/* * Copyright (C) 2017 Spreadtrum Communications Inc. * * SPDX-License-Identifier: (GPL-2.0+ OR MIT) */ #include #include #include #include #include #include #include #include #include #include #include #include #define I2C_CTL 0x00 #define I2C_ADDR_CFG 0x04 #define I2C_COUNT 0x08 #define I2C_RX 0x0c #define I2C_TX 0x10 #define I2C_STATUS 0x14 #define I2C_HSMODE_CFG 0x18 #define I2C_VERSION 0x1c #define ADDR_DVD0 0x20 #define ADDR_DVD1 0x24 #define ADDR_STA0_DVD 0x28 #define ADDR_RST 0x2c /* I2C_CTL */ #define STP_EN BIT(20) #define FIFO_AF_LVL_MASK GENMASK(19, 16) #define FIFO_AF_LVL 16 #define FIFO_AE_LVL_MASK GENMASK(15, 12) #define FIFO_AE_LVL 12 #define I2C_DMA_EN BIT(11) #define FULL_INTEN BIT(10) #define EMPTY_INTEN BIT(9) #define I2C_DVD_OPT BIT(8) #define I2C_OUT_OPT BIT(7) #define I2C_TRIM_OPT BIT(6) #define I2C_HS_MODE BIT(4) #define I2C_MODE BIT(3) #define I2C_EN BIT(2) #define I2C_INT_EN BIT(1) #define I2C_START BIT(0) /* I2C_STATUS */ #define SDA_IN BIT(21) #define SCL_IN BIT(20) #define FIFO_FULL BIT(4) #define FIFO_EMPTY BIT(3) #define I2C_INT BIT(2) #define I2C_RX_ACK BIT(1) #define I2C_BUSY BIT(0) /* ADDR_RST */ #define I2C_RST BIT(0) #define I2C_FIFO_DEEP 12 #define I2C_FIFO_FULL_THLD 15 #define I2C_FIFO_EMPTY_THLD 4 #define I2C_DATA_STEP 8 #define I2C_ADDR_DVD0_CALC(high, low) \ ((((high) & GENMASK(15, 0)) << 16) | ((low) & GENMASK(15, 0))) #define I2C_ADDR_DVD1_CALC(high, low) \ (((high) & GENMASK(31, 16)) | (((low) & GENMASK(31, 16)) >> 16)) /* timeout (ms) for pm runtime autosuspend */ #define SPRD_I2C_PM_TIMEOUT 1000 /* timeout (ms) for transfer message */ #define I2C_XFER_TIMEOUT 1000 /* SPRD i2c data structure */ struct sprd_i2c { struct i2c_adapter adap; struct device *dev; void __iomem *base; struct i2c_msg *msg; struct clk *clk; u32 src_clk; u32 bus_freq; struct completion complete; u8 *buf; u32 count; int irq; int err; bool is_suspended; }; static void sprd_i2c_set_count(struct sprd_i2c *i2c_dev, u32 count) { writel(count, i2c_dev->base + I2C_COUNT); } static void sprd_i2c_send_stop(struct sprd_i2c *i2c_dev, int stop) { u32 tmp = readl(i2c_dev->base + I2C_CTL); if (stop) writel(tmp & ~STP_EN, i2c_dev->base + I2C_CTL); else writel(tmp | STP_EN, i2c_dev->base + I2C_CTL); } static void sprd_i2c_clear_start(struct sprd_i2c *i2c_dev) { u32 tmp = readl(i2c_dev->base + I2C_CTL); writel(tmp & ~I2C_START, i2c_dev->base + I2C_CTL); } static void sprd_i2c_clear_ack(struct sprd_i2c *i2c_dev) { u32 tmp = readl(i2c_dev->base + I2C_STATUS); writel(tmp & ~I2C_RX_ACK, i2c_dev->base + I2C_STATUS); } static void sprd_i2c_clear_irq(struct sprd_i2c *i2c_dev) { u32 tmp = readl(i2c_dev->base + I2C_STATUS); writel(tmp & ~I2C_INT, i2c_dev->base + I2C_STATUS); } static void sprd_i2c_reset_fifo(struct sprd_i2c *i2c_dev) { writel(I2C_RST, i2c_dev->base + ADDR_RST); } static void sprd_i2c_set_devaddr(struct sprd_i2c *i2c_dev, struct i2c_msg *m) { writel(m->addr << 1, i2c_dev->base + I2C_ADDR_CFG); } static void sprd_i2c_write_bytes(struct sprd_i2c *i2c_dev, u8 *buf, u32 len) { u32 i; for (i = 0; i < len; i++) writeb(buf[i], i2c_dev->base + I2C_TX); } static void sprd_i2c_read_bytes(struct sprd_i2c *i2c_dev, u8 *buf, u32 len) { u32 i; for (i = 0; i < len; i++) buf[i] = readb(i2c_dev->base + I2C_RX); } static void sprd_i2c_set_full_thld(struct sprd_i2c *i2c_dev, u32 full_thld) { u32 tmp = readl(i2c_dev->base + I2C_CTL); tmp &= ~FIFO_AF_LVL_MASK; tmp |= full_thld << FIFO_AF_LVL; writel(tmp, i2c_dev->base + I2C_CTL); }; static void sprd_i2c_set_empty_thld(struct sprd_i2c *i2c_dev, u32 empty_thld) { u32 tmp = readl(i2c_dev->base + I2C_CTL); tmp &= ~FIFO_AE_LVL_MASK; tmp |= empty_thld << FIFO_AE_LVL; writel(tmp, i2c_dev->base + I2C_CTL); }; static void sprd_i2c_set_fifo_full_int(struct sprd_i2c *i2c_dev, int enable) { u32 tmp = readl(i2c_dev->base + I2C_CTL); if (enable) tmp |= FULL_INTEN; else tmp &= ~FULL_INTEN; writel(tmp, i2c_dev->base + I2C_CTL); }; static void sprd_i2c_set_fifo_empty_int(struct sprd_i2c *i2c_dev, int enable) { u32 tmp = readl(i2c_dev->base + I2C_CTL); if (enable) tmp |= EMPTY_INTEN; else tmp &= ~EMPTY_INTEN; writel(tmp, i2c_dev->base + I2C_CTL); }; static void sprd_i2c_opt_start(struct sprd_i2c *i2c_dev) { u32 tmp = readl(i2c_dev->base + I2C_CTL); writel(tmp | I2C_START, i2c_dev->base + I2C_CTL); } static void sprd_i2c_opt_mode(struct sprd_i2c *i2c_dev, int rw) { u32 cmd = readl(i2c_dev->base + I2C_CTL) & ~I2C_MODE; writel(cmd | rw << 3, i2c_dev->base + I2C_CTL); } static void sprd_i2c_data_transfer(struct sprd_i2c *i2c_dev) { u32 i2c_count = i2c_dev->count; u32 need_tran = i2c_count <= I2C_FIFO_DEEP ? i2c_count : I2C_FIFO_DEEP; struct i2c_msg *msg = i2c_dev->msg; if (msg->flags & I2C_M_RD) { sprd_i2c_read_bytes(i2c_dev, i2c_dev->buf, I2C_FIFO_FULL_THLD); i2c_dev->count -= I2C_FIFO_FULL_THLD; i2c_dev->buf += I2C_FIFO_FULL_THLD; /* * If the read data count is larger than rx fifo full threshold, * we should enable the rx fifo full interrupt to read data * again. */ if (i2c_dev->count >= I2C_FIFO_FULL_THLD) sprd_i2c_set_fifo_full_int(i2c_dev, 1); } else { sprd_i2c_write_bytes(i2c_dev, i2c_dev->buf, need_tran); i2c_dev->buf += need_tran; i2c_dev->count -= need_tran; /* * If the write data count is arger than tx fifo depth which * means we can not write all data in one time, then we should * enable the tx fifo empty interrupt to write again. */ if (i2c_count > I2C_FIFO_DEEP) sprd_i2c_set_fifo_empty_int(i2c_dev, 1); } } static int sprd_i2c_handle_msg(struct i2c_adapter *i2c_adap, struct i2c_msg *msg, bool is_last_msg) { struct sprd_i2c *i2c_dev = i2c_adap->algo_data; unsigned long time_left; i2c_dev->msg = msg; i2c_dev->buf = msg->buf; i2c_dev->count = msg->len; reinit_completion(&i2c_dev->complete); sprd_i2c_reset_fifo(i2c_dev); sprd_i2c_set_devaddr(i2c_dev, msg); sprd_i2c_set_count(i2c_dev, msg->len); if (msg->flags & I2C_M_RD) { sprd_i2c_opt_mode(i2c_dev, 1); sprd_i2c_send_stop(i2c_dev, 1); } else { sprd_i2c_opt_mode(i2c_dev, 0); sprd_i2c_send_stop(i2c_dev, !!is_last_msg); } /* * We should enable rx fifo full interrupt to get data when receiving * full data. */ if (msg->flags & I2C_M_RD) sprd_i2c_set_fifo_full_int(i2c_dev, 1); else sprd_i2c_data_transfer(i2c_dev); sprd_i2c_opt_start(i2c_dev); time_left = wait_for_completion_timeout(&i2c_dev->complete, msecs_to_jiffies(I2C_XFER_TIMEOUT)); if (!time_left) return -ETIMEDOUT; return i2c_dev->err; } static int sprd_i2c_master_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num) { struct sprd_i2c *i2c_dev = i2c_adap->algo_data; int im, ret; if (i2c_dev->is_suspended) return -EBUSY; ret = pm_runtime_get_sync(i2c_dev->dev); if (ret < 0) return ret; for (im = 0; im < num - 1; im++) { ret = sprd_i2c_handle_msg(i2c_adap, &msgs[im], 0); if (ret) goto err_msg; } ret = sprd_i2c_handle_msg(i2c_adap, &msgs[im++], 1); err_msg: pm_runtime_mark_last_busy(i2c_dev->dev); pm_runtime_put_autosuspend(i2c_dev->dev); return ret < 0 ? ret : im; } static u32 sprd_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm sprd_i2c_algo = { .master_xfer = sprd_i2c_master_xfer, .functionality = sprd_i2c_func, }; static void sprd_i2c_set_clk(struct sprd_i2c *i2c_dev, u32 freq) { u32 apb_clk = i2c_dev->src_clk; /* * From I2C databook, the prescale calculation formula: * prescale = freq_i2c / (4 * freq_scl) - 1; */ u32 i2c_dvd = apb_clk / (4 * freq) - 1; /* * From I2C databook, the high period of SCL clock is recommended as * 40% (2/5), and the low period of SCL clock is recommended as 60% * (3/5), then the formula should be: * high = (prescale * 2 * 2) / 5 * low = (prescale * 2 * 3) / 5 */ u32 high = ((i2c_dvd << 1) * 2) / 5; u32 low = ((i2c_dvd << 1) * 3) / 5; u32 div0 = I2C_ADDR_DVD0_CALC(high, low); u32 div1 = I2C_ADDR_DVD1_CALC(high, low); writel(div0, i2c_dev->base + ADDR_DVD0); writel(div1, i2c_dev->base + ADDR_DVD1); /* Start hold timing = hold time(us) * source clock */ if (freq == 400000) writel((6 * apb_clk) / 10000000, i2c_dev->base + ADDR_STA0_DVD); else if (freq == 100000) writel((4 * apb_clk) / 1000000, i2c_dev->base + ADDR_STA0_DVD); } static void sprd_i2c_enable(struct sprd_i2c *i2c_dev) { u32 tmp = I2C_DVD_OPT; writel(tmp, i2c_dev->base + I2C_CTL); sprd_i2c_set_full_thld(i2c_dev, I2C_FIFO_FULL_THLD); sprd_i2c_set_empty_thld(i2c_dev, I2C_FIFO_EMPTY_THLD); sprd_i2c_set_clk(i2c_dev, i2c_dev->bus_freq); sprd_i2c_reset_fifo(i2c_dev); sprd_i2c_clear_irq(i2c_dev); tmp = readl(i2c_dev->base + I2C_CTL); writel(tmp | I2C_EN | I2C_INT_EN, i2c_dev->base + I2C_CTL); } static irqreturn_t sprd_i2c_isr_thread(int irq, void *dev_id) { struct sprd_i2c *i2c_dev = dev_id; struct i2c_msg *msg = i2c_dev->msg; bool ack = !(readl(i2c_dev->base + I2C_STATUS) & I2C_RX_ACK); u32 i2c_tran; if (msg->flags & I2C_M_RD) i2c_tran = i2c_dev->count >= I2C_FIFO_FULL_THLD; else i2c_tran = i2c_dev->count; /* * If we got one ACK from slave when writing data, and we did not * finish this transmission (i2c_tran is not zero), then we should * continue to write data. * * For reading data, ack is always true, if i2c_tran is not 0 which * means we still need to contine to read data from slave. */ if (i2c_tran && ack) { sprd_i2c_data_transfer(i2c_dev); return IRQ_HANDLED; } i2c_dev->err = 0; /* * If we did not get one ACK from slave when writing data, we should * return -EIO to notify users. */ if (!ack) i2c_dev->err = -EIO; else if (msg->flags & I2C_M_RD && i2c_dev->count) sprd_i2c_read_bytes(i2c_dev, i2c_dev->buf, i2c_dev->count); /* Transmission is done and clear ack and start operation */ sprd_i2c_clear_ack(i2c_dev); sprd_i2c_clear_start(i2c_dev); complete(&i2c_dev->complete); return IRQ_HANDLED; } static irqreturn_t sprd_i2c_isr(int irq, void *dev_id) { struct sprd_i2c *i2c_dev = dev_id; struct i2c_msg *msg = i2c_dev->msg; bool ack = !(readl(i2c_dev->base + I2C_STATUS) & I2C_RX_ACK); u32 i2c_tran; if (msg->flags & I2C_M_RD) i2c_tran = i2c_dev->count >= I2C_FIFO_FULL_THLD; else i2c_tran = i2c_dev->count; /* * If we did not get one ACK from slave when writing data, then we * should finish this transmission since we got some errors. * * When writing data, if i2c_tran == 0 which means we have writen * done all data, then we can finish this transmission. * * When reading data, if conut < rx fifo full threshold, which * means we can read all data in one time, then we can finish this * transmission too. */ if (!i2c_tran || !ack) { sprd_i2c_clear_start(i2c_dev); sprd_i2c_clear_irq(i2c_dev); } sprd_i2c_set_fifo_empty_int(i2c_dev, 0); sprd_i2c_set_fifo_full_int(i2c_dev, 0); return IRQ_WAKE_THREAD; } static int sprd_i2c_clk_init(struct sprd_i2c *i2c_dev) { struct clk *clk_i2c, *clk_parent; clk_i2c = devm_clk_get(i2c_dev->dev, "i2c"); if (IS_ERR(clk_i2c)) { dev_warn(i2c_dev->dev, "i2c%d can't get the i2c clock\n", i2c_dev->adap.nr); clk_i2c = NULL; } clk_parent = devm_clk_get(i2c_dev->dev, "source"); if (IS_ERR(clk_parent)) { dev_warn(i2c_dev->dev, "i2c%d can't get the source clock\n", i2c_dev->adap.nr); clk_parent = NULL; } if (clk_set_parent(clk_i2c, clk_parent)) i2c_dev->src_clk = clk_get_rate(clk_i2c); else i2c_dev->src_clk = 26000000; dev_dbg(i2c_dev->dev, "i2c%d set source clock is %d\n", i2c_dev->adap.nr, i2c_dev->src_clk); i2c_dev->clk = devm_clk_get(i2c_dev->dev, "enable"); if (IS_ERR(i2c_dev->clk)) { dev_warn(i2c_dev->dev, "i2c%d can't get the enable clock\n", i2c_dev->adap.nr); i2c_dev->clk = NULL; } return 0; } static int sprd_i2c_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sprd_i2c *i2c_dev; struct resource *res; u32 prop; int ret; pdev->id = of_alias_get_id(dev->of_node, "i2c"); i2c_dev = devm_kzalloc(dev, sizeof(struct sprd_i2c), GFP_KERNEL); if (!i2c_dev) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); i2c_dev->base = devm_ioremap_resource(dev, res); if (IS_ERR(i2c_dev->base)) return PTR_ERR(i2c_dev->base); i2c_dev->irq = platform_get_irq(pdev, 0); if (i2c_dev->irq < 0) { dev_err(&pdev->dev, "failed to get irq resource\n"); return i2c_dev->irq; } i2c_set_adapdata(&i2c_dev->adap, i2c_dev); init_completion(&i2c_dev->complete); snprintf(i2c_dev->adap.name, sizeof(i2c_dev->adap.name), "%s", "sprd-i2c"); i2c_dev->bus_freq = 100000; i2c_dev->adap.owner = THIS_MODULE; i2c_dev->dev = dev; i2c_dev->adap.retries = 3; i2c_dev->adap.algo = &sprd_i2c_algo; i2c_dev->adap.algo_data = i2c_dev; i2c_dev->adap.dev.parent = dev; i2c_dev->adap.nr = pdev->id; i2c_dev->adap.dev.of_node = dev->of_node; if (!of_property_read_u32(dev->of_node, "clock-frequency", &prop)) i2c_dev->bus_freq = prop; /* We only support 100k and 400k now, otherwise will return error. */ if (i2c_dev->bus_freq != 100000 && i2c_dev->bus_freq != 400000) return -EINVAL; sprd_i2c_clk_init(i2c_dev); platform_set_drvdata(pdev, i2c_dev); ret = clk_prepare_enable(i2c_dev->clk); if (ret) return ret; sprd_i2c_enable(i2c_dev); pm_runtime_set_autosuspend_delay(i2c_dev->dev, SPRD_I2C_PM_TIMEOUT); pm_runtime_use_autosuspend(i2c_dev->dev); pm_runtime_set_active(i2c_dev->dev); pm_runtime_enable(i2c_dev->dev); ret = pm_runtime_get_sync(i2c_dev->dev); if (ret < 0) goto err_rpm_put; ret = devm_request_threaded_irq(dev, i2c_dev->irq, sprd_i2c_isr, sprd_i2c_isr_thread, IRQF_NO_SUSPEND | IRQF_ONESHOT, pdev->name, i2c_dev); if (ret) { dev_err(&pdev->dev, "failed to request irq %d\n", i2c_dev->irq); goto err_rpm_put; } ret = i2c_add_numbered_adapter(&i2c_dev->adap); if (ret) { dev_err(&pdev->dev, "add adapter failed\n"); goto err_rpm_put; } pm_runtime_mark_last_busy(i2c_dev->dev); pm_runtime_put_autosuspend(i2c_dev->dev); return 0; err_rpm_put: pm_runtime_put_noidle(i2c_dev->dev); pm_runtime_disable(i2c_dev->dev); clk_disable_unprepare(i2c_dev->clk); return ret; } static int sprd_i2c_remove(struct platform_device *pdev) { struct sprd_i2c *i2c_dev = platform_get_drvdata(pdev); int ret; ret = pm_runtime_get_sync(i2c_dev->dev); if (ret < 0) return ret; i2c_del_adapter(&i2c_dev->adap); clk_disable_unprepare(i2c_dev->clk); pm_runtime_put_noidle(i2c_dev->dev); pm_runtime_disable(i2c_dev->dev); return 0; } static int __maybe_unused sprd_i2c_suspend_noirq(struct device *pdev) { struct sprd_i2c *i2c_dev = dev_get_drvdata(pdev); i2c_lock_adapter(&i2c_dev->adap); i2c_dev->is_suspended = true; i2c_unlock_adapter(&i2c_dev->adap); return pm_runtime_force_suspend(pdev); } static int __maybe_unused sprd_i2c_resume_noirq(struct device *pdev) { struct sprd_i2c *i2c_dev = dev_get_drvdata(pdev); i2c_lock_adapter(&i2c_dev->adap); i2c_dev->is_suspended = false; i2c_unlock_adapter(&i2c_dev->adap); return pm_runtime_force_resume(pdev); } static int __maybe_unused sprd_i2c_runtime_suspend(struct device *pdev) { struct sprd_i2c *i2c_dev = dev_get_drvdata(pdev); clk_disable_unprepare(i2c_dev->clk); return 0; } static int __maybe_unused sprd_i2c_runtime_resume(struct device *pdev) { struct sprd_i2c *i2c_dev = dev_get_drvdata(pdev); int ret; ret = clk_prepare_enable(i2c_dev->clk); if (ret) return ret; sprd_i2c_enable(i2c_dev); return 0; } static const struct dev_pm_ops sprd_i2c_pm_ops = { SET_RUNTIME_PM_OPS(sprd_i2c_runtime_suspend, sprd_i2c_runtime_resume, NULL) SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(sprd_i2c_suspend_noirq, sprd_i2c_resume_noirq) }; static const struct of_device_id sprd_i2c_of_match[] = { { .compatible = "sprd,sc9860-i2c", }, {}, }; static struct platform_driver sprd_i2c_driver = { .probe = sprd_i2c_probe, .remove = sprd_i2c_remove, .driver = { .name = "sprd-i2c", .of_match_table = sprd_i2c_of_match, .pm = &sprd_i2c_pm_ops, }, }; static int sprd_i2c_init(void) { return platform_driver_register(&sprd_i2c_driver); } arch_initcall_sync(sprd_i2c_init);