/* * Driver for EIP97 cryptographic accelerator. * * Copyright (c) 2016 Ryder Lee * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include "mtk-platform.h" #define MTK_BURST_SIZE_MSK GENMASK(7, 4) #define MTK_BURST_SIZE(x) ((x) << 4) #define MTK_DESC_SIZE(x) ((x) << 0) #define MTK_DESC_OFFSET(x) ((x) << 16) #define MTK_DESC_FETCH_SIZE(x) ((x) << 0) #define MTK_DESC_FETCH_THRESH(x) ((x) << 16) #define MTK_DESC_OVL_IRQ_EN BIT(25) #define MTK_DESC_ATP_PRESENT BIT(30) #define MTK_DFSE_IDLE GENMASK(3, 0) #define MTK_DFSE_THR_CTRL_EN BIT(30) #define MTK_DFSE_THR_CTRL_RESET BIT(31) #define MTK_DFSE_RING_ID(x) (((x) >> 12) & GENMASK(3, 0)) #define MTK_DFSE_MIN_DATA(x) ((x) << 0) #define MTK_DFSE_MAX_DATA(x) ((x) << 8) #define MTK_DFE_MIN_CTRL(x) ((x) << 16) #define MTK_DFE_MAX_CTRL(x) ((x) << 24) #define MTK_IN_BUF_MIN_THRESH(x) ((x) << 8) #define MTK_IN_BUF_MAX_THRESH(x) ((x) << 12) #define MTK_OUT_BUF_MIN_THRESH(x) ((x) << 0) #define MTK_OUT_BUF_MAX_THRESH(x) ((x) << 4) #define MTK_IN_TBUF_SIZE(x) (((x) >> 4) & GENMASK(3, 0)) #define MTK_IN_DBUF_SIZE(x) (((x) >> 8) & GENMASK(3, 0)) #define MTK_OUT_DBUF_SIZE(x) (((x) >> 16) & GENMASK(3, 0)) #define MTK_CMD_FIFO_SIZE(x) (((x) >> 8) & GENMASK(3, 0)) #define MTK_RES_FIFO_SIZE(x) (((x) >> 12) & GENMASK(3, 0)) #define MTK_PE_TK_LOC_AVL BIT(2) #define MTK_PE_PROC_HELD BIT(14) #define MTK_PE_TK_TIMEOUT_EN BIT(22) #define MTK_PE_INPUT_DMA_ERR BIT(0) #define MTK_PE_OUTPUT_DMA_ERR BIT(1) #define MTK_PE_PKT_PORC_ERR BIT(2) #define MTK_PE_PKT_TIMEOUT BIT(3) #define MTK_PE_FATAL_ERR BIT(14) #define MTK_PE_INPUT_DMA_ERR_EN BIT(16) #define MTK_PE_OUTPUT_DMA_ERR_EN BIT(17) #define MTK_PE_PKT_PORC_ERR_EN BIT(18) #define MTK_PE_PKT_TIMEOUT_EN BIT(19) #define MTK_PE_FATAL_ERR_EN BIT(30) #define MTK_PE_INT_OUT_EN BIT(31) #define MTK_HIA_SIGNATURE ((u16)0x35ca) #define MTK_HIA_DATA_WIDTH(x) (((x) >> 25) & GENMASK(1, 0)) #define MTK_HIA_DMA_LENGTH(x) (((x) >> 20) & GENMASK(4, 0)) #define MTK_CDR_STAT_CLR GENMASK(4, 0) #define MTK_RDR_STAT_CLR GENMASK(7, 0) #define MTK_AIC_INT_MSK GENMASK(5, 0) #define MTK_AIC_VER_MSK (GENMASK(15, 0) | GENMASK(27, 20)) #define MTK_AIC_VER11 0x011036c9 #define MTK_AIC_VER12 0x012036c9 #define MTK_AIC_G_CLR GENMASK(30, 20) /** * EIP97 is an integrated security subsystem to accelerate cryptographic * functions and protocols to offload the host processor. * Some important hardware modules are briefly introduced below: * * Host Interface Adapter(HIA) - the main interface between the host * system and the hardware subsystem. It is responsible for attaching * processing engine to the specific host bus interface and provides a * standardized software view for off loading tasks to the engine. * * Command Descriptor Ring Manager(CDR Manager) - keeps track of how many * CD the host has prepared in the CDR. It monitors the fill level of its * CD-FIFO and if there's sufficient space for the next block of descriptors, * then it fires off a DMA request to fetch a block of CDs. * * Data fetch engine(DFE) - It is responsible for parsing the CD and * setting up the required control and packet data DMA transfers from * system memory to the processing engine. * * Result Descriptor Ring Manager(RDR Manager) - same as CDR Manager, * but target is result descriptors, Moreover, it also handles the RD * updates under control of the DSE. For each packet data segment * processed, the DSE triggers the RDR Manager to write the updated RD. * If triggered to update, the RDR Manager sets up a DMA operation to * copy the RD from the DSE to the correct location in the RDR. * * Data Store Engine(DSE) - It is responsible for parsing the prepared RD * and setting up the required control and packet data DMA transfers from * the processing engine to system memory. * * Advanced Interrupt Controllers(AICs) - receive interrupt request signals * from various sources and combine them into one interrupt output. * The AICs are used by: * - One for the HIA global and processing engine interrupts. * - The others for the descriptor ring interrupts. */ /* Cryptographic engine capabilities */ struct mtk_sys_cap { /* host interface adapter */ u32 hia_ver; u32 hia_opt; /* packet engine */ u32 pkt_eng_opt; /* global hardware */ u32 hw_opt; }; static void mtk_desc_ring_link(struct mtk_cryp *cryp, u32 mask) { /* Assign rings to DFE/DSE thread and enable it */ writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DFE_THR_CTRL); writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DSE_THR_CTRL); } static void mtk_dfe_dse_buf_setup(struct mtk_cryp *cryp, struct mtk_sys_cap *cap) { u32 width = MTK_HIA_DATA_WIDTH(cap->hia_opt) + 2; u32 len = MTK_HIA_DMA_LENGTH(cap->hia_opt) - 1; u32 ipbuf = min((u32)MTK_IN_DBUF_SIZE(cap->hw_opt) + width, len); u32 opbuf = min((u32)MTK_OUT_DBUF_SIZE(cap->hw_opt) + width, len); u32 itbuf = min((u32)MTK_IN_TBUF_SIZE(cap->hw_opt) + width, len); writel(MTK_DFSE_MIN_DATA(ipbuf - 1) | MTK_DFSE_MAX_DATA(ipbuf) | MTK_DFE_MIN_CTRL(itbuf - 1) | MTK_DFE_MAX_CTRL(itbuf), cryp->base + DFE_CFG); writel(MTK_DFSE_MIN_DATA(opbuf - 1) | MTK_DFSE_MAX_DATA(opbuf), cryp->base + DSE_CFG); writel(MTK_IN_BUF_MIN_THRESH(ipbuf - 1) | MTK_IN_BUF_MAX_THRESH(ipbuf), cryp->base + PE_IN_DBUF_THRESH); writel(MTK_IN_BUF_MIN_THRESH(itbuf - 1) | MTK_IN_BUF_MAX_THRESH(itbuf), cryp->base + PE_IN_TBUF_THRESH); writel(MTK_OUT_BUF_MIN_THRESH(opbuf - 1) | MTK_OUT_BUF_MAX_THRESH(opbuf), cryp->base + PE_OUT_DBUF_THRESH); writel(0, cryp->base + PE_OUT_TBUF_THRESH); writel(0, cryp->base + PE_OUT_BUF_CTRL); } static int mtk_dfe_dse_state_check(struct mtk_cryp *cryp) { int ret = -EINVAL; u32 val; /* Check for completion of all DMA transfers */ val = readl(cryp->base + DFE_THR_STAT); if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE) { val = readl(cryp->base + DSE_THR_STAT); if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE) ret = 0; } if (!ret) { /* Take DFE/DSE thread out of reset */ writel(0, cryp->base + DFE_THR_CTRL); writel(0, cryp->base + DSE_THR_CTRL); } else { return -EBUSY; } return 0; } static int mtk_dfe_dse_reset(struct mtk_cryp *cryp) { int err; /* Reset DSE/DFE and correct system priorities for all rings. */ writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DFE_THR_CTRL); writel(0, cryp->base + DFE_PRIO_0); writel(0, cryp->base + DFE_PRIO_1); writel(0, cryp->base + DFE_PRIO_2); writel(0, cryp->base + DFE_PRIO_3); writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DSE_THR_CTRL); writel(0, cryp->base + DSE_PRIO_0); writel(0, cryp->base + DSE_PRIO_1); writel(0, cryp->base + DSE_PRIO_2); writel(0, cryp->base + DSE_PRIO_3); err = mtk_dfe_dse_state_check(cryp); if (err) return err; return 0; } static void mtk_cmd_desc_ring_setup(struct mtk_cryp *cryp, int i, struct mtk_sys_cap *cap) { /* Full descriptor that fits FIFO minus one */ u32 count = ((1 << MTK_CMD_FIFO_SIZE(cap->hia_opt)) / MTK_DESC_SZ) - 1; /* Temporarily disable external triggering */ writel(0, cryp->base + CDR_CFG(i)); /* Clear CDR count */ writel(MTK_CNT_RST, cryp->base + CDR_PREP_COUNT(i)); writel(MTK_CNT_RST, cryp->base + CDR_PROC_COUNT(i)); writel(0, cryp->base + CDR_PREP_PNTR(i)); writel(0, cryp->base + CDR_PROC_PNTR(i)); writel(0, cryp->base + CDR_DMA_CFG(i)); /* Configure CDR host address space */ writel(0, cryp->base + CDR_BASE_ADDR_HI(i)); writel(cryp->ring[i]->cmd_dma, cryp->base + CDR_BASE_ADDR_LO(i)); writel(MTK_DESC_RING_SZ, cryp->base + CDR_RING_SIZE(i)); /* Clear and disable all CDR interrupts */ writel(MTK_CDR_STAT_CLR, cryp->base + CDR_STAT(i)); /* * Set command descriptor offset and enable additional * token present in descriptor. */ writel(MTK_DESC_SIZE(MTK_DESC_SZ) | MTK_DESC_OFFSET(MTK_DESC_OFF) | MTK_DESC_ATP_PRESENT, cryp->base + CDR_DESC_SIZE(i)); writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) | MTK_DESC_FETCH_THRESH(count * MTK_DESC_SZ), cryp->base + CDR_CFG(i)); } static void mtk_res_desc_ring_setup(struct mtk_cryp *cryp, int i, struct mtk_sys_cap *cap) { u32 rndup = 2; u32 count = ((1 << MTK_RES_FIFO_SIZE(cap->hia_opt)) / rndup) - 1; /* Temporarily disable external triggering */ writel(0, cryp->base + RDR_CFG(i)); /* Clear RDR count */ writel(MTK_CNT_RST, cryp->base + RDR_PREP_COUNT(i)); writel(MTK_CNT_RST, cryp->base + RDR_PROC_COUNT(i)); writel(0, cryp->base + RDR_PREP_PNTR(i)); writel(0, cryp->base + RDR_PROC_PNTR(i)); writel(0, cryp->base + RDR_DMA_CFG(i)); /* Configure RDR host address space */ writel(0, cryp->base + RDR_BASE_ADDR_HI(i)); writel(cryp->ring[i]->res_dma, cryp->base + RDR_BASE_ADDR_LO(i)); writel(MTK_DESC_RING_SZ, cryp->base + RDR_RING_SIZE(i)); writel(MTK_RDR_STAT_CLR, cryp->base + RDR_STAT(i)); /* * RDR manager generates update interrupts on a per-completed-packet, * and the rd_proc_thresh_irq interrupt is fired when proc_pkt_count * for the RDR exceeds the number of packets. */ writel(MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE, cryp->base + RDR_THRESH(i)); /* * Configure a threshold and time-out value for the processed * result descriptors (or complete packets) that are written to * the RDR. */ writel(MTK_DESC_SIZE(MTK_DESC_SZ) | MTK_DESC_OFFSET(MTK_DESC_OFF), cryp->base + RDR_DESC_SIZE(i)); /* * Configure HIA fetch size and fetch threshold that are used to * fetch blocks of multiple descriptors. */ writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) | MTK_DESC_FETCH_THRESH(count * rndup) | MTK_DESC_OVL_IRQ_EN, cryp->base + RDR_CFG(i)); } static int mtk_packet_engine_setup(struct mtk_cryp *cryp) { struct mtk_sys_cap cap; int i, err; u32 val; cap.hia_ver = readl(cryp->base + HIA_VERSION); cap.hia_opt = readl(cryp->base + HIA_OPTIONS); cap.hw_opt = readl(cryp->base + EIP97_OPTIONS); if (!(((u16)cap.hia_ver) == MTK_HIA_SIGNATURE)) return -EINVAL; /* Configure endianness conversion method for master (DMA) interface */ writel(0, cryp->base + EIP97_MST_CTRL); /* Set HIA burst size */ val = readl(cryp->base + HIA_MST_CTRL); val &= ~MTK_BURST_SIZE_MSK; val |= MTK_BURST_SIZE(5); writel(val, cryp->base + HIA_MST_CTRL); err = mtk_dfe_dse_reset(cryp); if (err) { dev_err(cryp->dev, "Failed to reset DFE and DSE.\n"); return err; } mtk_dfe_dse_buf_setup(cryp, &cap); /* Enable the 4 rings for the packet engines. */ mtk_desc_ring_link(cryp, 0xf); for (i = 0; i < MTK_RING_MAX; i++) { mtk_cmd_desc_ring_setup(cryp, i, &cap); mtk_res_desc_ring_setup(cryp, i, &cap); } writel(MTK_PE_TK_LOC_AVL | MTK_PE_PROC_HELD | MTK_PE_TK_TIMEOUT_EN, cryp->base + PE_TOKEN_CTRL_STAT); /* Clear all pending interrupts */ writel(MTK_AIC_G_CLR, cryp->base + AIC_G_ACK); writel(MTK_PE_INPUT_DMA_ERR | MTK_PE_OUTPUT_DMA_ERR | MTK_PE_PKT_PORC_ERR | MTK_PE_PKT_TIMEOUT | MTK_PE_FATAL_ERR | MTK_PE_INPUT_DMA_ERR_EN | MTK_PE_OUTPUT_DMA_ERR_EN | MTK_PE_PKT_PORC_ERR_EN | MTK_PE_PKT_TIMEOUT_EN | MTK_PE_FATAL_ERR_EN | MTK_PE_INT_OUT_EN, cryp->base + PE_INTERRUPT_CTRL_STAT); return 0; } static int mtk_aic_cap_check(struct mtk_cryp *cryp, int hw) { u32 val; if (hw == MTK_RING_MAX) val = readl(cryp->base + AIC_G_VERSION); else val = readl(cryp->base + AIC_VERSION(hw)); val &= MTK_AIC_VER_MSK; if (val != MTK_AIC_VER11 && val != MTK_AIC_VER12) return -ENXIO; if (hw == MTK_RING_MAX) val = readl(cryp->base + AIC_G_OPTIONS); else val = readl(cryp->base + AIC_OPTIONS(hw)); val &= MTK_AIC_INT_MSK; if (!val || val > 32) return -ENXIO; return 0; } static int mtk_aic_init(struct mtk_cryp *cryp, int hw) { int err; err = mtk_aic_cap_check(cryp, hw); if (err) return err; /* Disable all interrupts and set initial configuration */ if (hw == MTK_RING_MAX) { writel(0, cryp->base + AIC_G_ENABLE_CTRL); writel(0, cryp->base + AIC_G_POL_CTRL); writel(0, cryp->base + AIC_G_TYPE_CTRL); writel(0, cryp->base + AIC_G_ENABLE_SET); } else { writel(0, cryp->base + AIC_ENABLE_CTRL(hw)); writel(0, cryp->base + AIC_POL_CTRL(hw)); writel(0, cryp->base + AIC_TYPE_CTRL(hw)); writel(0, cryp->base + AIC_ENABLE_SET(hw)); } return 0; } static int mtk_accelerator_init(struct mtk_cryp *cryp) { int i, err; /* Initialize advanced interrupt controller(AIC) */ for (i = 0; i < MTK_IRQ_NUM; i++) { err = mtk_aic_init(cryp, i); if (err) { dev_err(cryp->dev, "Failed to initialize AIC.\n"); return err; } } /* Initialize packet engine */ err = mtk_packet_engine_setup(cryp); if (err) { dev_err(cryp->dev, "Failed to configure packet engine.\n"); return err; } return 0; } static void mtk_desc_dma_free(struct mtk_cryp *cryp) { int i; for (i = 0; i < MTK_RING_MAX; i++) { dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ, cryp->ring[i]->res_base, cryp->ring[i]->res_dma); dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ, cryp->ring[i]->cmd_base, cryp->ring[i]->cmd_dma); kfree(cryp->ring[i]); } } static int mtk_desc_ring_alloc(struct mtk_cryp *cryp) { struct mtk_ring **ring = cryp->ring; int i; for (i = 0; i < MTK_RING_MAX; i++) { ring[i] = kzalloc(sizeof(**ring), GFP_KERNEL); if (!ring[i]) goto err_cleanup; ring[i]->cmd_base = dma_zalloc_coherent(cryp->dev, MTK_DESC_RING_SZ, &ring[i]->cmd_dma, GFP_KERNEL); if (!ring[i]->cmd_base) goto err_cleanup; ring[i]->res_base = dma_zalloc_coherent(cryp->dev, MTK_DESC_RING_SZ, &ring[i]->res_dma, GFP_KERNEL); if (!ring[i]->res_base) goto err_cleanup; ring[i]->cmd_next = ring[i]->cmd_base; ring[i]->res_next = ring[i]->res_base; } return 0; err_cleanup: do { dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ, ring[i]->res_base, ring[i]->res_dma); dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ, ring[i]->cmd_base, ring[i]->cmd_dma); kfree(ring[i]); } while (i--); return -ENOMEM; } static int mtk_crypto_probe(struct platform_device *pdev) { struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); struct mtk_cryp *cryp; int i, err; cryp = devm_kzalloc(&pdev->dev, sizeof(*cryp), GFP_KERNEL); if (!cryp) return -ENOMEM; cryp->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(cryp->base)) return PTR_ERR(cryp->base); for (i = 0; i < MTK_IRQ_NUM; i++) { cryp->irq[i] = platform_get_irq(pdev, i); if (cryp->irq[i] < 0) { dev_err(cryp->dev, "no IRQ:%d resource info\n", i); return cryp->irq[i]; } } cryp->clk_cryp = devm_clk_get(&pdev->dev, "cryp"); if (IS_ERR(cryp->clk_cryp)) return -EPROBE_DEFER; cryp->dev = &pdev->dev; pm_runtime_enable(cryp->dev); pm_runtime_get_sync(cryp->dev); err = clk_prepare_enable(cryp->clk_cryp); if (err) goto err_clk_cryp; /* Allocate four command/result descriptor rings */ err = mtk_desc_ring_alloc(cryp); if (err) { dev_err(cryp->dev, "Unable to allocate descriptor rings.\n"); goto err_resource; } /* Initialize hardware modules */ err = mtk_accelerator_init(cryp); if (err) { dev_err(cryp->dev, "Failed to initialize cryptographic engine.\n"); goto err_engine; } err = mtk_cipher_alg_register(cryp); if (err) { dev_err(cryp->dev, "Unable to register cipher algorithm.\n"); goto err_cipher; } err = mtk_hash_alg_register(cryp); if (err) { dev_err(cryp->dev, "Unable to register hash algorithm.\n"); goto err_hash; } platform_set_drvdata(pdev, cryp); return 0; err_hash: mtk_cipher_alg_release(cryp); err_cipher: mtk_dfe_dse_reset(cryp); err_engine: mtk_desc_dma_free(cryp); err_resource: clk_disable_unprepare(cryp->clk_cryp); err_clk_cryp: pm_runtime_put_sync(cryp->dev); pm_runtime_disable(cryp->dev); return err; } static int mtk_crypto_remove(struct platform_device *pdev) { struct mtk_cryp *cryp = platform_get_drvdata(pdev); mtk_hash_alg_release(cryp); mtk_cipher_alg_release(cryp); mtk_desc_dma_free(cryp); clk_disable_unprepare(cryp->clk_cryp); pm_runtime_put_sync(cryp->dev); pm_runtime_disable(cryp->dev); platform_set_drvdata(pdev, NULL); return 0; } static const struct of_device_id of_crypto_id[] = { { .compatible = "mediatek,eip97-crypto" }, {}, }; MODULE_DEVICE_TABLE(of, of_crypto_id); static struct platform_driver mtk_crypto_driver = { .probe = mtk_crypto_probe, .remove = mtk_crypto_remove, .driver = { .name = "mtk-crypto", .of_match_table = of_crypto_id, }, }; module_platform_driver(mtk_crypto_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ryder Lee "); MODULE_DESCRIPTION("Cryptographic accelerator driver for EIP97");