/* mpfr_asinh -- inverse hyperbolic sine Copyright 2001-2019 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computation of asinh is done by * * asinh = ln(x + sqrt(x^2 + 1)) */ int mpfr_asinh (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { int inexact; int signx, neg; mpfr_prec_t Ny, Nt; mpfr_t t; /* auxiliary variables */ mpfr_exp_t err; MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC ( ("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode), ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) { MPFR_SET_INF (y); MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); } else /* x is necessarily 0 */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (y); /* asinh(0) = 0 */ MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); } } /* asinh(x) = x - x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -2 * MPFR_GET_EXP (x), 2, 0, rnd_mode, {}); Ny = MPFR_PREC (y); /* Precision of output variable */ signx = MPFR_SIGN (x); neg = MPFR_IS_NEG (x); /* General case */ /* compute the precision of intermediary variable */ /* the optimal number of bits : see algorithms.tex */ Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny); MPFR_SAVE_EXPO_MARK (expo); /* initialize intermediary variables */ mpfr_init2 (t, Nt); /* First computation of asinh */ MPFR_ZIV_INIT (loop, Nt); for (;;) { /* compute asinh */ mpfr_mul (t, x, x, MPFR_RNDD); /* x^2 */ mpfr_add_ui (t, t, 1, MPFR_RNDD); /* x^2+1 */ mpfr_sqrt (t, t, MPFR_RNDN); /* sqrt(x^2+1) */ (neg ? mpfr_sub : mpfr_add) (t, t, x, MPFR_RNDN); /* sqrt(x^2+1)+x */ mpfr_log (t, t, MPFR_RNDN); /* ln(sqrt(x^2+1)+x)*/ if (MPFR_LIKELY (MPFR_IS_PURE_FP (t))) { /* error estimate -- see algorithms.tex */ err = Nt - (MAX (4 - MPFR_GET_EXP (t), 0) + 1); if (MPFR_LIKELY (MPFR_IS_ZERO (t) || MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) break; } /* actualization of the precision */ MPFR_ZIV_NEXT (loop, Nt); mpfr_set_prec (t, Nt); } MPFR_ZIV_FREE (loop); inexact = mpfr_set4 (y, t, rnd_mode, signx); mpfr_clear (t); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }