.. SPDX-License-Identifier: GPL-2.0 ========================================================== batctl - B.A.T.M.A.N. advanced control and management tool ========================================================== Introduction ============ Why do I need batctl ? B.A.T.M.A.N. advanced operates on layer 2 and thus all hosts participating in the virtual switch are completely transparent for all protocols above layer 2. Therefore the common diagnosis tools do not work as expected. To overcome these problems batctl was created. At the moment batctl contains ping, traceroute, tcpdump and interfaces to the kernel module settings. How does it work ? ================== batctl uses the debugfs/batman_adv/bat0/socket device provided by the B.A.T.M.A.N. advanced kernel module to inject custom icmp packets into the data flow. That's why ping and traceroute work almost like their IP based counterparts. Tcpdump was designed because B.A.T.M.A.N. advanced encapsulates all traffic within batman packets, so that the normal tcpdump would not recognize the packets. The bat-hosts file ================== This file is similar to the /etc/hosts file. You can write one MAC address and one host name per line. batctl will analyze the file to find the matching MAC address to your provided host name. Host names are much easier to remember than MAC addresses. ;) batctl statistics ================= The batman-adv kernel module maintains a number of traffic counters which are exported to user space. With batctl these counters can be easily retrieved. The output may vary depending on which features have been compiled into the kernel module. For example, if the distributed arp table (short: dat) wasn't selected as an option at compile time its counters won't be shown. Each module subsystem has its own counters which are indicated by their prefixes: mgmt: mesh protocol counters tt: translation table counters dat: distributed arp table counters All counters without a prefix concern payload (pure user data) traffic. Usage:: batctl statistics Example:: $ batctl statistics tx: 14 tx_bytes: 1316 tx_errors: 0 rx: 14 rx_bytes: 1316 forward: 0 forward_bytes: 0 mgmt_tx: 18 mgmt_tx_bytes: 762 mgmt_rx: 17 mgmt_rx_bytes: 1020 tt_request_tx: 0 tt_request_rx: 0 tt_response_tx: 0 tt_response_rx: 0 tt_roam_adv_tx: 0 tt_roam_adv_rx: 0 dat_request_tx: 0 dat_request_rx: 0 dat_reply_tx: 1 dat_reply_rx: 0 batctl translate ================ Translates a destination (hostname, IPv4, IPv6, MAC, bat_host-name) to the originator mac address responsible for it. Usage:: batctl translate mac|bat-host|host-name|IP-address Example:: $ batctl translate www.google.de 02:ca:fe:af:fe:01 $ batctl translate 02:ca:fe:af:fe:01 02:ca:fe:af:fe:01 $ batctl translate 192.168.1.2 02:ca:fe:af:fe:05 $ batctl translate fe:fe:00:00:09:01 02:ca:fe:af:fe:05 $ batctl translate 2001::1 02:ca:fe:af:fe:05 batctl ping =========== Sends a Layer 2 batman-adv ping to check round trip time and connectivity Usage:: batctl ping [parameters] mac|bat-host|host-name|IP-address parameters: -c ping packet count -h print this help -i interval in seconds -t timeout in seconds -T don't try to translate mac to originator address -R record route Example:: $ batctl ping fe:fe:00:00:09:01 PING fe:fe:00:00:09:01 (fe:fe:00:00:09:01) 19(47) bytes of data 19 bytes from fe:fe:00:00:09:01 icmp_seq=1 ttl=43 time=8.74 ms 19 bytes from fe:fe:00:00:09:01 icmp_seq=2 ttl=43 time=7.48 ms 19 bytes from fe:fe:00:00:09:01 icmp_seq=3 ttl=43 time=8.23 ms ^C--- fe:fe:00:00:09:01 ping statistics --- 3 packets transmitted, 3 received, 0% packet loss rtt min/avg/max/mdev = 7.476/8.151/8.743/1.267 ms batctl traceroute ================= Traceroute sends 3 packets to each hop, awaits the answers and prints out the response times. Usage:: batctl traceroute [parameters] mac|bat-host|host-name|IP-address Example:: $ batctl traceroute fe:fe:00:00:09:01 traceroute to fe:fe:00:00:09:01 (fe:fe:00:00:09:01), 50 hops max, 19 byte packets 1: fe:fe:00:00:02:01 4.932 ms 2.338 ms 1.333 ms 2: fe:fe:00:00:03:01 6.860 ms 1.579 ms 1.260 ms 3: fe:fe:00:00:04:01 2.342 ms 1.547 ms 1.655 ms 4: fe:fe:00:00:05:01 2.906 ms 2.211 ms 2.253 ms 5: fe:fe:00:00:06:01 3.577 ms 2.687 ms 3.088 ms 6: fe:fe:00:00:07:01 4.217 ms 5.741 ms 3.551 ms 7: fe:fe:00:00:08:01 5.017 ms 5.547 ms 4.294 ms 8: fe:fe:00:00:09:01 5.730 ms 4.970 ms 6.437 ms batctl tcpdump ============== tcpdump layer 2 and/or layer 3 traffic on the given interface Usage:: batctl tcpdump [parameters] interface [interface] parameters: -c compat filter - only display packets matching own compat version (14) -h print this help -n don't convert addresses to bat-host names -p dump specific packet type -x dump all packet types except specified packet types: 1 - batman ogm packets 2 - batman icmp packets 4 - batman unicast packets 8 - batman broadcast packets 16 - batman unicast tvlv packets 32 - batman fragmented packets 64 - batman tt / roaming packets 128 - non batman packets 129 - batman ogm & non batman packets tcpdump supports standard interfaces as well as raw wifi interfaces running in monitor mode. Example output for tcpdump:: $ batctl tcpdump mesh0 01:51:42.401188 BAT kansas: OGM via neigh kansas, seqno 6718, tq 255, ttl 50, v 9, flags [..I], length 28 01:51:42.489735 BAT kansas: OGM via neigh wyoming, seqno 6718, tq 245, ttl 49, v 9, flags [.D.], length 28 01:51:42.510330 BAT wyoming: OGM via neigh wyoming, seqno 6721, tq 255, ttl 50, v 9, flags [..I], length 28 01:51:42.601092 BAT wyoming: OGM via neigh kansas, seqno 6721, tq 245, ttl 49, v 9, flags [.D.], length 28 01:51:43.361076 BAT kansas > wyoming: ICMP echo request, id 0, seq 1, ttl 1, v 9, length 19 01:51:43.365347 BAT wyoming > kansas: ICMP echo reply, id 0, seq 1, ttl 50, v 9, length 19 01:51:43.372224 BAT kansas > wyoming: ICMP echo request, id 0, seq 2, ttl 1, v 9, length 19 01:51:43.376506 BAT wyoming > kansas: ICMP echo reply, id 0, seq 2, ttl 50, v 9, length 19 01:51:43.381250 BAT kansas: OGM via neigh kansas, seqno 6719, tq 255, ttl 50, v 9, flags [..I], length 28 01:51:43.386281 BAT kansas > wyoming: ICMP echo request, id 0, seq 3, ttl 1, v 9, length 19 01:51:43.387910 BAT wyoming > kansas: ICMP echo reply, id 0, seq 3, ttl 50, v 9, length 19 01:51:43.479503 BAT kansas: OGM via neigh wyoming, seqno 6719, tq 245, ttl 49, v 9, flags [.D.], length 28 01:51:43.509899 BAT wyoming: OGM via neigh wyoming, seqno 6722, tq 255, ttl 50, v 9, flags [..I], length 28 01:51:43.600999 BAT wyoming: OGM via neigh kansas, seqno 6722, tq 245, ttl 49, v 9, flags [.D.], length 28 01:51:44.381064 BAT kansas: OGM via neigh kansas, seqno 6720, tq 255, ttl 50, v 9, flags [..I], length 28 batctl bisect_iv ================ Analyzes the B.A.T.M.A.N. IV logfiles to build a small internal database of all sent sequence numbers and routing table changes. This database can be used to search for routing loops (default action), to trace OGMs of a host (use "-t" to specify the mac address or bat-host name) throughout the network or to display routing tables of the nodes (use "-r" to specify the mac address or bat-host name). You can name a specific sequence number or a range using the "-s" option to limit the output's range. Furthermore you can filter the output by specifying an originator (use "-o" to specify the mac address or bat-host name) to only see data connected to this originator. If "-n" was given batctl will not replace the mac addresses with bat-host names in the output. Usage:: batctl bisect_iv [parameters] .. parameters: -h print this help -l run a loop detection of given mac address or bat-host (default) -n don't convert addresses to bat-host names -r print routing tables of given mac address or bat-host -s seqno range to limit the output -t trace seqnos of given mac address or bat-host Examples:: $ batctl bisect_iv log/* -l uml3 Analyzing routing tables of originator: uml3 [all sequence numbers] Checking host: uml3 Path towards uml7 (seqno 9 via neigh uml5): -> uml5 -> uml6 Path towards uml7 (seqno 10 via neigh uml4): -> uml4 -> uml5 -> uml6 Path towards uml6 (seqno 4 via neigh uml4): -> uml4 Path towards uml8 (seqno 12 via neigh uml4): -> uml4 -> uml5 -> uml6 -> uml7 Path towards uml8 (seqno 203 via neigh uml4): -> uml4 -> uml6 -> uml7 Path towards uml8 (seqno 391 via neigh uml2): -> uml2 -> uml3 -> uml2 aborted due to loop! Path towards uml8 (seqno 396 via neigh uml4): -> uml4 -> uml6 -> uml7 Path towards uml9 (seqno 10 via neigh uml5): -> uml5 -> uml6 -> uml7 -> uml9. Path towards uml9 (seqno 10 via neigh uml4): -> uml4 -> uml5 -> uml6 -> uml7 -> uml9. Path towards uml9 (seqno 11 via neigh uml4): -> uml4 -> uml6 -> uml7 -> uml8 -> uml9. Path towards uml9 (seqno 12 via neigh uml4): -> uml4 -> uml5 -> uml6 -> uml7 -> uml8 -> uml9. Path towards uml9 (seqno 21 via neigh uml5): -> uml5 -> uml6 -> uml7 -> uml8 -> uml9. Path towards uml9 (seqno 22 via neigh uml4): -> uml4 -> uml5 -> uml6 -> uml7 -> uml8 -> uml9. $ ./batctl bisect_iv -t uml3 log/* Sequence number flow of originator: uml3 [all sequence numbers] [...] +=> uml3 (seqno 19) |- uml2 [tq: 255, ttl: 50, neigh: uml3, prev_sender: uml3] | |- uml3 [tq: 154, ttl: 49, neigh: uml2, prev_sender: uml3] | \- uml1 [tq: 154, ttl: 49, neigh: uml2, prev_sender: uml3] | |- uml3 [tq: 51, ttl: 48, neigh: uml1, prev_sender: uml2] | \- uml2 [tq: 51, ttl: 48, neigh: uml1, prev_sender: uml2] |- uml5 [tq: 255, ttl: 50, neigh: uml3, prev_sender: uml3] | |- uml6 [tq: 33, ttl: 48, neigh: uml5, prev_sender: uml3] | | |- uml5 [tq: 11, ttl: 47, neigh: uml6, prev_sender: uml5] | | |- uml7 [tq: 11, ttl: 47, neigh: uml6, prev_sender: uml5] | | | |- uml8 [tq: 3, ttl: 46, neigh: uml7, prev_sender: uml6] | | | | |- uml6 [tq: 0, ttl: 45, neigh: uml8, prev_sender: uml7] | | | | |- uml9 [tq: 0, ttl: 45, neigh: uml8, prev_sender: uml7] | | | | \- uml7 [tq: 0, ttl: 45, neigh: uml8, prev_sender: uml7] | | | |- uml6 [tq: 3, ttl: 46, neigh: uml7, prev_sender: uml6] | | | |- uml9 [tq: 3, ttl: 46, neigh: uml7, prev_sender: uml6] | | | \- uml5 [tq: 3, ttl: 46, neigh: uml7, prev_sender: uml6] | | \- uml4 [tq: 11, ttl: 47, neigh: uml6, prev_sender: uml5] | |- uml7 [tq: 33, ttl: 48, neigh: uml5, prev_sender: uml3] | \- uml4 [tq: 33, ttl: 48, neigh: uml5, prev_sender: uml3] \- uml4 [tq: 255, ttl: 50, neigh: uml3, prev_sender: uml3] |- uml3 [tq: 106, ttl: 49, neigh: uml4, prev_sender: uml3] |- uml6 [tq: 106, ttl: 49, neigh: uml4, prev_sender: uml3] |- uml2 [tq: 106, ttl: 49, neigh: uml4, prev_sender: uml3] \- uml5 [tq: 106, ttl: 49, neigh: uml4, prev_sender: uml3] +=> uml3 (seqno 20) |- uml2 [tq: 255, ttl: 50, neigh: uml3, prev_sender: uml3] | |- uml3 [tq: 160, ttl: 49, neigh: uml2, prev_sender: uml3] | |- uml1 [tq: 160, ttl: 49, neigh: uml2, prev_sender: uml3] | \- uml4 [tq: 160, ttl: 49, neigh: uml2, prev_sender: uml3] |- uml5 [tq: 255, ttl: 50, neigh: uml3, prev_sender: uml3] | |- uml3 [tq: 43, ttl: 48, neigh: uml5, prev_sender: uml3] | |- uml6 [tq: 43, ttl: 48, neigh: uml5, prev_sender: uml3] | | |- uml8 [tq: 16, ttl: 47, neigh: uml6, prev_sender: uml5] | | |- uml5 [tq: 16, ttl: 47, neigh: uml6, prev_sender: uml5] | | |- uml7 [tq: 16, ttl: 47, neigh: uml6, prev_sender: uml5] | | | |- uml8 [tq: 5, ttl: 46, neigh: uml7, prev_sender: uml6] | | | | |- uml6 [tq: 0, ttl: 45, neigh: uml8, prev_sender: uml7] | | | | |- uml9 [tq: 0, ttl: 45, neigh: uml8, prev_sender: uml7] | | | | \- uml7 [tq: 0, ttl: 45, neigh: uml8, prev_sender: uml7] | | | \- uml6 [tq: 5, ttl: 46, neigh: uml7, prev_sender: uml6] | | \- uml4 [tq: 16, ttl: 47, neigh: uml6, prev_sender: uml5] | \- uml4 [tq: 43, ttl: 48, neigh: uml5, prev_sender: uml3] |- uml1 [tq: 255, ttl: 50, neigh: uml3, prev_sender: uml3] | \- uml2 [tq: 49, ttl: 48, neigh: uml1, prev_sender: uml3] \- uml4 [tq: 255, ttl: 50, neigh: uml3, prev_sender: uml3] |- uml3 [tq: 114, ttl: 49, neigh: uml4, prev_sender: uml3] |- uml6 [tq: 114, ttl: 49, neigh: uml4, prev_sender: uml3] |- uml2 [tq: 114, ttl: 49, neigh: uml4, prev_sender: uml3] \- uml5 [tq: 114, ttl: 49, neigh: uml4, prev_sender: uml3] [...] batctl originators ================== Check the Originators table Usage:: batctl originators|o Example:: $ batctl originators [B.A.T.M.A.N. adv 2011.4.0, MainIF/MAC: eth0/fe:fe:00:00:01:01 (bat0)] Originator last-seen (#/255) Nexthop [outgoingIF]: Potential nexthops ... fe:fe:00:00:08:01 0.820s (194) fe:fe:00:00:02:01 [ eth0]: fe:fe:00:00:03:01 ( 65) fe:fe:00:00:02:01 (194) fe:fe:00:00:03:01 0.980s (245) fe:fe:00:00:02:01 [ eth0]: fe:fe:00:00:03:01 ( 81) fe:fe:00:00:02:01 (245) fe:fe:00:00:05:01 0.140s (221) fe:fe:00:00:02:01 [ eth0]: fe:fe:00:00:03:01 ( 76) fe:fe:00:00:02:01 (221) fe:fe:00:00:04:01 0.010s (235) fe:fe:00:00:02:01 [ eth0]: fe:fe:00:00:02:01 (235) fe:fe:00:00:03:01 ( 81) fe:fe:00:00:09:01 0.830s (187) fe:fe:00:00:02:01 [ eth0]: fe:fe:00:00:03:01 ( 63) fe:fe:00:00:02:01 (187) fe:fe:00:00:06:01 0.830s (213) fe:fe:00:00:02:01 [ eth0]: fe:fe:00:00:03:01 ( 71) fe:fe:00:00:02:01 (213) fe:fe:00:00:02:01 0.240s (255) fe:fe:00:00:02:01 [ eth0]: fe:fe:00:00:03:01 ( 81) fe:fe:00:00:02:01 (255) fe:fe:00:00:07:01 0.670s (200) fe:fe:00:00:02:01 [ eth0]: fe:fe:00:00:03:01 ( 68) fe:fe:00:00:02:01 (200) Since 2014.1.0, each batman interface has an individual originator table as well which is only used for routing. These table explain to which neighbor a packet is forwarded when the packet is received on the specified interface. Example:: $ batctl originators -i eth0 [B.A.T.M.A.N. adv master-b82b9b2, IF/MAC: eth0/fe:f0:00:00:02:01 (bat0 BATMAN_IV)] Originator last-seen (#/255) Nexthop [outgoingIF]: Potential nexthops ... fe:f1:00:00:03:01 0.170s (255) fe:f1:00:00:03:01 [ eth1]: fe:f1:00:00:03:01 (255) fe:f1:00:00:01:01 0.510s (253) fe:f1:00:00:01:01 [ eth1]: fe:f1:00:00:01:01 (253) fe:f0:00:00:05:01 0.660s (222) fe:f1:00:00:03:01 [ eth1]: fe:f0:00:00:03:01 (198) fe:f1:00:00:03:01 (222) fe:f0:00:00:03:01 0.560s (252) fe:f1:00:00:03:01 [ eth1]: fe:f1:00:00:03:01 (252) fe:f0:00:00:03:01 (240) fe:f0:00:00:04:01 0.250s (240) fe:f1:00:00:03:01 [ eth1]: fe:f1:00:00:03:01 (240) fe:f0:00:00:03:01 (211) fe:f0:00:00:01:01 0.850s (255) fe:f1:00:00:01:01 [ eth1]: fe:f1:00:00:01:01 (255) fe:f0:00:00:01:01 (238) $ batctl originators -i eth1 [B.A.T.M.A.N. adv master-b82b9b2, IF/MAC: eth1/fe:f1:00:00:02:01 (bat0 BATMAN_IV)] Originator last-seen (#/255) Nexthop [outgoingIF]: Potential nexthops ... fe:f1:00:00:03:01 0.880s (240) fe:f1:00:00:03:01 [ eth1]: fe:f1:00:00:03:01 (240) fe:f1:00:00:01:01 0.250s (239) fe:f1:00:00:01:01 [ eth1]: fe:f1:00:00:01:01 (239) fe:f0:00:00:05:01 0.340s (211) fe:f1:00:00:03:01 [ eth1]: fe:f0:00:00:03:01 (210) fe:f1:00:00:03:01 (211) fe:f0:00:00:03:01 0.260s (253) fe:f0:00:00:03:01 [ eth0]: fe:f1:00:00:03:01 (240) fe:f0:00:00:03:01 (253) fe:f0:00:00:04:01 0.010s (225) fe:f0:00:00:03:01 [ eth0]: fe:f1:00:00:03:01 (224) fe:f0:00:00:03:01 (225) fe:f0:00:00:01:01 0.510s (255) fe:f0:00:00:01:01 [ eth0]: fe:f1:00:00:01:01 (240) fe:f0:00:00:01:01 (255) batctl interface ================ display or modify the interface settings Usage:: batctl interface|if [add|del iface(s)] Example:: $ batctl interface eth0: active batctl interval =============== display or modify the originator interval in ms Usage:: batctl orig_interval|it [interval] Example:: $ batctl interval 1000 batctl elp interval =================== display or modify the elp interval in ms for hard interface Usage:: batctl hardif $hardif elp_interval|et [interval] Example:: $ batctl hardif eth0 elp_interval 200 $ batctl hardif eth0 elp_interval 200 batctl throughput override ========================== display or modify the throughput override in kbit/s for hard interface Usage:: batctl hardif $hardif throughput_override|to [kbit] Example:: $ batctl hardif eth0 throughput_override 15000 $ batctl hardif eth0 throughput_override 15mbit $ batctl hardif eth0 throughput_override 15.0 MBit batctl loglevel =============== display or modify the log level Usage:: batctl loglevel|ll [level] Example:: $ batctl loglevel [x] all debug output disabled (none) [ ] messages related to routing / flooding / broadcasting (batman) [ ] messages related to route added / changed / deleted (routes) [ ] messages related to translation table operations (tt) [ ] messages related to bridge loop avoidance (bla) [ ] messages related to arp snooping and distributed arp table (dat) [ ] messages related to network coding (nc) [ ] messages related to multicast (mcast) [ ] messages related to throughput meter (tp) batctl nc_nodes =============== display the neighbor nodes considered for network coded packets Usage:: batctl nc_nodes|nn Example:: Node: fe:fe:00:0a:01:01 Ingoing: fe:fe:00:0a:01:01 fe:fe:00:0a:02:01 Outgoing: fe:fe:00:0a:01:01 fe:fe:00:0a:02:01 Where Node: is the neighbor Ingoing: is the neighbors this neighbor can hear packets from Outgoing: is the neighbors that can hear packets from this neighbor batctl network_coding ===================== display or modify the network coding setting Usage:: batctl network_coding|nc [0|1] Note that network coding requires a working promiscuous mode on all interfaces. batctl multicast_forceflood =========================== display or modify the multicast forceflood setting Usage:: batctl multicast_forceflood|mff [0|1] batctl multicast_fanout ======================= display or modify the multicast fanout setting Usage:: batctl multicast_fanout|mo [fanout] batctl mcast_flags ================== display local and remote multicast flags Usage:: batctl mcast_flags|mf Example:: Multicast flags (own flags: [U46]) * Bridged [U] U * No IGMP/MLD Querier [4/6]: ./. * Shadowing IGMP/MLD Querier [4/6]: 4/6 ------------------------------------------- Originator Flags 02:04:64:a4:39:c1 [U..] 02:04:64:a4:39:c2 [U..] 02:04:64:a4:39:c3 [...] where Originator: the MAC address of the originating (primary interface) batman-adv node Flags: multicast flags of the according node U: wants all unsnoopable multicast traffic, meaning other nodes need to always forward any multicast traffic destined to ff02::1 or 224.0.0.0/24 to it 4: wants all IPv4 multicast traffic, meaning other nodes need to always forward any IPv4 multicast traffic to it 6: wants all IPv6 multicast traffic, meaning other nodes need to always forward any IPv6 multicast traffic to it If a node does not have multicast optimizations available (e.g. old batman-adv version or optimizations not compiled in), therefore not announcing any multicast tvlv/flags, a '-' will be displayed instead of '[...]'. batctl aggregation ================== display or modify the packet aggregation setting Usage:: batctl aggregation|ag [0|1] batctl hop_penalty ================== display or modify the hop_penalty (0-255) Usage:: batctl hop_penalty|hp [penalty] Example:: $ batctl penalty 30 batctl isolation_mark ===================== display or modify the isolation mark. This value is used by Extended Isolation feature. Usage:: batctl isolation_mark|mark $value[/0x$mask] * Example 1: ``batctl mark 0x00000001/0xffffffff`` * Example 2: ``batctl mark 0x00040000/0xffff0000`` * Example 3: ``batctl mark 16`` * Example 4: ``batctl mark 0x0f`` batctl translocal ================= display the local translation table Usage:: batctl translocal|tl Example:: $ batctl translocal Locally retrieved addresses (from bat0) announced via TT (TTVN: 1): * fe:fe:00:00:01:01 [RPNXW] In particular, RPNXW are flags which have the following meanings: R/Roaming: this client moved to another node but it is still kept for consistency reasons until the next OGM is sent. P/noPurge: this client represents the local soft interface and will never be deleted. N/New: this client has recently been added but is not advertised in the mesh until the next OGM is sent (for consistency reasons). X/delete: this client has to be removed for some reason, but it is still kept for consistency reasons until the next OGM is sent. W/Wireless: this client is connected to the node through a wireless device. If any of the flags is not enabled, a '.' will substitute its symbol. batctl transglobal ================== display the global translation table Usage:: batctl transglobal|tg Example:: Globally announced TT entries received via the mesh bat0 Client (TTVN) Originator (Curr TTVN) Flags * fe:fe:00:00:01:01 ( 12) via fe:fe:00:00:01:02 ( 50) [RXW] where TTVN: is the translation-table-version-number which introduced this client Curr TTVN: is the translation-table-version-number currently advertised by the originator serving this client (different clients advertised by the same originator have the same Curr TTVN) Flags that mean: R/Roaming: this client moved to another node but it is still kept for consistency reasons until the next OGM is sent. X/delete: this client has to be removed for some reason, but it is still kept for consistency reasons until the next OGM is sent. W/Wireless: this client is connected to the node through a wireless device. If any of the flags is not enabled, a '.' will substitute its symbol. batctl dat_cache ================= display the local D.A.T. cache Usage:: batctl dat_cache|dc Example:: Distributed ARP Table (bat0): IPv4 MAC last-seen * 172.100.0.1 b6:9b:d0:ea:b1:13 0:00 where IPv4: is the IP address of a client in the mesh network MAC: is the MAC address associated to that IP last-seen: is the amount of time since last refresh of this entry batctl and network name spaces ============================== The batman-adv kernel module is netns aware. Mesh instances can be created in name spaces, and interfaces in that name space added to the mesh. The mesh interface cannot be moved between name spaces, as is typical for virtual interfaces. The following example creates two network namespaces, and uses veth pairs to connect them together into a mesh of three nodes:: EMU1="ip netns exec emu1" EMU2="ip netns exec emu2" ip netns add emu1 ip netns add emu2 ip link add emu1-veth1 type veth peer name emu2-veth1 ip link set emu1-veth1 netns emu1 ip link set emu2-veth1 netns emu2 $EMU1 ip link set emu1-veth1 name veth1 $EMU2 ip link set emu2-veth1 name veth1 $EMU1 ip link set veth1 up $EMU2 ip link set veth1 up ip link add emu1-veth2 type veth peer name veth2 ip link set emu1-veth2 netns emu1 $EMU1 ip link set emu1-veth2 name veth2 $EMU1 ip link set veth2 up ip link set veth2 up $EMU1 batctl if add veth1 $EMU1 batctl if add veth2 $EMU1 ip link set bat0 up $EMU2 batctl if add veth1 $EMU2 ip link set bat0 up batctl if add veth2 ip link set bat0 up alfred and batadv-vis can also be used with name spaces. In this example, only netns has been used, so there are no filesystem name spaces. Hence the unix domain socket used by alfred needs to be given a unique name per instance:: ($EMU1 alfred -m -i bat0 -u /var/run/emu1-alfred.soc) & ($EMU2 alfred -m -i bat0 -u /var/run/emu2-alfred.soc) & alfred -m -i bat0 & ($EMU1 batadv-vis -s -u /var/run/emu1-alfred.soc) & ($EMU2 batadv-vis -s -u /var/run/emu2-alfred.soc) & batadv-vis -s &