/* * Copyright (c) 2015 Linaro Ltd. * Author: Pi-Cheng Chen * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #define MIN_VOLT_SHIFT (100000) #define MAX_VOLT_SHIFT (200000) #define MAX_VOLT_LIMIT (1150000) #define VOLT_TOL (10000) /* * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two * voltage inputs need to be controlled under a hardware limitation: * 100mV < Vsram - Vproc < 200mV * * When scaling the clock frequency of a CPU clock domain, the clock source * needs to be switched to another stable PLL clock temporarily until * the original PLL becomes stable at target frequency. */ struct mtk_cpu_dvfs_info { struct cpumask cpus; struct device *cpu_dev; struct regulator *proc_reg; struct regulator *sram_reg; struct clk *cpu_clk; struct clk *inter_clk; struct thermal_cooling_device *cdev; struct list_head list_head; int intermediate_voltage; bool need_voltage_tracking; }; static LIST_HEAD(dvfs_info_list); static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu) { struct mtk_cpu_dvfs_info *info; list_for_each_entry(info, &dvfs_info_list, list_head) { if (cpumask_test_cpu(cpu, &info->cpus)) return info; } return NULL; } static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info, int new_vproc) { struct regulator *proc_reg = info->proc_reg; struct regulator *sram_reg = info->sram_reg; int old_vproc, old_vsram, new_vsram, vsram, vproc, ret; old_vproc = regulator_get_voltage(proc_reg); if (old_vproc < 0) { pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc); return old_vproc; } /* Vsram should not exceed the maximum allowed voltage of SoC. */ new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT); if (old_vproc < new_vproc) { /* * When scaling up voltages, Vsram and Vproc scale up step * by step. At each step, set Vsram to (Vproc + 200mV) first, * then set Vproc to (Vsram - 100mV). * Keep doing it until Vsram and Vproc hit target voltages. */ do { old_vsram = regulator_get_voltage(sram_reg); if (old_vsram < 0) { pr_err("%s: invalid Vsram value: %d\n", __func__, old_vsram); return old_vsram; } old_vproc = regulator_get_voltage(proc_reg); if (old_vproc < 0) { pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc); return old_vproc; } vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT); if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) { vsram = MAX_VOLT_LIMIT; /* * If the target Vsram hits the maximum voltage, * try to set the exact voltage value first. */ ret = regulator_set_voltage(sram_reg, vsram, vsram); if (ret) ret = regulator_set_voltage(sram_reg, vsram - VOLT_TOL, vsram); vproc = new_vproc; } else { ret = regulator_set_voltage(sram_reg, vsram, vsram + VOLT_TOL); vproc = vsram - MIN_VOLT_SHIFT; } if (ret) return ret; ret = regulator_set_voltage(proc_reg, vproc, vproc + VOLT_TOL); if (ret) { regulator_set_voltage(sram_reg, old_vsram, old_vsram); return ret; } } while (vproc < new_vproc || vsram < new_vsram); } else if (old_vproc > new_vproc) { /* * When scaling down voltages, Vsram and Vproc scale down step * by step. At each step, set Vproc to (Vsram - 200mV) first, * then set Vproc to (Vproc + 100mV). * Keep doing it until Vsram and Vproc hit target voltages. */ do { old_vproc = regulator_get_voltage(proc_reg); if (old_vproc < 0) { pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc); return old_vproc; } old_vsram = regulator_get_voltage(sram_reg); if (old_vsram < 0) { pr_err("%s: invalid Vsram value: %d\n", __func__, old_vsram); return old_vsram; } vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT); ret = regulator_set_voltage(proc_reg, vproc, vproc + VOLT_TOL); if (ret) return ret; if (vproc == new_vproc) vsram = new_vsram; else vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT); if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) { vsram = MAX_VOLT_LIMIT; /* * If the target Vsram hits the maximum voltage, * try to set the exact voltage value first. */ ret = regulator_set_voltage(sram_reg, vsram, vsram); if (ret) ret = regulator_set_voltage(sram_reg, vsram - VOLT_TOL, vsram); } else { ret = regulator_set_voltage(sram_reg, vsram, vsram + VOLT_TOL); } if (ret) { regulator_set_voltage(proc_reg, old_vproc, old_vproc); return ret; } } while (vproc > new_vproc + VOLT_TOL || vsram > new_vsram + VOLT_TOL); } return 0; } static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc) { if (info->need_voltage_tracking) return mtk_cpufreq_voltage_tracking(info, vproc); else return regulator_set_voltage(info->proc_reg, vproc, vproc + VOLT_TOL); } static int mtk_cpufreq_set_target(struct cpufreq_policy *policy, unsigned int index) { struct cpufreq_frequency_table *freq_table = policy->freq_table; struct clk *cpu_clk = policy->clk; struct clk *armpll = clk_get_parent(cpu_clk); struct mtk_cpu_dvfs_info *info = policy->driver_data; struct device *cpu_dev = info->cpu_dev; struct dev_pm_opp *opp; long freq_hz, old_freq_hz; int vproc, old_vproc, inter_vproc, target_vproc, ret; inter_vproc = info->intermediate_voltage; old_freq_hz = clk_get_rate(cpu_clk); old_vproc = regulator_get_voltage(info->proc_reg); if (old_vproc < 0) { pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc); return old_vproc; } freq_hz = freq_table[index].frequency * 1000; opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz); if (IS_ERR(opp)) { pr_err("cpu%d: failed to find OPP for %ld\n", policy->cpu, freq_hz); return PTR_ERR(opp); } vproc = dev_pm_opp_get_voltage(opp); dev_pm_opp_put(opp); /* * If the new voltage or the intermediate voltage is higher than the * current voltage, scale up voltage first. */ target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc; if (old_vproc < target_vproc) { ret = mtk_cpufreq_set_voltage(info, target_vproc); if (ret) { pr_err("cpu%d: failed to scale up voltage!\n", policy->cpu); mtk_cpufreq_set_voltage(info, old_vproc); return ret; } } /* Reparent the CPU clock to intermediate clock. */ ret = clk_set_parent(cpu_clk, info->inter_clk); if (ret) { pr_err("cpu%d: failed to re-parent cpu clock!\n", policy->cpu); mtk_cpufreq_set_voltage(info, old_vproc); WARN_ON(1); return ret; } /* Set the original PLL to target rate. */ ret = clk_set_rate(armpll, freq_hz); if (ret) { pr_err("cpu%d: failed to scale cpu clock rate!\n", policy->cpu); clk_set_parent(cpu_clk, armpll); mtk_cpufreq_set_voltage(info, old_vproc); return ret; } /* Set parent of CPU clock back to the original PLL. */ ret = clk_set_parent(cpu_clk, armpll); if (ret) { pr_err("cpu%d: failed to re-parent cpu clock!\n", policy->cpu); mtk_cpufreq_set_voltage(info, inter_vproc); WARN_ON(1); return ret; } /* * If the new voltage is lower than the intermediate voltage or the * original voltage, scale down to the new voltage. */ if (vproc < inter_vproc || vproc < old_vproc) { ret = mtk_cpufreq_set_voltage(info, vproc); if (ret) { pr_err("cpu%d: failed to scale down voltage!\n", policy->cpu); clk_set_parent(cpu_clk, info->inter_clk); clk_set_rate(armpll, old_freq_hz); clk_set_parent(cpu_clk, armpll); return ret; } } return 0; } #define DYNAMIC_POWER "dynamic-power-coefficient" static void mtk_cpufreq_ready(struct cpufreq_policy *policy) { struct mtk_cpu_dvfs_info *info = policy->driver_data; struct device_node *np = of_node_get(info->cpu_dev->of_node); u32 capacitance = 0; if (WARN_ON(!np)) return; if (of_find_property(np, "#cooling-cells", NULL)) { of_property_read_u32(np, DYNAMIC_POWER, &capacitance); info->cdev = of_cpufreq_power_cooling_register(np, policy, capacitance, NULL); if (IS_ERR(info->cdev)) { dev_err(info->cpu_dev, "running cpufreq without cooling device: %ld\n", PTR_ERR(info->cdev)); info->cdev = NULL; } } of_node_put(np); } static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu) { struct device *cpu_dev; struct regulator *proc_reg = ERR_PTR(-ENODEV); struct regulator *sram_reg = ERR_PTR(-ENODEV); struct clk *cpu_clk = ERR_PTR(-ENODEV); struct clk *inter_clk = ERR_PTR(-ENODEV); struct dev_pm_opp *opp; unsigned long rate; int ret; cpu_dev = get_cpu_device(cpu); if (!cpu_dev) { pr_err("failed to get cpu%d device\n", cpu); return -ENODEV; } cpu_clk = clk_get(cpu_dev, "cpu"); if (IS_ERR(cpu_clk)) { if (PTR_ERR(cpu_clk) == -EPROBE_DEFER) pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu); else pr_err("failed to get cpu clk for cpu%d\n", cpu); ret = PTR_ERR(cpu_clk); return ret; } inter_clk = clk_get(cpu_dev, "intermediate"); if (IS_ERR(inter_clk)) { if (PTR_ERR(inter_clk) == -EPROBE_DEFER) pr_warn("intermediate clk for cpu%d not ready, retry.\n", cpu); else pr_err("failed to get intermediate clk for cpu%d\n", cpu); ret = PTR_ERR(inter_clk); goto out_free_resources; } proc_reg = regulator_get_exclusive(cpu_dev, "proc"); if (IS_ERR(proc_reg)) { if (PTR_ERR(proc_reg) == -EPROBE_DEFER) pr_warn("proc regulator for cpu%d not ready, retry.\n", cpu); else pr_err("failed to get proc regulator for cpu%d\n", cpu); ret = PTR_ERR(proc_reg); goto out_free_resources; } /* Both presence and absence of sram regulator are valid cases. */ sram_reg = regulator_get_exclusive(cpu_dev, "sram"); /* Get OPP-sharing information from "operating-points-v2" bindings */ ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus); if (ret) { pr_err("failed to get OPP-sharing information for cpu%d\n", cpu); goto out_free_resources; } ret = dev_pm_opp_of_cpumask_add_table(&info->cpus); if (ret) { pr_warn("no OPP table for cpu%d\n", cpu); goto out_free_resources; } /* Search a safe voltage for intermediate frequency. */ rate = clk_get_rate(inter_clk); opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate); if (IS_ERR(opp)) { pr_err("failed to get intermediate opp for cpu%d\n", cpu); ret = PTR_ERR(opp); goto out_free_opp_table; } info->intermediate_voltage = dev_pm_opp_get_voltage(opp); dev_pm_opp_put(opp); info->cpu_dev = cpu_dev; info->proc_reg = proc_reg; info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg; info->cpu_clk = cpu_clk; info->inter_clk = inter_clk; /* * If SRAM regulator is present, software "voltage tracking" is needed * for this CPU power domain. */ info->need_voltage_tracking = !IS_ERR(sram_reg); return 0; out_free_opp_table: dev_pm_opp_of_cpumask_remove_table(&info->cpus); out_free_resources: if (!IS_ERR(proc_reg)) regulator_put(proc_reg); if (!IS_ERR(sram_reg)) regulator_put(sram_reg); if (!IS_ERR(cpu_clk)) clk_put(cpu_clk); if (!IS_ERR(inter_clk)) clk_put(inter_clk); return ret; } static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info) { if (!IS_ERR(info->proc_reg)) regulator_put(info->proc_reg); if (!IS_ERR(info->sram_reg)) regulator_put(info->sram_reg); if (!IS_ERR(info->cpu_clk)) clk_put(info->cpu_clk); if (!IS_ERR(info->inter_clk)) clk_put(info->inter_clk); dev_pm_opp_of_cpumask_remove_table(&info->cpus); } static int mtk_cpufreq_init(struct cpufreq_policy *policy) { struct mtk_cpu_dvfs_info *info; struct cpufreq_frequency_table *freq_table; int ret; info = mtk_cpu_dvfs_info_lookup(policy->cpu); if (!info) { pr_err("dvfs info for cpu%d is not initialized.\n", policy->cpu); return -EINVAL; } ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table); if (ret) { pr_err("failed to init cpufreq table for cpu%d: %d\n", policy->cpu, ret); return ret; } ret = cpufreq_table_validate_and_show(policy, freq_table); if (ret) { pr_err("%s: invalid frequency table: %d\n", __func__, ret); goto out_free_cpufreq_table; } cpumask_copy(policy->cpus, &info->cpus); policy->driver_data = info; policy->clk = info->cpu_clk; return 0; out_free_cpufreq_table: dev_pm_opp_free_cpufreq_table(info->cpu_dev, &freq_table); return ret; } static int mtk_cpufreq_exit(struct cpufreq_policy *policy) { struct mtk_cpu_dvfs_info *info = policy->driver_data; cpufreq_cooling_unregister(info->cdev); dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table); return 0; } static struct cpufreq_driver mtk_cpufreq_driver = { .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK | CPUFREQ_HAVE_GOVERNOR_PER_POLICY, .verify = cpufreq_generic_frequency_table_verify, .target_index = mtk_cpufreq_set_target, .get = cpufreq_generic_get, .init = mtk_cpufreq_init, .exit = mtk_cpufreq_exit, .ready = mtk_cpufreq_ready, .name = "mtk-cpufreq", .attr = cpufreq_generic_attr, }; static int mtk_cpufreq_probe(struct platform_device *pdev) { struct mtk_cpu_dvfs_info *info, *tmp; int cpu, ret; for_each_possible_cpu(cpu) { info = mtk_cpu_dvfs_info_lookup(cpu); if (info) continue; info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (!info) { ret = -ENOMEM; goto release_dvfs_info_list; } ret = mtk_cpu_dvfs_info_init(info, cpu); if (ret) { dev_err(&pdev->dev, "failed to initialize dvfs info for cpu%d\n", cpu); goto release_dvfs_info_list; } list_add(&info->list_head, &dvfs_info_list); } ret = cpufreq_register_driver(&mtk_cpufreq_driver); if (ret) { dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n"); goto release_dvfs_info_list; } return 0; release_dvfs_info_list: list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) { mtk_cpu_dvfs_info_release(info); list_del(&info->list_head); } return ret; } static struct platform_driver mtk_cpufreq_platdrv = { .driver = { .name = "mtk-cpufreq", }, .probe = mtk_cpufreq_probe, }; /* List of machines supported by this driver */ static const struct of_device_id mtk_cpufreq_machines[] __initconst = { { .compatible = "mediatek,mt2701", }, { .compatible = "mediatek,mt7622", }, { .compatible = "mediatek,mt7623", }, { .compatible = "mediatek,mt817x", }, { .compatible = "mediatek,mt8173", }, { .compatible = "mediatek,mt8176", }, { } }; MODULE_DEVICE_TABLE(of, mtk_cpufreq_machines); static int __init mtk_cpufreq_driver_init(void) { struct device_node *np; const struct of_device_id *match; struct platform_device *pdev; int err; np = of_find_node_by_path("/"); if (!np) return -ENODEV; match = of_match_node(mtk_cpufreq_machines, np); of_node_put(np); if (!match) { pr_warn("Machine is not compatible with mtk-cpufreq\n"); return -ENODEV; } err = platform_driver_register(&mtk_cpufreq_platdrv); if (err) return err; /* * Since there's no place to hold device registration code and no * device tree based way to match cpufreq driver yet, both the driver * and the device registration codes are put here to handle defer * probing. */ pdev = platform_device_register_simple("mtk-cpufreq", -1, NULL, 0); if (IS_ERR(pdev)) { pr_err("failed to register mtk-cpufreq platform device\n"); return PTR_ERR(pdev); } return 0; } device_initcall(mtk_cpufreq_driver_init);