/* * iplink_can.c CAN device support * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Wolfgang Grandegger */ #include #include #include #include #include "rt_names.h" #include "utils.h" #include "ip_common.h" static void print_usage(FILE *f) { fprintf(f, "Usage: ip link set DEVICE type can\n" "\t[ bitrate BITRATE [ sample-point SAMPLE-POINT] ] |\n" "\t[ tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1\n \t phase-seg2 PHASE-SEG2 [ sjw SJW ] ]\n" "\n" "\t[ dbitrate BITRATE [ dsample-point SAMPLE-POINT] ] |\n" "\t[ dtq TQ dprop-seg PROP_SEG dphase-seg1 PHASE-SEG1\n \t dphase-seg2 PHASE-SEG2 [ dsjw SJW ] ]\n" "\n" "\t[ loopback { on | off } ]\n" "\t[ listen-only { on | off } ]\n" "\t[ triple-sampling { on | off } ]\n" "\t[ one-shot { on | off } ]\n" "\t[ berr-reporting { on | off } ]\n" "\t[ fd { on | off } ]\n" "\t[ fd-non-iso { on | off } ]\n" "\t[ presume-ack { on | off } ]\n" "\n" "\t[ restart-ms TIME-MS ]\n" "\t[ restart ]\n" "\n" "\t[ termination { 0..65535 } ]\n" "\n" "\tWhere: BITRATE := { 1..1000000 }\n" "\t SAMPLE-POINT := { 0.000..0.999 }\n" "\t TQ := { NUMBER }\n" "\t PROP-SEG := { 1..8 }\n" "\t PHASE-SEG1 := { 1..8 }\n" "\t PHASE-SEG2 := { 1..8 }\n" "\t SJW := { 1..4 }\n" "\t RESTART-MS := { 0 | NUMBER }\n" ); } static void usage(void) { print_usage(stderr); } static int get_float(float *val, const char *arg) { float res; char *ptr; if (!arg || !*arg) return -1; res = strtof(arg, &ptr); if (!ptr || ptr == arg || *ptr) return -1; *val = res; return 0; } static void set_ctrlmode(char *name, char *arg, struct can_ctrlmode *cm, __u32 flags) { if (strcmp(arg, "on") == 0) { cm->flags |= flags; } else if (strcmp(arg, "off") != 0) { fprintf(stderr, "Error: argument of \"%s\" must be \"on\" or \"off\", not \"%s\"\n", name, arg); exit(-1); } cm->mask |= flags; } static void print_ctrlmode(FILE *f, __u32 cm) { open_json_array(PRINT_ANY, is_json_context() ? "ctrlmode" : "<"); #define _PF(cmflag, cmname) \ if (cm & cmflag) { \ cm &= ~cmflag; \ print_string(PRINT_ANY, NULL, cm ? "%s," : "%s", cmname); \ } _PF(CAN_CTRLMODE_LOOPBACK, "LOOPBACK"); _PF(CAN_CTRLMODE_LISTENONLY, "LISTEN-ONLY"); _PF(CAN_CTRLMODE_3_SAMPLES, "TRIPLE-SAMPLING"); _PF(CAN_CTRLMODE_ONE_SHOT, "ONE-SHOT"); _PF(CAN_CTRLMODE_BERR_REPORTING, "BERR-REPORTING"); _PF(CAN_CTRLMODE_FD, "FD"); _PF(CAN_CTRLMODE_FD_NON_ISO, "FD-NON-ISO"); _PF(CAN_CTRLMODE_PRESUME_ACK, "PRESUME-ACK"); #undef _PF if (cm) print_hex(PRINT_ANY, NULL, "%x", cm); close_json_array(PRINT_ANY, "> "); } static int can_parse_opt(struct link_util *lu, int argc, char **argv, struct nlmsghdr *n) { struct can_bittiming bt = {}, dbt = {}; struct can_ctrlmode cm = {0, 0}; while (argc > 0) { if (matches(*argv, "bitrate") == 0) { NEXT_ARG(); if (get_u32(&bt.bitrate, *argv, 0)) invarg("invalid \"bitrate\" value\n", *argv); } else if (matches(*argv, "sample-point") == 0) { float sp; NEXT_ARG(); if (get_float(&sp, *argv)) invarg("invalid \"sample-point\" value\n", *argv); bt.sample_point = (__u32)(sp * 1000); } else if (matches(*argv, "tq") == 0) { NEXT_ARG(); if (get_u32(&bt.tq, *argv, 0)) invarg("invalid \"tq\" value\n", *argv); } else if (matches(*argv, "prop-seg") == 0) { NEXT_ARG(); if (get_u32(&bt.prop_seg, *argv, 0)) invarg("invalid \"prop-seg\" value\n", *argv); } else if (matches(*argv, "phase-seg1") == 0) { NEXT_ARG(); if (get_u32(&bt.phase_seg1, *argv, 0)) invarg("invalid \"phase-seg1\" value\n", *argv); } else if (matches(*argv, "phase-seg2") == 0) { NEXT_ARG(); if (get_u32(&bt.phase_seg2, *argv, 0)) invarg("invalid \"phase-seg2\" value\n", *argv); } else if (matches(*argv, "sjw") == 0) { NEXT_ARG(); if (get_u32(&bt.sjw, *argv, 0)) invarg("invalid \"sjw\" value\n", *argv); } else if (matches(*argv, "dbitrate") == 0) { NEXT_ARG(); if (get_u32(&dbt.bitrate, *argv, 0)) invarg("invalid \"dbitrate\" value\n", *argv); } else if (matches(*argv, "dsample-point") == 0) { float sp; NEXT_ARG(); if (get_float(&sp, *argv)) invarg("invalid \"dsample-point\" value\n", *argv); dbt.sample_point = (__u32)(sp * 1000); } else if (matches(*argv, "dtq") == 0) { NEXT_ARG(); if (get_u32(&dbt.tq, *argv, 0)) invarg("invalid \"dtq\" value\n", *argv); } else if (matches(*argv, "dprop-seg") == 0) { NEXT_ARG(); if (get_u32(&dbt.prop_seg, *argv, 0)) invarg("invalid \"dprop-seg\" value\n", *argv); } else if (matches(*argv, "dphase-seg1") == 0) { NEXT_ARG(); if (get_u32(&dbt.phase_seg1, *argv, 0)) invarg("invalid \"dphase-seg1\" value\n", *argv); } else if (matches(*argv, "dphase-seg2") == 0) { NEXT_ARG(); if (get_u32(&dbt.phase_seg2, *argv, 0)) invarg("invalid \"dphase-seg2\" value\n", *argv); } else if (matches(*argv, "dsjw") == 0) { NEXT_ARG(); if (get_u32(&dbt.sjw, *argv, 0)) invarg("invalid \"dsjw\" value\n", *argv); } else if (matches(*argv, "loopback") == 0) { NEXT_ARG(); set_ctrlmode("loopback", *argv, &cm, CAN_CTRLMODE_LOOPBACK); } else if (matches(*argv, "listen-only") == 0) { NEXT_ARG(); set_ctrlmode("listen-only", *argv, &cm, CAN_CTRLMODE_LISTENONLY); } else if (matches(*argv, "triple-sampling") == 0) { NEXT_ARG(); set_ctrlmode("triple-sampling", *argv, &cm, CAN_CTRLMODE_3_SAMPLES); } else if (matches(*argv, "one-shot") == 0) { NEXT_ARG(); set_ctrlmode("one-shot", *argv, &cm, CAN_CTRLMODE_ONE_SHOT); } else if (matches(*argv, "berr-reporting") == 0) { NEXT_ARG(); set_ctrlmode("berr-reporting", *argv, &cm, CAN_CTRLMODE_BERR_REPORTING); } else if (matches(*argv, "fd") == 0) { NEXT_ARG(); set_ctrlmode("fd", *argv, &cm, CAN_CTRLMODE_FD); } else if (matches(*argv, "fd-non-iso") == 0) { NEXT_ARG(); set_ctrlmode("fd-non-iso", *argv, &cm, CAN_CTRLMODE_FD_NON_ISO); } else if (matches(*argv, "presume-ack") == 0) { NEXT_ARG(); set_ctrlmode("presume-ack", *argv, &cm, CAN_CTRLMODE_PRESUME_ACK); } else if (matches(*argv, "restart") == 0) { __u32 val = 1; addattr32(n, 1024, IFLA_CAN_RESTART, val); } else if (matches(*argv, "restart-ms") == 0) { __u32 val; NEXT_ARG(); if (get_u32(&val, *argv, 0)) invarg("invalid \"restart-ms\" value\n", *argv); addattr32(n, 1024, IFLA_CAN_RESTART_MS, val); } else if (matches(*argv, "termination") == 0) { __u16 val; NEXT_ARG(); if (get_u16(&val, *argv, 0)) invarg("invalid \"termination\" value\n", *argv); addattr16(n, 1024, IFLA_CAN_TERMINATION, val); } else if (matches(*argv, "help") == 0) { usage(); return -1; } else { fprintf(stderr, "can: unknown option \"%s\"\n", *argv); usage(); return -1; } argc--, argv++; } if (bt.bitrate || bt.tq) addattr_l(n, 1024, IFLA_CAN_BITTIMING, &bt, sizeof(bt)); if (dbt.bitrate || dbt.tq) addattr_l(n, 1024, IFLA_CAN_DATA_BITTIMING, &dbt, sizeof(dbt)); if (cm.mask) addattr_l(n, 1024, IFLA_CAN_CTRLMODE, &cm, sizeof(cm)); return 0; } static const char *can_state_names[CAN_STATE_MAX] = { [CAN_STATE_ERROR_ACTIVE] = "ERROR-ACTIVE", [CAN_STATE_ERROR_WARNING] = "ERROR-WARNING", [CAN_STATE_ERROR_PASSIVE] = "ERROR-PASSIVE", [CAN_STATE_BUS_OFF] = "BUS-OFF", [CAN_STATE_STOPPED] = "STOPPED", [CAN_STATE_SLEEPING] = "SLEEPING" }; static void can_print_json_timing_min_max(const char *attr, int min, int max) { open_json_object(attr); print_int(PRINT_JSON, "min", NULL, min); print_int(PRINT_JSON, "max", NULL, max); close_json_object(); } static void can_print_opt(struct link_util *lu, FILE *f, struct rtattr *tb[]) { if (!tb) return; if (tb[IFLA_CAN_CTRLMODE]) { struct can_ctrlmode *cm = RTA_DATA(tb[IFLA_CAN_CTRLMODE]); if (cm->flags) print_ctrlmode(f, cm->flags); } if (tb[IFLA_CAN_STATE]) { uint32_t state = rta_getattr_u32(tb[IFLA_CAN_STATE]); print_string(PRINT_ANY, "state", "state %s ", state < CAN_STATE_MAX ? can_state_names[state] : "UNKNOWN"); } if (tb[IFLA_CAN_BERR_COUNTER]) { struct can_berr_counter *bc = RTA_DATA(tb[IFLA_CAN_BERR_COUNTER]); if (is_json_context()) { open_json_object("berr_counter"); print_int(PRINT_JSON, "tx", NULL, bc->txerr); print_int(PRINT_JSON, "rx", NULL, bc->rxerr); close_json_object(); } else { fprintf(f, "(berr-counter tx %d rx %d) ", bc->txerr, bc->rxerr); } } if (tb[IFLA_CAN_RESTART_MS]) { __u32 *restart_ms = RTA_DATA(tb[IFLA_CAN_RESTART_MS]); print_int(PRINT_ANY, "restart_ms", "restart-ms %d ", *restart_ms); } /* bittiming is irrelevant if fixed bitrate is defined */ if (tb[IFLA_CAN_BITTIMING] && !tb[IFLA_CAN_BITRATE_CONST]) { struct can_bittiming *bt = RTA_DATA(tb[IFLA_CAN_BITTIMING]); if (is_json_context()) { json_writer_t *jw; open_json_object("bittiming"); print_int(PRINT_ANY, "bitrate", NULL, bt->bitrate); jw = get_json_writer(); jsonw_name(jw, "sample_point"); jsonw_printf(jw, "%.3f", (float) bt->sample_point / 1000); print_int(PRINT_ANY, "tq", NULL, bt->tq); print_int(PRINT_ANY, "prop_seg", NULL, bt->prop_seg); print_int(PRINT_ANY, "phase_seg1", NULL, bt->phase_seg1); print_int(PRINT_ANY, "phase_seg2", NULL, bt->phase_seg2); print_int(PRINT_ANY, "sjw", NULL, bt->sjw); close_json_object(); } else { fprintf(f, "\n bitrate %d sample-point %.3f ", bt->bitrate, (float) bt->sample_point / 1000.); fprintf(f, "\n tq %d prop-seg %d phase-seg1 %d phase-seg2 %d sjw %d", bt->tq, bt->prop_seg, bt->phase_seg1, bt->phase_seg2, bt->sjw); } } /* bittiming const is irrelevant if fixed bitrate is defined */ if (tb[IFLA_CAN_BITTIMING_CONST] && !tb[IFLA_CAN_BITRATE_CONST]) { struct can_bittiming_const *btc = RTA_DATA(tb[IFLA_CAN_BITTIMING_CONST]); if (is_json_context()) { open_json_object("bittiming_const"); print_string(PRINT_JSON, "name", NULL, btc->name); can_print_json_timing_min_max("tseg1", btc->tseg1_min, btc->tseg1_max); can_print_json_timing_min_max("tseg2", btc->tseg2_min, btc->tseg2_max); can_print_json_timing_min_max("sjw", 1, btc->sjw_max); can_print_json_timing_min_max("brp", btc->brp_min, btc->brp_max); print_int(PRINT_JSON, "brp_inc", NULL, btc->brp_inc); close_json_object(); } else { fprintf(f, "\n %s: tseg1 %d..%d tseg2 %d..%d " "sjw 1..%d brp %d..%d brp-inc %d", btc->name, btc->tseg1_min, btc->tseg1_max, btc->tseg2_min, btc->tseg2_max, btc->sjw_max, btc->brp_min, btc->brp_max, btc->brp_inc); } } if (tb[IFLA_CAN_BITRATE_CONST]) { __u32 *bitrate_const = RTA_DATA(tb[IFLA_CAN_BITRATE_CONST]); int bitrate_cnt = RTA_PAYLOAD(tb[IFLA_CAN_BITRATE_CONST]) / sizeof(*bitrate_const); int i; __u32 bitrate = 0; if (tb[IFLA_CAN_BITTIMING]) { struct can_bittiming *bt = RTA_DATA(tb[IFLA_CAN_BITTIMING]); bitrate = bt->bitrate; } if (is_json_context()) { print_uint(PRINT_JSON, "bittiming_bitrate", NULL, bitrate); open_json_array(PRINT_JSON, "bitrate_const"); for (i = 0; i < bitrate_cnt; ++i) print_uint(PRINT_JSON, NULL, NULL, bitrate_const[i]); close_json_array(PRINT_JSON, NULL); } else { fprintf(f, "\n bitrate %u", bitrate); fprintf(f, "\n ["); for (i = 0; i < bitrate_cnt - 1; ++i) { /* This will keep lines below 80 signs */ if (!(i % 6) && i) fprintf(f, "\n "); fprintf(f, "%8u, ", bitrate_const[i]); } if (!(i % 6) && i) fprintf(f, "\n "); fprintf(f, "%8u ]", bitrate_const[i]); } } /* data bittiming is irrelevant if fixed bitrate is defined */ if (tb[IFLA_CAN_DATA_BITTIMING] && !tb[IFLA_CAN_DATA_BITRATE_CONST]) { struct can_bittiming *dbt = RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]); if (is_json_context()) { json_writer_t *jw; open_json_object("data_bittiming"); print_int(PRINT_JSON, "bitrate", NULL, dbt->bitrate); jw = get_json_writer(); jsonw_name(jw, "sample_point"); jsonw_printf(jw, "%.3f", (float) dbt->sample_point / 1000.); print_int(PRINT_JSON, "tq", NULL, dbt->tq); print_int(PRINT_JSON, "prop_seg", NULL, dbt->prop_seg); print_int(PRINT_JSON, "phase_seg1", NULL, dbt->phase_seg1); print_int(PRINT_JSON, "phase_seg2", NULL, dbt->phase_seg2); print_int(PRINT_JSON, "sjw", NULL, dbt->sjw); close_json_object(); } else { fprintf(f, "\n dbitrate %d dsample-point %.3f ", dbt->bitrate, (float) dbt->sample_point / 1000.); fprintf(f, "\n dtq %d dprop-seg %d dphase-seg1 %d " "dphase-seg2 %d dsjw %d", dbt->tq, dbt->prop_seg, dbt->phase_seg1, dbt->phase_seg2, dbt->sjw); } } /* data bittiming const is irrelevant if fixed bitrate is defined */ if (tb[IFLA_CAN_DATA_BITTIMING_CONST] && !tb[IFLA_CAN_DATA_BITRATE_CONST]) { struct can_bittiming_const *dbtc = RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING_CONST]); if (is_json_context()) { open_json_object("data_bittiming_const"); print_string(PRINT_JSON, "name", NULL, dbtc->name); can_print_json_timing_min_max("tseg1", dbtc->tseg1_min, dbtc->tseg1_max); can_print_json_timing_min_max("tseg2", dbtc->tseg2_min, dbtc->tseg2_max); can_print_json_timing_min_max("sjw", 1, dbtc->sjw_max); can_print_json_timing_min_max("brp", dbtc->brp_min, dbtc->brp_max); print_int(PRINT_JSON, "brp_inc", NULL, dbtc->brp_inc); close_json_object(); } else { fprintf(f, "\n %s: dtseg1 %d..%d dtseg2 %d..%d " "dsjw 1..%d dbrp %d..%d dbrp-inc %d", dbtc->name, dbtc->tseg1_min, dbtc->tseg1_max, dbtc->tseg2_min, dbtc->tseg2_max, dbtc->sjw_max, dbtc->brp_min, dbtc->brp_max, dbtc->brp_inc); } } if (tb[IFLA_CAN_DATA_BITRATE_CONST]) { __u32 *dbitrate_const = RTA_DATA(tb[IFLA_CAN_DATA_BITRATE_CONST]); int dbitrate_cnt = RTA_PAYLOAD(tb[IFLA_CAN_DATA_BITRATE_CONST]) / sizeof(*dbitrate_const); int i; __u32 dbitrate = 0; if (tb[IFLA_CAN_DATA_BITTIMING]) { struct can_bittiming *dbt = RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]); dbitrate = dbt->bitrate; } if (is_json_context()) { print_uint(PRINT_JSON, "data_bittiming_bitrate", NULL, dbitrate); open_json_array(PRINT_JSON, "data_bitrate_const"); for (i = 0; i < dbitrate_cnt; ++i) print_uint(PRINT_JSON, NULL, NULL, dbitrate_const[i]); close_json_array(PRINT_JSON, NULL); } else { fprintf(f, "\n dbitrate %u", dbitrate); fprintf(f, "\n ["); for (i = 0; i < dbitrate_cnt - 1; ++i) { /* This will keep lines below 80 signs */ if (!(i % 6) && i) fprintf(f, "\n "); fprintf(f, "%8u, ", dbitrate_const[i]); } if (!(i % 6) && i) fprintf(f, "\n "); fprintf(f, "%8u ]", dbitrate_const[i]); } } if (tb[IFLA_CAN_TERMINATION_CONST] && tb[IFLA_CAN_TERMINATION]) { __u16 *trm = RTA_DATA(tb[IFLA_CAN_TERMINATION]); __u16 *trm_const = RTA_DATA(tb[IFLA_CAN_TERMINATION_CONST]); int trm_cnt = RTA_PAYLOAD(tb[IFLA_CAN_TERMINATION_CONST]) / sizeof(*trm_const); int i; if (is_json_context()) { print_hu(PRINT_JSON, "termination", NULL, *trm); open_json_array(PRINT_JSON, "termination_const"); for (i = 0; i < trm_cnt; ++i) print_hu(PRINT_JSON, NULL, NULL, trm_const[i]); close_json_array(PRINT_JSON, NULL); } else { fprintf(f, "\n termination %hu [ ", *trm); for (i = 0; i < trm_cnt - 1; ++i) fprintf(f, "%hu, ", trm_const[i]); fprintf(f, "%hu ]", trm_const[i]); } } if (tb[IFLA_CAN_CLOCK]) { struct can_clock *clock = RTA_DATA(tb[IFLA_CAN_CLOCK]); print_int(PRINT_ANY, "clock", "\n clock %d", clock->freq); } } static void can_print_xstats(struct link_util *lu, FILE *f, struct rtattr *xstats) { struct can_device_stats *stats; if (xstats && RTA_PAYLOAD(xstats) == sizeof(*stats)) { stats = RTA_DATA(xstats); if (is_json_context()) { print_int(PRINT_JSON, "restarts", NULL, stats->restarts); print_int(PRINT_JSON, "bus_error", NULL, stats->bus_error); print_int(PRINT_JSON, "arbitration_lost", NULL, stats->arbitration_lost); print_int(PRINT_JSON, "error_warning", NULL, stats->error_warning); print_int(PRINT_JSON, "error_passive", NULL, stats->error_passive); print_int(PRINT_JSON, "bus_off", NULL, stats->bus_off); } else { fprintf(f, "\n re-started bus-errors arbit-lost " "error-warn error-pass bus-off"); fprintf(f, "\n %-10d %-10d %-10d %-10d %-10d %-10d", stats->restarts, stats->bus_error, stats->arbitration_lost, stats->error_warning, stats->error_passive, stats->bus_off); } } } static void can_print_help(struct link_util *lu, int argc, char **argv, FILE *f) { print_usage(f); } struct link_util can_link_util = { .id = "can", .maxattr = IFLA_CAN_MAX, .parse_opt = can_parse_opt, .print_opt = can_print_opt, .print_xstats = can_print_xstats, .print_help = can_print_help, };