/* * Fair Queue CoDel discipline * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Copyright (C) 2012,2015 Eric Dumazet */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Fair Queue CoDel. * * Principles : * Packets are classified (internal classifier or external) on flows. * This is a Stochastic model (as we use a hash, several flows * might be hashed on same slot) * Each flow has a CoDel managed queue. * Flows are linked onto two (Round Robin) lists, * so that new flows have priority on old ones. * * For a given flow, packets are not reordered (CoDel uses a FIFO) * head drops only. * ECN capability is on by default. * Low memory footprint (64 bytes per flow) */ struct fq_codel_flow { struct sk_buff *head; struct sk_buff *tail; struct list_head flowchain; int deficit; u32 dropped; /* number of drops (or ECN marks) on this flow */ struct codel_vars cvars; }; /* please try to keep this structure <= 64 bytes */ struct fq_codel_sched_data { struct tcf_proto __rcu *filter_list; /* optional external classifier */ struct tcf_block *block; struct fq_codel_flow *flows; /* Flows table [flows_cnt] */ u32 *backlogs; /* backlog table [flows_cnt] */ u32 flows_cnt; /* number of flows */ u32 quantum; /* psched_mtu(qdisc_dev(sch)); */ u32 drop_batch_size; u32 memory_limit; struct codel_params cparams; struct codel_stats cstats; u32 memory_usage; u32 drop_overmemory; u32 drop_overlimit; u32 new_flow_count; struct list_head new_flows; /* list of new flows */ struct list_head old_flows; /* list of old flows */ }; static unsigned int fq_codel_hash(const struct fq_codel_sched_data *q, struct sk_buff *skb) { return reciprocal_scale(skb_get_hash(skb), q->flows_cnt); } static unsigned int fq_codel_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr) { struct fq_codel_sched_data *q = qdisc_priv(sch); struct tcf_proto *filter; struct tcf_result res; int result; if (TC_H_MAJ(skb->priority) == sch->handle && TC_H_MIN(skb->priority) > 0 && TC_H_MIN(skb->priority) <= q->flows_cnt) return TC_H_MIN(skb->priority); filter = rcu_dereference_bh(q->filter_list); if (!filter) return fq_codel_hash(q, skb) + 1; *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; result = tcf_classify(skb, filter, &res, false); if (result >= 0) { #ifdef CONFIG_NET_CLS_ACT switch (result) { case TC_ACT_STOLEN: case TC_ACT_QUEUED: case TC_ACT_TRAP: *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; case TC_ACT_SHOT: return 0; } #endif if (TC_H_MIN(res.classid) <= q->flows_cnt) return TC_H_MIN(res.classid); } return 0; } /* helper functions : might be changed when/if skb use a standard list_head */ /* remove one skb from head of slot queue */ static inline struct sk_buff *dequeue_head(struct fq_codel_flow *flow) { struct sk_buff *skb = flow->head; flow->head = skb->next; skb->next = NULL; return skb; } /* add skb to flow queue (tail add) */ static inline void flow_queue_add(struct fq_codel_flow *flow, struct sk_buff *skb) { if (flow->head == NULL) flow->head = skb; else flow->tail->next = skb; flow->tail = skb; skb->next = NULL; } static unsigned int fq_codel_drop(struct Qdisc *sch, unsigned int max_packets, struct sk_buff **to_free) { struct fq_codel_sched_data *q = qdisc_priv(sch); struct sk_buff *skb; unsigned int maxbacklog = 0, idx = 0, i, len; struct fq_codel_flow *flow; unsigned int threshold; unsigned int mem = 0; /* Queue is full! Find the fat flow and drop packet(s) from it. * This might sound expensive, but with 1024 flows, we scan * 4KB of memory, and we dont need to handle a complex tree * in fast path (packet queue/enqueue) with many cache misses. * In stress mode, we'll try to drop 64 packets from the flow, * amortizing this linear lookup to one cache line per drop. */ for (i = 0; i < q->flows_cnt; i++) { if (q->backlogs[i] > maxbacklog) { maxbacklog = q->backlogs[i]; idx = i; } } /* Our goal is to drop half of this fat flow backlog */ threshold = maxbacklog >> 1; flow = &q->flows[idx]; len = 0; i = 0; do { skb = dequeue_head(flow); len += qdisc_pkt_len(skb); mem += get_codel_cb(skb)->mem_usage; __qdisc_drop(skb, to_free); } while (++i < max_packets && len < threshold); flow->dropped += i; q->backlogs[idx] -= len; q->memory_usage -= mem; sch->qstats.drops += i; sch->qstats.backlog -= len; sch->q.qlen -= i; return idx; } static int fq_codel_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct fq_codel_sched_data *q = qdisc_priv(sch); unsigned int idx, prev_backlog, prev_qlen; struct fq_codel_flow *flow; int uninitialized_var(ret); unsigned int pkt_len; bool memory_limited; idx = fq_codel_classify(skb, sch, &ret); if (idx == 0) { if (ret & __NET_XMIT_BYPASS) qdisc_qstats_drop(sch); __qdisc_drop(skb, to_free); return ret; } idx--; codel_set_enqueue_time(skb); flow = &q->flows[idx]; flow_queue_add(flow, skb); q->backlogs[idx] += qdisc_pkt_len(skb); qdisc_qstats_backlog_inc(sch, skb); if (list_empty(&flow->flowchain)) { list_add_tail(&flow->flowchain, &q->new_flows); q->new_flow_count++; flow->deficit = q->quantum; flow->dropped = 0; } get_codel_cb(skb)->mem_usage = skb->truesize; q->memory_usage += get_codel_cb(skb)->mem_usage; memory_limited = q->memory_usage > q->memory_limit; if (++sch->q.qlen <= sch->limit && !memory_limited) return NET_XMIT_SUCCESS; prev_backlog = sch->qstats.backlog; prev_qlen = sch->q.qlen; /* save this packet length as it might be dropped by fq_codel_drop() */ pkt_len = qdisc_pkt_len(skb); /* fq_codel_drop() is quite expensive, as it performs a linear search * in q->backlogs[] to find a fat flow. * So instead of dropping a single packet, drop half of its backlog * with a 64 packets limit to not add a too big cpu spike here. */ ret = fq_codel_drop(sch, q->drop_batch_size, to_free); prev_qlen -= sch->q.qlen; prev_backlog -= sch->qstats.backlog; q->drop_overlimit += prev_qlen; if (memory_limited) q->drop_overmemory += prev_qlen; /* As we dropped packet(s), better let upper stack know this. * If we dropped a packet for this flow, return NET_XMIT_CN, * but in this case, our parents wont increase their backlogs. */ if (ret == idx) { qdisc_tree_reduce_backlog(sch, prev_qlen - 1, prev_backlog - pkt_len); return NET_XMIT_CN; } qdisc_tree_reduce_backlog(sch, prev_qlen, prev_backlog); return NET_XMIT_SUCCESS; } /* This is the specific function called from codel_dequeue() * to dequeue a packet from queue. Note: backlog is handled in * codel, we dont need to reduce it here. */ static struct sk_buff *dequeue_func(struct codel_vars *vars, void *ctx) { struct Qdisc *sch = ctx; struct fq_codel_sched_data *q = qdisc_priv(sch); struct fq_codel_flow *flow; struct sk_buff *skb = NULL; flow = container_of(vars, struct fq_codel_flow, cvars); if (flow->head) { skb = dequeue_head(flow); q->backlogs[flow - q->flows] -= qdisc_pkt_len(skb); q->memory_usage -= get_codel_cb(skb)->mem_usage; sch->q.qlen--; sch->qstats.backlog -= qdisc_pkt_len(skb); } return skb; } static void drop_func(struct sk_buff *skb, void *ctx) { struct Qdisc *sch = ctx; kfree_skb(skb); qdisc_qstats_drop(sch); } static struct sk_buff *fq_codel_dequeue(struct Qdisc *sch) { struct fq_codel_sched_data *q = qdisc_priv(sch); struct sk_buff *skb; struct fq_codel_flow *flow; struct list_head *head; u32 prev_drop_count, prev_ecn_mark; begin: head = &q->new_flows; if (list_empty(head)) { head = &q->old_flows; if (list_empty(head)) return NULL; } flow = list_first_entry(head, struct fq_codel_flow, flowchain); if (flow->deficit <= 0) { flow->deficit += q->quantum; list_move_tail(&flow->flowchain, &q->old_flows); goto begin; } prev_drop_count = q->cstats.drop_count; prev_ecn_mark = q->cstats.ecn_mark; skb = codel_dequeue(sch, &sch->qstats.backlog, &q->cparams, &flow->cvars, &q->cstats, qdisc_pkt_len, codel_get_enqueue_time, drop_func, dequeue_func); flow->dropped += q->cstats.drop_count - prev_drop_count; flow->dropped += q->cstats.ecn_mark - prev_ecn_mark; /* If our qlen is 0 qdisc_tree_reduce_backlog() will deactivate * parent class, dequeue in parent qdisc will do the same if we * return skb. Temporary increment qlen if we have skb. */ if (q->cstats.drop_count) { if (skb) sch->q.qlen++; qdisc_tree_reduce_backlog(sch, q->cstats.drop_count, q->cstats.drop_len); if (skb) sch->q.qlen--; q->cstats.drop_count = 0; q->cstats.drop_len = 0; } if (!skb) { /* force a pass through old_flows to prevent starvation */ if ((head == &q->new_flows) && !list_empty(&q->old_flows)) list_move_tail(&flow->flowchain, &q->old_flows); else list_del_init(&flow->flowchain); goto begin; } qdisc_bstats_update(sch, skb); flow->deficit -= qdisc_pkt_len(skb); return skb; } static void fq_codel_flow_purge(struct fq_codel_flow *flow) { rtnl_kfree_skbs(flow->head, flow->tail); flow->head = NULL; } static void fq_codel_reset(struct Qdisc *sch) { struct fq_codel_sched_data *q = qdisc_priv(sch); int i; INIT_LIST_HEAD(&q->new_flows); INIT_LIST_HEAD(&q->old_flows); for (i = 0; i < q->flows_cnt; i++) { struct fq_codel_flow *flow = q->flows + i; fq_codel_flow_purge(flow); INIT_LIST_HEAD(&flow->flowchain); codel_vars_init(&flow->cvars); } memset(q->backlogs, 0, q->flows_cnt * sizeof(u32)); sch->q.qlen = 0; sch->qstats.backlog = 0; q->memory_usage = 0; } static const struct nla_policy fq_codel_policy[TCA_FQ_CODEL_MAX + 1] = { [TCA_FQ_CODEL_TARGET] = { .type = NLA_U32 }, [TCA_FQ_CODEL_LIMIT] = { .type = NLA_U32 }, [TCA_FQ_CODEL_INTERVAL] = { .type = NLA_U32 }, [TCA_FQ_CODEL_ECN] = { .type = NLA_U32 }, [TCA_FQ_CODEL_FLOWS] = { .type = NLA_U32 }, [TCA_FQ_CODEL_QUANTUM] = { .type = NLA_U32 }, [TCA_FQ_CODEL_CE_THRESHOLD] = { .type = NLA_U32 }, [TCA_FQ_CODEL_DROP_BATCH_SIZE] = { .type = NLA_U32 }, [TCA_FQ_CODEL_MEMORY_LIMIT] = { .type = NLA_U32 }, }; static int fq_codel_change(struct Qdisc *sch, struct nlattr *opt) { struct fq_codel_sched_data *q = qdisc_priv(sch); struct nlattr *tb[TCA_FQ_CODEL_MAX + 1]; int err; if (!opt) return -EINVAL; err = nla_parse_nested(tb, TCA_FQ_CODEL_MAX, opt, fq_codel_policy, NULL); if (err < 0) return err; if (tb[TCA_FQ_CODEL_FLOWS]) { if (q->flows) return -EINVAL; q->flows_cnt = nla_get_u32(tb[TCA_FQ_CODEL_FLOWS]); if (!q->flows_cnt || q->flows_cnt > 65536) return -EINVAL; } sch_tree_lock(sch); if (tb[TCA_FQ_CODEL_TARGET]) { u64 target = nla_get_u32(tb[TCA_FQ_CODEL_TARGET]); q->cparams.target = (target * NSEC_PER_USEC) >> CODEL_SHIFT; } if (tb[TCA_FQ_CODEL_CE_THRESHOLD]) { u64 val = nla_get_u32(tb[TCA_FQ_CODEL_CE_THRESHOLD]); q->cparams.ce_threshold = (val * NSEC_PER_USEC) >> CODEL_SHIFT; } if (tb[TCA_FQ_CODEL_INTERVAL]) { u64 interval = nla_get_u32(tb[TCA_FQ_CODEL_INTERVAL]); q->cparams.interval = (interval * NSEC_PER_USEC) >> CODEL_SHIFT; } if (tb[TCA_FQ_CODEL_LIMIT]) sch->limit = nla_get_u32(tb[TCA_FQ_CODEL_LIMIT]); if (tb[TCA_FQ_CODEL_ECN]) q->cparams.ecn = !!nla_get_u32(tb[TCA_FQ_CODEL_ECN]); if (tb[TCA_FQ_CODEL_QUANTUM]) q->quantum = max(256U, nla_get_u32(tb[TCA_FQ_CODEL_QUANTUM])); if (tb[TCA_FQ_CODEL_DROP_BATCH_SIZE]) q->drop_batch_size = max(1U, nla_get_u32(tb[TCA_FQ_CODEL_DROP_BATCH_SIZE])); if (tb[TCA_FQ_CODEL_MEMORY_LIMIT]) q->memory_limit = min(1U << 31, nla_get_u32(tb[TCA_FQ_CODEL_MEMORY_LIMIT])); while (sch->q.qlen > sch->limit || q->memory_usage > q->memory_limit) { struct sk_buff *skb = fq_codel_dequeue(sch); q->cstats.drop_len += qdisc_pkt_len(skb); rtnl_kfree_skbs(skb, skb); q->cstats.drop_count++; } qdisc_tree_reduce_backlog(sch, q->cstats.drop_count, q->cstats.drop_len); q->cstats.drop_count = 0; q->cstats.drop_len = 0; sch_tree_unlock(sch); return 0; } static void fq_codel_destroy(struct Qdisc *sch) { struct fq_codel_sched_data *q = qdisc_priv(sch); tcf_block_put(q->block); kvfree(q->backlogs); kvfree(q->flows); } static int fq_codel_init(struct Qdisc *sch, struct nlattr *opt) { struct fq_codel_sched_data *q = qdisc_priv(sch); int i; int err; sch->limit = 10*1024; q->flows_cnt = 1024; #ifdef CONFIG_X86_64 q->memory_limit = 32 << 20; /* 32 MBytes */ #else q->memory_limit = 4 << 20; /* 4 MBytes */ #endif q->drop_batch_size = 64; q->quantum = psched_mtu(qdisc_dev(sch)); INIT_LIST_HEAD(&q->new_flows); INIT_LIST_HEAD(&q->old_flows); codel_params_init(&q->cparams); codel_stats_init(&q->cstats); q->cparams.ecn = true; q->cparams.mtu = psched_mtu(qdisc_dev(sch)); if (opt) { int err = fq_codel_change(sch, opt); if (err) return err; } err = tcf_block_get(&q->block, &q->filter_list); if (err) return err; if (!q->flows) { q->flows = kvzalloc(q->flows_cnt * sizeof(struct fq_codel_flow), GFP_KERNEL); if (!q->flows) return -ENOMEM; q->backlogs = kvzalloc(q->flows_cnt * sizeof(u32), GFP_KERNEL); if (!q->backlogs) return -ENOMEM; for (i = 0; i < q->flows_cnt; i++) { struct fq_codel_flow *flow = q->flows + i; INIT_LIST_HEAD(&flow->flowchain); codel_vars_init(&flow->cvars); } } if (sch->limit >= 1) sch->flags |= TCQ_F_CAN_BYPASS; else sch->flags &= ~TCQ_F_CAN_BYPASS; return 0; } static int fq_codel_dump(struct Qdisc *sch, struct sk_buff *skb) { struct fq_codel_sched_data *q = qdisc_priv(sch); struct nlattr *opts; opts = nla_nest_start(skb, TCA_OPTIONS); if (opts == NULL) goto nla_put_failure; if (nla_put_u32(skb, TCA_FQ_CODEL_TARGET, codel_time_to_us(q->cparams.target)) || nla_put_u32(skb, TCA_FQ_CODEL_LIMIT, sch->limit) || nla_put_u32(skb, TCA_FQ_CODEL_INTERVAL, codel_time_to_us(q->cparams.interval)) || nla_put_u32(skb, TCA_FQ_CODEL_ECN, q->cparams.ecn) || nla_put_u32(skb, TCA_FQ_CODEL_QUANTUM, q->quantum) || nla_put_u32(skb, TCA_FQ_CODEL_DROP_BATCH_SIZE, q->drop_batch_size) || nla_put_u32(skb, TCA_FQ_CODEL_MEMORY_LIMIT, q->memory_limit) || nla_put_u32(skb, TCA_FQ_CODEL_FLOWS, q->flows_cnt)) goto nla_put_failure; if (q->cparams.ce_threshold != CODEL_DISABLED_THRESHOLD && nla_put_u32(skb, TCA_FQ_CODEL_CE_THRESHOLD, codel_time_to_us(q->cparams.ce_threshold))) goto nla_put_failure; return nla_nest_end(skb, opts); nla_put_failure: return -1; } static int fq_codel_dump_stats(struct Qdisc *sch, struct gnet_dump *d) { struct fq_codel_sched_data *q = qdisc_priv(sch); struct tc_fq_codel_xstats st = { .type = TCA_FQ_CODEL_XSTATS_QDISC, }; struct list_head *pos; st.qdisc_stats.maxpacket = q->cstats.maxpacket; st.qdisc_stats.drop_overlimit = q->drop_overlimit; st.qdisc_stats.ecn_mark = q->cstats.ecn_mark; st.qdisc_stats.new_flow_count = q->new_flow_count; st.qdisc_stats.ce_mark = q->cstats.ce_mark; st.qdisc_stats.memory_usage = q->memory_usage; st.qdisc_stats.drop_overmemory = q->drop_overmemory; sch_tree_lock(sch); list_for_each(pos, &q->new_flows) st.qdisc_stats.new_flows_len++; list_for_each(pos, &q->old_flows) st.qdisc_stats.old_flows_len++; sch_tree_unlock(sch); return gnet_stats_copy_app(d, &st, sizeof(st)); } static struct Qdisc *fq_codel_leaf(struct Qdisc *sch, unsigned long arg) { return NULL; } static unsigned long fq_codel_find(struct Qdisc *sch, u32 classid) { return 0; } static unsigned long fq_codel_bind(struct Qdisc *sch, unsigned long parent, u32 classid) { /* we cannot bypass queue discipline anymore */ sch->flags &= ~TCQ_F_CAN_BYPASS; return 0; } static void fq_codel_unbind(struct Qdisc *q, unsigned long cl) { } static struct tcf_block *fq_codel_tcf_block(struct Qdisc *sch, unsigned long cl) { struct fq_codel_sched_data *q = qdisc_priv(sch); if (cl) return NULL; return q->block; } static int fq_codel_dump_class(struct Qdisc *sch, unsigned long cl, struct sk_buff *skb, struct tcmsg *tcm) { tcm->tcm_handle |= TC_H_MIN(cl); return 0; } static int fq_codel_dump_class_stats(struct Qdisc *sch, unsigned long cl, struct gnet_dump *d) { struct fq_codel_sched_data *q = qdisc_priv(sch); u32 idx = cl - 1; struct gnet_stats_queue qs = { 0 }; struct tc_fq_codel_xstats xstats; if (idx < q->flows_cnt) { const struct fq_codel_flow *flow = &q->flows[idx]; const struct sk_buff *skb; memset(&xstats, 0, sizeof(xstats)); xstats.type = TCA_FQ_CODEL_XSTATS_CLASS; xstats.class_stats.deficit = flow->deficit; xstats.class_stats.ldelay = codel_time_to_us(flow->cvars.ldelay); xstats.class_stats.count = flow->cvars.count; xstats.class_stats.lastcount = flow->cvars.lastcount; xstats.class_stats.dropping = flow->cvars.dropping; if (flow->cvars.dropping) { codel_tdiff_t delta = flow->cvars.drop_next - codel_get_time(); xstats.class_stats.drop_next = (delta >= 0) ? codel_time_to_us(delta) : -codel_time_to_us(-delta); } if (flow->head) { sch_tree_lock(sch); skb = flow->head; while (skb) { qs.qlen++; skb = skb->next; } sch_tree_unlock(sch); } qs.backlog = q->backlogs[idx]; qs.drops = flow->dropped; } if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0) return -1; if (idx < q->flows_cnt) return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); return 0; } static void fq_codel_walk(struct Qdisc *sch, struct qdisc_walker *arg) { struct fq_codel_sched_data *q = qdisc_priv(sch); unsigned int i; if (arg->stop) return; for (i = 0; i < q->flows_cnt; i++) { if (list_empty(&q->flows[i].flowchain) || arg->count < arg->skip) { arg->count++; continue; } if (arg->fn(sch, i + 1, arg) < 0) { arg->stop = 1; break; } arg->count++; } } static const struct Qdisc_class_ops fq_codel_class_ops = { .leaf = fq_codel_leaf, .find = fq_codel_find, .tcf_block = fq_codel_tcf_block, .bind_tcf = fq_codel_bind, .unbind_tcf = fq_codel_unbind, .dump = fq_codel_dump_class, .dump_stats = fq_codel_dump_class_stats, .walk = fq_codel_walk, }; struct Qdisc_ops fq_codel_qdisc_ops __read_mostly = { .cl_ops = &fq_codel_class_ops, .id = "fq_codel", .priv_size = sizeof(struct fq_codel_sched_data), .enqueue = fq_codel_enqueue, .dequeue = fq_codel_dequeue, .peek = qdisc_peek_dequeued, .init = fq_codel_init, .reset = fq_codel_reset, .destroy = fq_codel_destroy, .change = fq_codel_change, .dump = fq_codel_dump, .dump_stats = fq_codel_dump_stats, .owner = THIS_MODULE, }; EXPORT_SYMBOL(fq_codel_qdisc_ops); static int __init fq_codel_module_init(void) { return register_qdisc(&fq_codel_qdisc_ops); } static void __exit fq_codel_module_exit(void) { unregister_qdisc(&fq_codel_qdisc_ops); } module_init(fq_codel_module_init) module_exit(fq_codel_module_exit) MODULE_AUTHOR("Eric Dumazet"); MODULE_LICENSE("GPL");