/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * Copyright 2005 Nokia. All rights reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include "internal/nelem.h" #include "ssl_local.h" #include "internal/thread_once.h" #include "internal/cryptlib.h" #define SSL_ENC_DES_IDX 0 #define SSL_ENC_3DES_IDX 1 #define SSL_ENC_RC4_IDX 2 #define SSL_ENC_RC2_IDX 3 #define SSL_ENC_IDEA_IDX 4 #define SSL_ENC_NULL_IDX 5 #define SSL_ENC_AES128_IDX 6 #define SSL_ENC_AES256_IDX 7 #define SSL_ENC_CAMELLIA128_IDX 8 #define SSL_ENC_CAMELLIA256_IDX 9 #define SSL_ENC_GOST89_IDX 10 #define SSL_ENC_SEED_IDX 11 #define SSL_ENC_AES128GCM_IDX 12 #define SSL_ENC_AES256GCM_IDX 13 #define SSL_ENC_AES128CCM_IDX 14 #define SSL_ENC_AES256CCM_IDX 15 #define SSL_ENC_AES128CCM8_IDX 16 #define SSL_ENC_AES256CCM8_IDX 17 #define SSL_ENC_GOST8912_IDX 18 #define SSL_ENC_CHACHA_IDX 19 #define SSL_ENC_ARIA128GCM_IDX 20 #define SSL_ENC_ARIA256GCM_IDX 21 #define SSL_ENC_NUM_IDX 22 /* NB: make sure indices in these tables match values above */ typedef struct { uint32_t mask; int nid; } ssl_cipher_table; /* Table of NIDs for each cipher */ static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = { {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */ {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */ {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */ {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */ {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */ {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */ {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */ {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */ {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */ {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */ {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */ {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */ {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */ {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */ {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */ {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */ {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */ {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */ {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */ {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */ {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */ {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */ }; static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX]; #define SSL_COMP_NULL_IDX 0 #define SSL_COMP_ZLIB_IDX 1 #define SSL_COMP_NUM_IDX 2 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL; #ifndef OPENSSL_NO_COMP static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT; #endif /* * Constant SSL_MAX_DIGEST equal to size of digests array should be defined * in the ssl_local.h */ #define SSL_MD_NUM_IDX SSL_MAX_DIGEST /* NB: make sure indices in this table matches values above */ static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = { {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */ {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */ {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */ {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */ {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */ {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */ {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */ {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */ {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */ {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */ {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */ {0, NID_sha512} /* SSL_MD_SHA512_IDX 11 */ }; static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; /* *INDENT-OFF* */ static const ssl_cipher_table ssl_cipher_table_kx[] = { {SSL_kRSA, NID_kx_rsa}, {SSL_kECDHE, NID_kx_ecdhe}, {SSL_kDHE, NID_kx_dhe}, {SSL_kECDHEPSK, NID_kx_ecdhe_psk}, {SSL_kDHEPSK, NID_kx_dhe_psk}, {SSL_kRSAPSK, NID_kx_rsa_psk}, {SSL_kPSK, NID_kx_psk}, {SSL_kSRP, NID_kx_srp}, {SSL_kGOST, NID_kx_gost}, {SSL_kANY, NID_kx_any} }; static const ssl_cipher_table ssl_cipher_table_auth[] = { {SSL_aRSA, NID_auth_rsa}, {SSL_aECDSA, NID_auth_ecdsa}, {SSL_aPSK, NID_auth_psk}, {SSL_aDSS, NID_auth_dss}, {SSL_aGOST01, NID_auth_gost01}, {SSL_aGOST12, NID_auth_gost12}, {SSL_aSRP, NID_auth_srp}, {SSL_aNULL, NID_auth_null}, {SSL_aANY, NID_auth_any} }; /* *INDENT-ON* */ /* Utility function for table lookup */ static int ssl_cipher_info_find(const ssl_cipher_table * table, size_t table_cnt, uint32_t mask) { size_t i; for (i = 0; i < table_cnt; i++, table++) { if (table->mask == mask) return (int)i; } return -1; } #define ssl_cipher_info_lookup(table, x) \ ssl_cipher_info_find(table, OSSL_NELEM(table), x) /* * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is * found */ static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = { /* MD5, SHA, GOST94, MAC89 */ EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef, /* SHA256, SHA384, GOST2012_256, MAC89-12 */ EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef, /* GOST2012_512 */ EVP_PKEY_HMAC, /* MD5/SHA1, SHA224, SHA512 */ NID_undef, NID_undef, NID_undef }; static size_t ssl_mac_secret_size[SSL_MD_NUM_IDX]; #define CIPHER_ADD 1 #define CIPHER_KILL 2 #define CIPHER_DEL 3 #define CIPHER_ORD 4 #define CIPHER_SPECIAL 5 /* * Bump the ciphers to the top of the list. * This rule isn't currently supported by the public cipherstring API. */ #define CIPHER_BUMP 6 typedef struct cipher_order_st { const SSL_CIPHER *cipher; int active; int dead; struct cipher_order_st *next, *prev; } CIPHER_ORDER; static const SSL_CIPHER cipher_aliases[] = { /* "ALL" doesn't include eNULL (must be specifically enabled) */ {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL}, /* "COMPLEMENTOFALL" */ {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL}, /* * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in * ALL!) */ {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT}, /* * key exchange aliases (some of those using only a single bit here * combine multiple key exchange algs according to the RFCs, e.g. kDHE * combines DHE_DSS and DHE_RSA) */ {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA}, {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE}, {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE}, {0, SSL_TXT_DH, NULL, 0, SSL_kDHE}, {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE}, {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE}, {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE}, {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK}, {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK}, {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK}, {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK}, {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP}, {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST}, /* server authentication aliases */ {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA}, {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS}, {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS}, {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL}, {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA}, {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA}, {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK}, {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01}, {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12}, {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12}, {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP}, /* aliases combining key exchange and server authentication */ {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL}, {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL}, {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL}, {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL}, {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL}, {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA}, {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL}, {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL}, {0, SSL_TXT_PSK, NULL, 0, SSL_PSK}, {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP}, /* symmetric encryption aliases */ {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES}, {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4}, {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2}, {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA}, {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED}, {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL}, {0, SSL_TXT_GOST, NULL, 0, 0, 0, SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12}, {0, SSL_TXT_AES128, NULL, 0, 0, 0, SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8}, {0, SSL_TXT_AES256, NULL, 0, 0, 0, SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8}, {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES}, {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM}, {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0, SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8}, {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8}, {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128}, {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256}, {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA}, {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20}, {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA}, {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM}, {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM}, {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM}, /* MAC aliases */ {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5}, {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1}, {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1}, {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94}, {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12}, {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256}, {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384}, {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256}, /* protocol version aliases */ {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION}, {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION}, {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION}, {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION}, /* strength classes */ {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW}, {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM}, {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH}, /* FIPS 140-2 approved ciphersuite */ {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS}, /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */ {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0, SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS}, {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0, SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS}, }; /* * Search for public key algorithm with given name and return its pkey_id if * it is available. Otherwise return 0 */ #ifdef OPENSSL_NO_ENGINE static int get_optional_pkey_id(const char *pkey_name) { const EVP_PKEY_ASN1_METHOD *ameth; int pkey_id = 0; ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1); if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, ameth) > 0) return pkey_id; return 0; } #else static int get_optional_pkey_id(const char *pkey_name) { const EVP_PKEY_ASN1_METHOD *ameth; ENGINE *tmpeng = NULL; int pkey_id = 0; ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1); if (ameth) { if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, ameth) <= 0) pkey_id = 0; } ENGINE_finish(tmpeng); return pkey_id; } #endif /* masks of disabled algorithms */ static uint32_t disabled_enc_mask; static uint32_t disabled_mac_mask; static uint32_t disabled_mkey_mask; static uint32_t disabled_auth_mask; int ssl_load_ciphers(void) { size_t i; const ssl_cipher_table *t; disabled_enc_mask = 0; ssl_sort_cipher_list(); for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) { if (t->nid == NID_undef) { ssl_cipher_methods[i] = NULL; } else { const EVP_CIPHER *cipher = EVP_get_cipherbynid(t->nid); ssl_cipher_methods[i] = cipher; if (cipher == NULL) disabled_enc_mask |= t->mask; } } disabled_mac_mask = 0; for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) { const EVP_MD *md = EVP_get_digestbynid(t->nid); ssl_digest_methods[i] = md; if (md == NULL) { disabled_mac_mask |= t->mask; } else { int tmpsize = EVP_MD_size(md); if (!ossl_assert(tmpsize >= 0)) return 0; ssl_mac_secret_size[i] = tmpsize; } } /* Make sure we can access MD5 and SHA1 */ if (!ossl_assert(ssl_digest_methods[SSL_MD_MD5_IDX] != NULL)) return 0; if (!ossl_assert(ssl_digest_methods[SSL_MD_SHA1_IDX] != NULL)) return 0; disabled_mkey_mask = 0; disabled_auth_mask = 0; #ifdef OPENSSL_NO_RSA disabled_mkey_mask |= SSL_kRSA | SSL_kRSAPSK; disabled_auth_mask |= SSL_aRSA; #endif #ifdef OPENSSL_NO_DSA disabled_auth_mask |= SSL_aDSS; #endif #ifdef OPENSSL_NO_DH disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK; #endif #ifdef OPENSSL_NO_EC disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK; disabled_auth_mask |= SSL_aECDSA; #endif #ifdef OPENSSL_NO_PSK disabled_mkey_mask |= SSL_PSK; disabled_auth_mask |= SSL_aPSK; #endif #ifdef OPENSSL_NO_SRP disabled_mkey_mask |= SSL_kSRP; #endif /* * Check for presence of GOST 34.10 algorithms, and if they are not * present, disable appropriate auth and key exchange */ ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id("gost-mac"); if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32; else disabled_mac_mask |= SSL_GOST89MAC; ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] = get_optional_pkey_id("gost-mac-12"); if (ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX]) ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32; else disabled_mac_mask |= SSL_GOST89MAC12; if (!get_optional_pkey_id("gost2001")) disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12; if (!get_optional_pkey_id("gost2012_256")) disabled_auth_mask |= SSL_aGOST12; if (!get_optional_pkey_id("gost2012_512")) disabled_auth_mask |= SSL_aGOST12; /* * Disable GOST key exchange if no GOST signature algs are available * */ if ((disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) == (SSL_aGOST01 | SSL_aGOST12)) disabled_mkey_mask |= SSL_kGOST; return 1; } #ifndef OPENSSL_NO_COMP static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b) { return ((*a)->id - (*b)->id); } DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions) { SSL_COMP *comp = NULL; COMP_METHOD *method = COMP_zlib(); CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp); if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) { comp = OPENSSL_malloc(sizeof(*comp)); if (comp != NULL) { comp->method = method; comp->id = SSL_COMP_ZLIB_IDX; comp->name = COMP_get_name(method); sk_SSL_COMP_push(ssl_comp_methods, comp); sk_SSL_COMP_sort(ssl_comp_methods); } } CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); return 1; } static int load_builtin_compressions(void) { return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions); } #endif int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc, const EVP_MD **md, int *mac_pkey_type, size_t *mac_secret_size, SSL_COMP **comp, int use_etm) { int i; const SSL_CIPHER *c; c = s->cipher; if (c == NULL) return 0; if (comp != NULL) { SSL_COMP ctmp; #ifndef OPENSSL_NO_COMP if (!load_builtin_compressions()) { /* * Currently don't care, since a failure only means that * ssl_comp_methods is NULL, which is perfectly OK */ } #endif *comp = NULL; ctmp.id = s->compress_meth; if (ssl_comp_methods != NULL) { i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp); *comp = sk_SSL_COMP_value(ssl_comp_methods, i); } /* If were only interested in comp then return success */ if ((enc == NULL) && (md == NULL)) return 1; } if ((enc == NULL) || (md == NULL)) return 0; i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc); if (i == -1) { *enc = NULL; } else { if (i == SSL_ENC_NULL_IDX) *enc = EVP_enc_null(); else *enc = ssl_cipher_methods[i]; } i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac); if (i == -1) { *md = NULL; if (mac_pkey_type != NULL) *mac_pkey_type = NID_undef; if (mac_secret_size != NULL) *mac_secret_size = 0; if (c->algorithm_mac == SSL_AEAD) mac_pkey_type = NULL; } else { *md = ssl_digest_methods[i]; if (mac_pkey_type != NULL) *mac_pkey_type = ssl_mac_pkey_id[i]; if (mac_secret_size != NULL) *mac_secret_size = ssl_mac_secret_size[i]; } if ((*enc != NULL) && (*md != NULL || (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER)) && (!mac_pkey_type || *mac_pkey_type != NID_undef)) { const EVP_CIPHER *evp; if (use_etm) return 1; if (s->ssl_version >> 8 != TLS1_VERSION_MAJOR || s->ssl_version < TLS1_VERSION) return 1; if (c->algorithm_enc == SSL_RC4 && c->algorithm_mac == SSL_MD5 && (evp = EVP_get_cipherbyname("RC4-HMAC-MD5"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES128 && c->algorithm_mac == SSL_SHA1 && (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES256 && c->algorithm_mac == SSL_SHA1 && (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES128 && c->algorithm_mac == SSL_SHA256 && (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA256"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES256 && c->algorithm_mac == SSL_SHA256 && (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA256"))) *enc = evp, *md = NULL; return 1; } else { return 0; } } const EVP_MD *ssl_md(int idx) { idx &= SSL_HANDSHAKE_MAC_MASK; if (idx < 0 || idx >= SSL_MD_NUM_IDX) return NULL; return ssl_digest_methods[idx]; } const EVP_MD *ssl_handshake_md(SSL *s) { return ssl_md(ssl_get_algorithm2(s)); } const EVP_MD *ssl_prf_md(SSL *s) { return ssl_md(ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT); } #define ITEM_SEP(a) \ (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *tail) return; if (curr == *head) *head = curr->next; if (curr->prev != NULL) curr->prev->next = curr->next; if (curr->next != NULL) curr->next->prev = curr->prev; (*tail)->next = curr; curr->prev = *tail; curr->next = NULL; *tail = curr; } static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *head) return; if (curr == *tail) *tail = curr->prev; if (curr->next != NULL) curr->next->prev = curr->prev; if (curr->prev != NULL) curr->prev->next = curr->next; (*head)->prev = curr; curr->next = *head; curr->prev = NULL; *head = curr; } static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method, int num_of_ciphers, uint32_t disabled_mkey, uint32_t disabled_auth, uint32_t disabled_enc, uint32_t disabled_mac, CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { int i, co_list_num; const SSL_CIPHER *c; /* * We have num_of_ciphers descriptions compiled in, depending on the * method selected (SSLv3, TLSv1 etc). * These will later be sorted in a linked list with at most num * entries. */ /* Get the initial list of ciphers */ co_list_num = 0; /* actual count of ciphers */ for (i = 0; i < num_of_ciphers; i++) { c = ssl_method->get_cipher(i); /* drop those that use any of that is not available */ if (c == NULL || !c->valid) continue; if ((c->algorithm_mkey & disabled_mkey) || (c->algorithm_auth & disabled_auth) || (c->algorithm_enc & disabled_enc) || (c->algorithm_mac & disabled_mac)) continue; if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) && c->min_tls == 0) continue; if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) && c->min_dtls == 0) continue; co_list[co_list_num].cipher = c; co_list[co_list_num].next = NULL; co_list[co_list_num].prev = NULL; co_list[co_list_num].active = 0; co_list_num++; } /* * Prepare linked list from list entries */ if (co_list_num > 0) { co_list[0].prev = NULL; if (co_list_num > 1) { co_list[0].next = &co_list[1]; for (i = 1; i < co_list_num - 1; i++) { co_list[i].prev = &co_list[i - 1]; co_list[i].next = &co_list[i + 1]; } co_list[co_list_num - 1].prev = &co_list[co_list_num - 2]; } co_list[co_list_num - 1].next = NULL; *head_p = &co_list[0]; *tail_p = &co_list[co_list_num - 1]; } } static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list, int num_of_group_aliases, uint32_t disabled_mkey, uint32_t disabled_auth, uint32_t disabled_enc, uint32_t disabled_mac, CIPHER_ORDER *head) { CIPHER_ORDER *ciph_curr; const SSL_CIPHER **ca_curr; int i; uint32_t mask_mkey = ~disabled_mkey; uint32_t mask_auth = ~disabled_auth; uint32_t mask_enc = ~disabled_enc; uint32_t mask_mac = ~disabled_mac; /* * First, add the real ciphers as already collected */ ciph_curr = head; ca_curr = ca_list; while (ciph_curr != NULL) { *ca_curr = ciph_curr->cipher; ca_curr++; ciph_curr = ciph_curr->next; } /* * Now we add the available ones from the cipher_aliases[] table. * They represent either one or more algorithms, some of which * in any affected category must be supported (set in enabled_mask), * or represent a cipher strength value (will be added in any case because algorithms=0). */ for (i = 0; i < num_of_group_aliases; i++) { uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey; uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth; uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc; uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac; if (algorithm_mkey) if ((algorithm_mkey & mask_mkey) == 0) continue; if (algorithm_auth) if ((algorithm_auth & mask_auth) == 0) continue; if (algorithm_enc) if ((algorithm_enc & mask_enc) == 0) continue; if (algorithm_mac) if ((algorithm_mac & mask_mac) == 0) continue; *ca_curr = (SSL_CIPHER *)(cipher_aliases + i); ca_curr++; } *ca_curr = NULL; /* end of list */ } static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey, uint32_t alg_auth, uint32_t alg_enc, uint32_t alg_mac, int min_tls, uint32_t algo_strength, int rule, int32_t strength_bits, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { CIPHER_ORDER *head, *tail, *curr, *next, *last; const SSL_CIPHER *cp; int reverse = 0; #ifdef CIPHER_DEBUG fprintf(stderr, "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n", rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls, algo_strength, strength_bits); #endif if (rule == CIPHER_DEL || rule == CIPHER_BUMP) reverse = 1; /* needed to maintain sorting between currently * deleted ciphers */ head = *head_p; tail = *tail_p; if (reverse) { next = tail; last = head; } else { next = head; last = tail; } curr = NULL; for (;;) { if (curr == last) break; curr = next; if (curr == NULL) break; next = reverse ? curr->prev : curr->next; cp = curr->cipher; /* * Selection criteria is either the value of strength_bits * or the algorithms used. */ if (strength_bits >= 0) { if (strength_bits != cp->strength_bits) continue; } else { #ifdef CIPHER_DEBUG fprintf(stderr, "\nName: %s:\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n", cp->name, cp->algorithm_mkey, cp->algorithm_auth, cp->algorithm_enc, cp->algorithm_mac, cp->min_tls, cp->algo_strength); #endif if (cipher_id != 0 && (cipher_id != cp->id)) continue; if (alg_mkey && !(alg_mkey & cp->algorithm_mkey)) continue; if (alg_auth && !(alg_auth & cp->algorithm_auth)) continue; if (alg_enc && !(alg_enc & cp->algorithm_enc)) continue; if (alg_mac && !(alg_mac & cp->algorithm_mac)) continue; if (min_tls && (min_tls != cp->min_tls)) continue; if ((algo_strength & SSL_STRONG_MASK) && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength)) continue; if ((algo_strength & SSL_DEFAULT_MASK) && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength)) continue; } #ifdef CIPHER_DEBUG fprintf(stderr, "Action = %d\n", rule); #endif /* add the cipher if it has not been added yet. */ if (rule == CIPHER_ADD) { /* reverse == 0 */ if (!curr->active) { ll_append_tail(&head, curr, &tail); curr->active = 1; } } /* Move the added cipher to this location */ else if (rule == CIPHER_ORD) { /* reverse == 0 */ if (curr->active) { ll_append_tail(&head, curr, &tail); } } else if (rule == CIPHER_DEL) { /* reverse == 1 */ if (curr->active) { /* * most recently deleted ciphersuites get best positions for * any future CIPHER_ADD (note that the CIPHER_DEL loop works * in reverse to maintain the order) */ ll_append_head(&head, curr, &tail); curr->active = 0; } } else if (rule == CIPHER_BUMP) { if (curr->active) ll_append_head(&head, curr, &tail); } else if (rule == CIPHER_KILL) { /* reverse == 0 */ if (head == curr) head = curr->next; else curr->prev->next = curr->next; if (tail == curr) tail = curr->prev; curr->active = 0; if (curr->next != NULL) curr->next->prev = curr->prev; if (curr->prev != NULL) curr->prev->next = curr->next; curr->next = NULL; curr->prev = NULL; } } *head_p = head; *tail_p = tail; } static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { int32_t max_strength_bits; int i, *number_uses; CIPHER_ORDER *curr; /* * This routine sorts the ciphers with descending strength. The sorting * must keep the pre-sorted sequence, so we apply the normal sorting * routine as '+' movement to the end of the list. */ max_strength_bits = 0; curr = *head_p; while (curr != NULL) { if (curr->active && (curr->cipher->strength_bits > max_strength_bits)) max_strength_bits = curr->cipher->strength_bits; curr = curr->next; } number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1)); if (number_uses == NULL) { SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT, ERR_R_MALLOC_FAILURE); return 0; } /* * Now find the strength_bits values actually used */ curr = *head_p; while (curr != NULL) { if (curr->active) number_uses[curr->cipher->strength_bits]++; curr = curr->next; } /* * Go through the list of used strength_bits values in descending * order. */ for (i = max_strength_bits; i >= 0; i--) if (number_uses[i] > 0) ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p, tail_p); OPENSSL_free(number_uses); return 1; } static int ssl_cipher_process_rulestr(const char *rule_str, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p, const SSL_CIPHER **ca_list, CERT *c) { uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength; int min_tls; const char *l, *buf; int j, multi, found, rule, retval, ok, buflen; uint32_t cipher_id = 0; char ch; retval = 1; l = rule_str; for ( ; ; ) { ch = *l; if (ch == '\0') break; /* done */ if (ch == '-') { rule = CIPHER_DEL; l++; } else if (ch == '+') { rule = CIPHER_ORD; l++; } else if (ch == '!') { rule = CIPHER_KILL; l++; } else if (ch == '@') { rule = CIPHER_SPECIAL; l++; } else { rule = CIPHER_ADD; } if (ITEM_SEP(ch)) { l++; continue; } alg_mkey = 0; alg_auth = 0; alg_enc = 0; alg_mac = 0; min_tls = 0; algo_strength = 0; for (;;) { ch = *l; buf = l; buflen = 0; #ifndef CHARSET_EBCDIC while (((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) || ((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '.') || (ch == '=')) #else while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '.') || (ch == '=')) #endif { ch = *(++l); buflen++; } if (buflen == 0) { /* * We hit something we cannot deal with, * it is no command or separator nor * alphanumeric, so we call this an error. */ SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND); retval = found = 0; l++; break; } if (rule == CIPHER_SPECIAL) { found = 0; /* unused -- avoid compiler warning */ break; /* special treatment */ } /* check for multi-part specification */ if (ch == '+') { multi = 1; l++; } else { multi = 0; } /* * Now search for the cipher alias in the ca_list. Be careful * with the strncmp, because the "buflen" limitation * will make the rule "ADH:SOME" and the cipher * "ADH-MY-CIPHER" look like a match for buflen=3. * So additionally check whether the cipher name found * has the correct length. We can save a strlen() call: * just checking for the '\0' at the right place is * sufficient, we have to strncmp() anyway. (We cannot * use strcmp(), because buf is not '\0' terminated.) */ j = found = 0; cipher_id = 0; while (ca_list[j]) { if (strncmp(buf, ca_list[j]->name, buflen) == 0 && (ca_list[j]->name[buflen] == '\0')) { found = 1; break; } else j++; } if (!found) break; /* ignore this entry */ if (ca_list[j]->algorithm_mkey) { if (alg_mkey) { alg_mkey &= ca_list[j]->algorithm_mkey; if (!alg_mkey) { found = 0; break; } } else { alg_mkey = ca_list[j]->algorithm_mkey; } } if (ca_list[j]->algorithm_auth) { if (alg_auth) { alg_auth &= ca_list[j]->algorithm_auth; if (!alg_auth) { found = 0; break; } } else { alg_auth = ca_list[j]->algorithm_auth; } } if (ca_list[j]->algorithm_enc) { if (alg_enc) { alg_enc &= ca_list[j]->algorithm_enc; if (!alg_enc) { found = 0; break; } } else { alg_enc = ca_list[j]->algorithm_enc; } } if (ca_list[j]->algorithm_mac) { if (alg_mac) { alg_mac &= ca_list[j]->algorithm_mac; if (!alg_mac) { found = 0; break; } } else { alg_mac = ca_list[j]->algorithm_mac; } } if (ca_list[j]->algo_strength & SSL_STRONG_MASK) { if (algo_strength & SSL_STRONG_MASK) { algo_strength &= (ca_list[j]->algo_strength & SSL_STRONG_MASK) | ~SSL_STRONG_MASK; if (!(algo_strength & SSL_STRONG_MASK)) { found = 0; break; } } else { algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK; } } if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) { if (algo_strength & SSL_DEFAULT_MASK) { algo_strength &= (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) | ~SSL_DEFAULT_MASK; if (!(algo_strength & SSL_DEFAULT_MASK)) { found = 0; break; } } else { algo_strength |= ca_list[j]->algo_strength & SSL_DEFAULT_MASK; } } if (ca_list[j]->valid) { /* * explicit ciphersuite found; its protocol version does not * become part of the search pattern! */ cipher_id = ca_list[j]->id; } else { /* * not an explicit ciphersuite; only in this case, the * protocol version is considered part of the search pattern */ if (ca_list[j]->min_tls) { if (min_tls != 0 && min_tls != ca_list[j]->min_tls) { found = 0; break; } else { min_tls = ca_list[j]->min_tls; } } } if (!multi) break; } /* * Ok, we have the rule, now apply it */ if (rule == CIPHER_SPECIAL) { /* special command */ ok = 0; if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) { ok = ssl_cipher_strength_sort(head_p, tail_p); } else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) { int level = buf[9] - '0'; if (level < 0 || level > 5) { SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND); } else { c->sec_level = level; ok = 1; } } else { SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND); } if (ok == 0) retval = 0; /* * We do not support any "multi" options * together with "@", so throw away the * rest of the command, if any left, until * end or ':' is found. */ while ((*l != '\0') && !ITEM_SEP(*l)) l++; } else if (found) { ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls, algo_strength, rule, -1, head_p, tail_p); } else { while ((*l != '\0') && !ITEM_SEP(*l)) l++; } if (*l == '\0') break; /* done */ } return retval; } #ifndef OPENSSL_NO_EC static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c, const char **prule_str) { unsigned int suiteb_flags = 0, suiteb_comb2 = 0; if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) { suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY; } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) { suiteb_comb2 = 1; suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS; } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) { suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS; } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) { suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS; } if (suiteb_flags) { c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS; c->cert_flags |= suiteb_flags; } else { suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS; } if (!suiteb_flags) return 1; /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */ if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) { SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE); return 0; } # ifndef OPENSSL_NO_EC switch (suiteb_flags) { case SSL_CERT_FLAG_SUITEB_128_LOS: if (suiteb_comb2) *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384"; else *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384"; break; case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256"; break; case SSL_CERT_FLAG_SUITEB_192_LOS: *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384"; break; } return 1; # else SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_ECDH_REQUIRED_FOR_SUITEB_MODE); return 0; # endif } #endif static int ciphersuite_cb(const char *elem, int len, void *arg) { STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg; const SSL_CIPHER *cipher; /* Arbitrary sized temp buffer for the cipher name. Should be big enough */ char name[80]; if (len > (int)(sizeof(name) - 1)) { SSLerr(SSL_F_CIPHERSUITE_CB, SSL_R_NO_CIPHER_MATCH); return 0; } memcpy(name, elem, len); name[len] = '\0'; cipher = ssl3_get_cipher_by_std_name(name); if (cipher == NULL) { SSLerr(SSL_F_CIPHERSUITE_CB, SSL_R_NO_CIPHER_MATCH); return 0; } if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) { SSLerr(SSL_F_CIPHERSUITE_CB, ERR_R_INTERNAL_ERROR); return 0; } return 1; } static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str) { STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null(); if (newciphers == NULL) return 0; /* Parse the list. We explicitly allow an empty list */ if (*str != '\0' && !CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers)) { sk_SSL_CIPHER_free(newciphers); return 0; } sk_SSL_CIPHER_free(*currciphers); *currciphers = newciphers; return 1; } static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id, STACK_OF(SSL_CIPHER) *cipherstack) { STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack); if (tmp_cipher_list == NULL) { return 0; } sk_SSL_CIPHER_free(*cipher_list_by_id); *cipher_list_by_id = tmp_cipher_list; (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp); sk_SSL_CIPHER_sort(*cipher_list_by_id); return 1; } static int update_cipher_list(STACK_OF(SSL_CIPHER) **cipher_list, STACK_OF(SSL_CIPHER) **cipher_list_by_id, STACK_OF(SSL_CIPHER) *tls13_ciphersuites) { int i; STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list); if (tmp_cipher_list == NULL) return 0; /* * Delete any existing TLSv1.3 ciphersuites. These are always first in the * list. */ while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0 && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls == TLS1_3_VERSION) sk_SSL_CIPHER_delete(tmp_cipher_list, 0); /* Insert the new TLSv1.3 ciphersuites */ for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) sk_SSL_CIPHER_insert(tmp_cipher_list, sk_SSL_CIPHER_value(tls13_ciphersuites, i), i); if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) return 0; sk_SSL_CIPHER_free(*cipher_list); *cipher_list = tmp_cipher_list; return 1; } int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str) { int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str); if (ret && ctx->cipher_list != NULL) return update_cipher_list(&ctx->cipher_list, &ctx->cipher_list_by_id, ctx->tls13_ciphersuites); return ret; } int SSL_set_ciphersuites(SSL *s, const char *str) { STACK_OF(SSL_CIPHER) *cipher_list; int ret = set_ciphersuites(&(s->tls13_ciphersuites), str); if (s->cipher_list == NULL) { if ((cipher_list = SSL_get_ciphers(s)) != NULL) s->cipher_list = sk_SSL_CIPHER_dup(cipher_list); } if (ret && s->cipher_list != NULL) return update_cipher_list(&s->cipher_list, &s->cipher_list_by_id, s->tls13_ciphersuites); return ret; } STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, STACK_OF(SSL_CIPHER) *tls13_ciphersuites, STACK_OF(SSL_CIPHER) **cipher_list, STACK_OF(SSL_CIPHER) **cipher_list_by_id, const char *rule_str, CERT *c) { int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i; uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac; STACK_OF(SSL_CIPHER) *cipherstack; const char *rule_p; CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; const SSL_CIPHER **ca_list = NULL; /* * Return with error if nothing to do. */ if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL) return NULL; #ifndef OPENSSL_NO_EC if (!check_suiteb_cipher_list(ssl_method, c, &rule_str)) return NULL; #endif /* * To reduce the work to do we only want to process the compiled * in algorithms, so we first get the mask of disabled ciphers. */ disabled_mkey = disabled_mkey_mask; disabled_auth = disabled_auth_mask; disabled_enc = disabled_enc_mask; disabled_mac = disabled_mac_mask; /* * Now we have to collect the available ciphers from the compiled * in ciphers. We cannot get more than the number compiled in, so * it is used for allocation. */ num_of_ciphers = ssl_method->num_ciphers(); co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers); if (co_list == NULL) { SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE); return NULL; /* Failure */ } ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, disabled_mkey, disabled_auth, disabled_enc, disabled_mac, co_list, &head, &tail); /* Now arrange all ciphers by preference. */ /* * Everything else being equal, prefer ephemeral ECDH over other key * exchange mechanisms. * For consistency, prefer ECDSA over RSA (though this only matters if the * server has both certificates, and is using the DEFAULT, or a client * preference). */ ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail); /* * If OPENSSL_PREFER_CHACHA_OVER_GCM is defined, ChaCha20_Poly1305 * will be placed before AES-256. Otherwise, the default behavior of * preferring GCM over CHACHA is used. * This is useful for systems that do not have AES-specific CPU * instructions, where ChaCha20-Poly1305 is 3 times faster than AES. * Note that this does not have the same effect as the SSL_OP_PRIORITIZE_CHACHA * option, which prioritizes ChaCha20-Poly1305 only when the client has it on top * of its ciphersuite preference. */ #ifdef OPENSSL_PREFER_CHACHA_OVER_GCM ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); #else /* Within each strength group, we prefer GCM over CHACHA... */ ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); #endif /* * ...and generally, our preferred cipher is AES. * Note that AEADs will be bumped to take preference after sorting by * strength. */ ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); /* Temporarily enable everything else for sorting */ ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); /* Low priority for MD5 */ ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head, &tail); /* * Move anonymous ciphers to the end. Usually, these will remain * disabled. (For applications that allow them, they aren't too bad, but * we prefer authenticated ciphers.) */ ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); /* RC4 is sort-of broken -- move to the end */ ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); /* * Now sort by symmetric encryption strength. The above ordering remains * in force within each class */ if (!ssl_cipher_strength_sort(&head, &tail)) { OPENSSL_free(co_list); return NULL; } /* * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs. * TODO(openssl-team): is there an easier way to accomplish all this? */ ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1, &head, &tail); /* * Irrespective of strength, enforce the following order: * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest. * Within each group, ciphers remain sorted by strength and previous * preference, i.e., * 1) ECDHE > DHE * 2) GCM > CHACHA, reversed if OPENSSL_PREFER_CHACHA_OVER_GCM is defined * 3) AES > rest * 4) TLS 1.2 > legacy * * Because we now bump ciphers to the top of the list, we proceed in * reverse order of preference. */ ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1, &head, &tail); ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_BUMP, -1, &head, &tail); ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1, &head, &tail); /* Now disable everything (maintaining the ordering!) */ ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail); /* * We also need cipher aliases for selecting based on the rule_str. * There might be two types of entries in the rule_str: 1) names * of ciphers themselves 2) aliases for groups of ciphers. * For 1) we need the available ciphers and for 2) the cipher * groups of cipher_aliases added together in one list (otherwise * we would be happy with just the cipher_aliases table). */ num_of_group_aliases = OSSL_NELEM(cipher_aliases); num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1; ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max); if (ca_list == NULL) { OPENSSL_free(co_list); SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE); return NULL; /* Failure */ } ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, disabled_mkey, disabled_auth, disabled_enc, disabled_mac, head); /* * If the rule_string begins with DEFAULT, apply the default rule * before using the (possibly available) additional rules. */ ok = 1; rule_p = rule_str; if (strncmp(rule_str, "DEFAULT", 7) == 0) { ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, &head, &tail, ca_list, c); rule_p += 7; if (*rule_p == ':') rule_p++; } if (ok && (strlen(rule_p) > 0)) ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c); OPENSSL_free(ca_list); /* Not needed anymore */ if (!ok) { /* Rule processing failure */ OPENSSL_free(co_list); return NULL; } /* * Allocate new "cipherstack" for the result, return with error * if we cannot get one. */ if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) { OPENSSL_free(co_list); return NULL; } /* Add TLSv1.3 ciphers first - we always prefer those if possible */ for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) { if (!sk_SSL_CIPHER_push(cipherstack, sk_SSL_CIPHER_value(tls13_ciphersuites, i))) { sk_SSL_CIPHER_free(cipherstack); return NULL; } } /* * The cipher selection for the list is done. The ciphers are added * to the resulting precedence to the STACK_OF(SSL_CIPHER). */ for (curr = head; curr != NULL; curr = curr->next) { if (curr->active) { if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) { OPENSSL_free(co_list); sk_SSL_CIPHER_free(cipherstack); return NULL; } #ifdef CIPHER_DEBUG fprintf(stderr, "<%s>\n", curr->cipher->name); #endif } } OPENSSL_free(co_list); /* Not needed any longer */ if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) { sk_SSL_CIPHER_free(cipherstack); return NULL; } sk_SSL_CIPHER_free(*cipher_list); *cipher_list = cipherstack; return cipherstack; } char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) { const char *ver; const char *kx, *au, *enc, *mac; uint32_t alg_mkey, alg_auth, alg_enc, alg_mac; static const char *format = "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n"; if (buf == NULL) { len = 128; if ((buf = OPENSSL_malloc(len)) == NULL) { SSLerr(SSL_F_SSL_CIPHER_DESCRIPTION, ERR_R_MALLOC_FAILURE); return NULL; } } else if (len < 128) { return NULL; } alg_mkey = cipher->algorithm_mkey; alg_auth = cipher->algorithm_auth; alg_enc = cipher->algorithm_enc; alg_mac = cipher->algorithm_mac; ver = ssl_protocol_to_string(cipher->min_tls); switch (alg_mkey) { case SSL_kRSA: kx = "RSA"; break; case SSL_kDHE: kx = "DH"; break; case SSL_kECDHE: kx = "ECDH"; break; case SSL_kPSK: kx = "PSK"; break; case SSL_kRSAPSK: kx = "RSAPSK"; break; case SSL_kECDHEPSK: kx = "ECDHEPSK"; break; case SSL_kDHEPSK: kx = "DHEPSK"; break; case SSL_kSRP: kx = "SRP"; break; case SSL_kGOST: kx = "GOST"; break; case SSL_kANY: kx = "any"; break; default: kx = "unknown"; } switch (alg_auth) { case SSL_aRSA: au = "RSA"; break; case SSL_aDSS: au = "DSS"; break; case SSL_aNULL: au = "None"; break; case SSL_aECDSA: au = "ECDSA"; break; case SSL_aPSK: au = "PSK"; break; case SSL_aSRP: au = "SRP"; break; case SSL_aGOST01: au = "GOST01"; break; /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */ case (SSL_aGOST12 | SSL_aGOST01): au = "GOST12"; break; case SSL_aANY: au = "any"; break; default: au = "unknown"; break; } switch (alg_enc) { case SSL_DES: enc = "DES(56)"; break; case SSL_3DES: enc = "3DES(168)"; break; case SSL_RC4: enc = "RC4(128)"; break; case SSL_RC2: enc = "RC2(128)"; break; case SSL_IDEA: enc = "IDEA(128)"; break; case SSL_eNULL: enc = "None"; break; case SSL_AES128: enc = "AES(128)"; break; case SSL_AES256: enc = "AES(256)"; break; case SSL_AES128GCM: enc = "AESGCM(128)"; break; case SSL_AES256GCM: enc = "AESGCM(256)"; break; case SSL_AES128CCM: enc = "AESCCM(128)"; break; case SSL_AES256CCM: enc = "AESCCM(256)"; break; case SSL_AES128CCM8: enc = "AESCCM8(128)"; break; case SSL_AES256CCM8: enc = "AESCCM8(256)"; break; case SSL_CAMELLIA128: enc = "Camellia(128)"; break; case SSL_CAMELLIA256: enc = "Camellia(256)"; break; case SSL_ARIA128GCM: enc = "ARIAGCM(128)"; break; case SSL_ARIA256GCM: enc = "ARIAGCM(256)"; break; case SSL_SEED: enc = "SEED(128)"; break; case SSL_eGOST2814789CNT: case SSL_eGOST2814789CNT12: enc = "GOST89(256)"; break; case SSL_CHACHA20POLY1305: enc = "CHACHA20/POLY1305(256)"; break; default: enc = "unknown"; break; } switch (alg_mac) { case SSL_MD5: mac = "MD5"; break; case SSL_SHA1: mac = "SHA1"; break; case SSL_SHA256: mac = "SHA256"; break; case SSL_SHA384: mac = "SHA384"; break; case SSL_AEAD: mac = "AEAD"; break; case SSL_GOST89MAC: case SSL_GOST89MAC12: mac = "GOST89"; break; case SSL_GOST94: mac = "GOST94"; break; case SSL_GOST12_256: case SSL_GOST12_512: mac = "GOST2012"; break; default: mac = "unknown"; break; } BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac); return buf; } const char *SSL_CIPHER_get_version(const SSL_CIPHER *c) { if (c == NULL) return "(NONE)"; /* * Backwards-compatibility crutch. In almost all contexts we report TLS * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0". */ if (c->min_tls == TLS1_VERSION) return "TLSv1.0"; return ssl_protocol_to_string(c->min_tls); } /* return the actual cipher being used */ const char *SSL_CIPHER_get_name(const SSL_CIPHER *c) { if (c != NULL) return c->name; return "(NONE)"; } /* return the actual cipher being used in RFC standard name */ const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c) { if (c != NULL) return c->stdname; return "(NONE)"; } /* return the OpenSSL name based on given RFC standard name */ const char *OPENSSL_cipher_name(const char *stdname) { const SSL_CIPHER *c; if (stdname == NULL) return "(NONE)"; c = ssl3_get_cipher_by_std_name(stdname); return SSL_CIPHER_get_name(c); } /* number of bits for symmetric cipher */ int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits) { int ret = 0; if (c != NULL) { if (alg_bits != NULL) *alg_bits = (int)c->alg_bits; ret = (int)c->strength_bits; } return ret; } uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c) { return c->id; } uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c) { return c->id & 0xFFFF; } SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n) { SSL_COMP *ctmp; int i, nn; if ((n == 0) || (sk == NULL)) return NULL; nn = sk_SSL_COMP_num(sk); for (i = 0; i < nn; i++) { ctmp = sk_SSL_COMP_value(sk, i); if (ctmp->id == n) return ctmp; } return NULL; } #ifdef OPENSSL_NO_COMP STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { return NULL; } STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP) *meths) { return meths; } int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; } #else STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { load_builtin_compressions(); return ssl_comp_methods; } STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP) *meths) { STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods; ssl_comp_methods = meths; return old_meths; } static void cmeth_free(SSL_COMP *cm) { OPENSSL_free(cm); } void ssl_comp_free_compression_methods_int(void) { STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods; ssl_comp_methods = NULL; sk_SSL_COMP_pop_free(old_meths, cmeth_free); } int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { SSL_COMP *comp; if (cm == NULL || COMP_get_type(cm) == NID_undef) return 1; /*- * According to draft-ietf-tls-compression-04.txt, the * compression number ranges should be the following: * * 0 to 63: methods defined by the IETF * 64 to 192: external party methods assigned by IANA * 193 to 255: reserved for private use */ if (id < 193 || id > 255) { SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE); return 1; } CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); comp = OPENSSL_malloc(sizeof(*comp)); if (comp == NULL) { CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE); return 1; } comp->id = id; comp->method = cm; load_builtin_compressions(); if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) { OPENSSL_free(comp); CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, SSL_R_DUPLICATE_COMPRESSION_ID); return 1; } if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) { OPENSSL_free(comp); CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE); return 1; } CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); return 0; } #endif const char *SSL_COMP_get_name(const COMP_METHOD *comp) { #ifndef OPENSSL_NO_COMP return comp ? COMP_get_name(comp) : NULL; #else return NULL; #endif } const char *SSL_COMP_get0_name(const SSL_COMP *comp) { #ifndef OPENSSL_NO_COMP return comp->name; #else return NULL; #endif } int SSL_COMP_get_id(const SSL_COMP *comp) { #ifndef OPENSSL_NO_COMP return comp->id; #else return -1; #endif } const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr, int all) { const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr); if (c == NULL || (!all && c->valid == 0)) return NULL; return c; } const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr) { return ssl->method->get_cipher_by_char(ptr); } int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c) { int i; if (c == NULL) return NID_undef; i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc); if (i == -1) return NID_undef; return ssl_cipher_table_cipher[i].nid; } int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c) { int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac); if (i == -1) return NID_undef; return ssl_cipher_table_mac[i].nid; } int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c) { int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey); if (i == -1) return NID_undef; return ssl_cipher_table_kx[i].nid; } int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c) { int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth); if (i == -1) return NID_undef; return ssl_cipher_table_auth[i].nid; } const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c) { int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK; if (idx < 0 || idx >= SSL_MD_NUM_IDX) return NULL; return ssl_digest_methods[idx]; } int SSL_CIPHER_is_aead(const SSL_CIPHER *c) { return (c->algorithm_mac & SSL_AEAD) ? 1 : 0; } int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead, size_t *int_overhead, size_t *blocksize, size_t *ext_overhead) { size_t mac = 0, in = 0, blk = 0, out = 0; /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead * because there are no handy #defines for those. */ if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) { out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) { out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16; } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) { out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8; } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) { out = 16; } else if (c->algorithm_mac & SSL_AEAD) { /* We're supposed to have handled all the AEAD modes above */ return 0; } else { /* Non-AEAD modes. Calculate MAC/cipher overhead separately */ int digest_nid = SSL_CIPHER_get_digest_nid(c); const EVP_MD *e_md = EVP_get_digestbynid(digest_nid); if (e_md == NULL) return 0; mac = EVP_MD_size(e_md); if (c->algorithm_enc != SSL_eNULL) { int cipher_nid = SSL_CIPHER_get_cipher_nid(c); const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid); /* If it wasn't AEAD or SSL_eNULL, we expect it to be a known CBC cipher. */ if (e_ciph == NULL || EVP_CIPHER_mode(e_ciph) != EVP_CIPH_CBC_MODE) return 0; in = 1; /* padding length byte */ out = EVP_CIPHER_iv_length(e_ciph); blk = EVP_CIPHER_block_size(e_ciph); } } *mac_overhead = mac; *int_overhead = in; *blocksize = blk; *ext_overhead = out; return 1; } int ssl_cert_is_disabled(size_t idx) { const SSL_CERT_LOOKUP *cl = ssl_cert_lookup_by_idx(idx); if (cl == NULL || (cl->amask & disabled_auth_mask) != 0) return 1; return 0; }