/* Edwards curve operations * Daniel Beer , 9 Jan 2014 * * This file is in the public domain. */ #include "ed25519.h" /* Base point is (numbers wrapped): * * x = 151122213495354007725011514095885315114 * 54012693041857206046113283949847762202 * y = 463168356949264781694283940034751631413 * 07993866256225615783033603165251855960 * * y is derived by transforming the original Montgomery base (u=9). x * is the corresponding positive coordinate for the new curve equation. * t is x*y. */ const struct ed25519_pt ed25519_base = { .x = { 0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9, 0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69, 0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0, 0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21 }, .y = { 0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66 }, .t = { 0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d, 0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20, 0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66, 0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67 }, .z = {1, 0} }; static const struct ed25519_pt ed25519_neutral = { .x = {0}, .y = {1, 0}, .t = {0}, .z = {1, 0} }; /* Conversion to and from projective coordinates */ void ed25519_project(struct ed25519_pt *p, const uint8_t *x, const uint8_t *y) { f25519_copy(p->x, x); f25519_copy(p->y, y); f25519_load(p->z, 1); f25519_mul__distinct(p->t, x, y); } void ed25519_unproject(uint8_t *x, uint8_t *y, const struct ed25519_pt *p) { uint8_t z1[F25519_SIZE]; f25519_inv__distinct(z1, p->z); f25519_mul__distinct(x, p->x, z1); f25519_mul__distinct(y, p->y, z1); f25519_normalize(x); f25519_normalize(y); } /* Compress/uncompress points. We compress points by storing the x * coordinate and the parity of the y coordinate. * * Rearranging the curve equation, we obtain explicit formulae for the * coordinates: * * x = sqrt((y^2-1) / (1+dy^2)) * y = sqrt((x^2+1) / (1-dx^2)) * * Where d = (-121665/121666), or: * * d = 370957059346694393431380835087545651895 * 42113879843219016388785533085940283555 */ static const uint8_t ed25519_d[F25519_SIZE] = { 0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75, 0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00, 0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c, 0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52 }; void ed25519_pack(uint8_t *c, const uint8_t *x, const uint8_t *y) { uint8_t tmp[F25519_SIZE]; uint8_t parity; f25519_copy(tmp, x); f25519_normalize(tmp); parity = (tmp[0] & 1) << 7; f25519_copy(c, y); f25519_normalize(c); c[31] |= parity; } uint8_t ed25519_try_unpack(uint8_t *x, uint8_t *y, const uint8_t *comp) { const int parity = comp[31] >> 7; uint8_t a[F25519_SIZE]; uint8_t b[F25519_SIZE]; uint8_t c[F25519_SIZE]; /* Unpack y */ f25519_copy(y, comp); y[31] &= 127; /* Compute c = y^2 */ f25519_mul__distinct(c, y, y); /* Compute b = (1+dy^2)^-1 */ f25519_mul__distinct(b, c, ed25519_d); f25519_add(a, b, f25519_one); f25519_inv__distinct(b, a); /* Compute a = y^2-1 */ f25519_sub(a, c, f25519_one); /* Compute c = a*b = (y^2-1)/(1-dy^2) */ f25519_mul__distinct(c, a, b); /* Compute a, b = +/-sqrt(c), if c is square */ f25519_sqrt(a, c); f25519_neg(b, a); /* Select one of them, based on the compressed parity bit */ f25519_select(x, a, b, (a[0] ^ parity) & 1); /* Verify that x^2 = c */ f25519_mul__distinct(a, x, x); f25519_normalize(a); f25519_normalize(c); return f25519_eq(a, c); } /* k = 2d */ static const uint8_t ed25519_k[F25519_SIZE] = { 0x59, 0xf1, 0xb2, 0x26, 0x94, 0x9b, 0xd6, 0xeb, 0x56, 0xb1, 0x83, 0x82, 0x9a, 0x14, 0xe0, 0x00, 0x30, 0xd1, 0xf3, 0xee, 0xf2, 0x80, 0x8e, 0x19, 0xe7, 0xfc, 0xdf, 0x56, 0xdc, 0xd9, 0x06, 0x24 }; void ed25519_add(struct ed25519_pt *r, const struct ed25519_pt *p1, const struct ed25519_pt *p2) { /* Explicit formulas database: add-2008-hwcd-3 * * source 2008 Hisil--Wong--Carter--Dawson, * http://eprint.iacr.org/2008/522, Section 3.1 * appliesto extended-1 * parameter k * assume k = 2 d * compute A = (Y1-X1)(Y2-X2) * compute B = (Y1+X1)(Y2+X2) * compute C = T1 k T2 * compute D = Z1 2 Z2 * compute E = B - A * compute F = D - C * compute G = D + C * compute H = B + A * compute X3 = E F * compute Y3 = G H * compute T3 = E H * compute Z3 = F G */ uint8_t a[F25519_SIZE]; uint8_t b[F25519_SIZE]; uint8_t c[F25519_SIZE]; uint8_t d[F25519_SIZE]; uint8_t e[F25519_SIZE]; uint8_t f[F25519_SIZE]; uint8_t g[F25519_SIZE]; uint8_t h[F25519_SIZE]; /* A = (Y1-X1)(Y2-X2) */ f25519_sub(c, p1->y, p1->x); f25519_sub(d, p2->y, p2->x); f25519_mul__distinct(a, c, d); /* B = (Y1+X1)(Y2+X2) */ f25519_add(c, p1->y, p1->x); f25519_add(d, p2->y, p2->x); f25519_mul__distinct(b, c, d); /* C = T1 k T2 */ f25519_mul__distinct(d, p1->t, p2->t); f25519_mul__distinct(c, d, ed25519_k); /* D = Z1 2 Z2 */ f25519_mul__distinct(d, p1->z, p2->z); f25519_add(d, d, d); /* E = B - A */ f25519_sub(e, b, a); /* F = D - C */ f25519_sub(f, d, c); /* G = D + C */ f25519_add(g, d, c); /* H = B + A */ f25519_add(h, b, a); /* X3 = E F */ f25519_mul__distinct(r->x, e, f); /* Y3 = G H */ f25519_mul__distinct(r->y, g, h); /* T3 = E H */ f25519_mul__distinct(r->t, e, h); /* Z3 = F G */ f25519_mul__distinct(r->z, f, g); } static void ed25519_double(struct ed25519_pt *r, const struct ed25519_pt *p) { /* Explicit formulas database: dbl-2008-hwcd * * source 2008 Hisil--Wong--Carter--Dawson, * http://eprint.iacr.org/2008/522, Section 3.3 * compute A = X1^2 * compute B = Y1^2 * compute C = 2 Z1^2 * compute D = a A * compute E = (X1+Y1)^2-A-B * compute G = D + B * compute F = G - C * compute H = D - B * compute X3 = E F * compute Y3 = G H * compute T3 = E H * compute Z3 = F G */ uint8_t a[F25519_SIZE]; uint8_t b[F25519_SIZE]; uint8_t c[F25519_SIZE]; uint8_t e[F25519_SIZE]; uint8_t f[F25519_SIZE]; uint8_t g[F25519_SIZE]; uint8_t h[F25519_SIZE]; /* A = X1^2 */ f25519_mul__distinct(a, p->x, p->x); /* B = Y1^2 */ f25519_mul__distinct(b, p->y, p->y); /* C = 2 Z1^2 */ f25519_mul__distinct(c, p->z, p->z); f25519_add(c, c, c); /* D = a A (alter sign) */ /* E = (X1+Y1)^2-A-B */ f25519_add(f, p->x, p->y); f25519_mul__distinct(e, f, f); f25519_sub(e, e, a); f25519_sub(e, e, b); /* G = D + B */ f25519_sub(g, b, a); /* F = G - C */ f25519_sub(f, g, c); /* H = D - B */ f25519_neg(h, b); f25519_sub(h, h, a); /* X3 = E F */ f25519_mul__distinct(r->x, e, f); /* Y3 = G H */ f25519_mul__distinct(r->y, g, h); /* T3 = E H */ f25519_mul__distinct(r->t, e, h); /* Z3 = F G */ f25519_mul__distinct(r->z, f, g); } void ed25519_smult(struct ed25519_pt *r_out, const struct ed25519_pt *p, const uint8_t *e) { struct ed25519_pt r; int i; ed25519_copy(&r, &ed25519_neutral); for (i = 255; i >= 0; i--) { const uint8_t bit = (e[i >> 3] >> (i & 7)) & 1; struct ed25519_pt s; ed25519_double(&r, &r); ed25519_add(&s, &r, p); f25519_select(r.x, r.x, s.x, bit); f25519_select(r.y, r.y, s.y, bit); f25519_select(r.z, r.z, s.z, bit); f25519_select(r.t, r.t, s.t, bit); } ed25519_copy(r_out, &r); }