSO_TCPV4; if (NAPI_GRO_CB(skb)->is_atomic) skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID; tcp_gro_complete(skb); return 0; } static const struct net_offload tcpv4_offload = { .callbacks = { .gso_segment = tcp4_gso_segment, .gro_receive = tcp4_gro_receive, .gro_complete = tcp4_gro_complete, }, }; int __init tcpv4_offload_init(void) { return inet_add_offload(&tcpv4_offload, IPPROTO_TCP); }