/* * hfc_usb.c * * $Id: hfc_usb.c,v 2.3.2.24 2007/10/14 08:40:29 mbachem Exp $ * * modular HiSax ISDN driver for Colognechip HFC-S USB chip * * Authors : Peter Sprenger (sprenger@moving-bytes.de) * Martin Bachem (m.bachem@gmx.de, info@colognechip.com) * * based on the first hfc_usb driver of * Werner Cornelius (werner@isdn-development.de) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * See Version Histroy at the bottom of this file * */ #include #include #include #include #include #include #include #include #include #include #include #include "hisax.h" #include "hisax_if.h" #include "hfc_usb.h" static const char *hfcusb_revision = "$Revision: 2.3.2.24 $ $Date: 2007/10/14 08:40:29 $ "; /* Hisax debug support * debug flags defined in hfc_usb.h as HFCUSB_DBG_[*] */ #define __debug_variable hfc_debug #include "hisax_debug.h" static u_int debug; module_param(debug, uint, 0); static int hfc_debug; /* private vendor specific data */ typedef struct { __u8 led_scheme; // led display scheme signed short led_bits[8]; // array of 8 possible LED bitmask settings char *vend_name; // device name } hfcsusb_vdata; /* VID/PID device list */ static const struct usb_device_id hfcusb_idtab[] = { { USB_DEVICE(0x0959, 0x2bd0), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_OFF, {4, 0, 2, 1}, "ISDN USB TA (Cologne Chip HFC-S USB based)"}), }, { USB_DEVICE(0x0675, 0x1688), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {1, 2, 0, 0}, "DrayTek miniVigor 128 USB ISDN TA"}), }, { USB_DEVICE(0x07b0, 0x0007), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {0x80, -64, -32, -16}, "Billion tiny USB ISDN TA 128"}), }, { USB_DEVICE(0x0742, 0x2008), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {4, 0, 2, 1}, "Stollmann USB TA"}), }, { USB_DEVICE(0x0742, 0x2009), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {4, 0, 2, 1}, "Aceex USB ISDN TA"}), }, { USB_DEVICE(0x0742, 0x200A), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {4, 0, 2, 1}, "OEM USB ISDN TA"}), }, { USB_DEVICE(0x08e3, 0x0301), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {2, 0, 1, 4}, "Olitec USB RNIS"}), }, { USB_DEVICE(0x07fa, 0x0846), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {0x80, -64, -32, -16}, "Bewan Modem RNIS USB"}), }, { USB_DEVICE(0x07fa, 0x0847), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {0x80, -64, -32, -16}, "Djinn Numeris USB"}), }, { USB_DEVICE(0x07b0, 0x0006), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {0x80, -64, -32, -16}, "Twister ISDN TA"}), }, { USB_DEVICE(0x071d, 0x1005), .driver_info = (unsigned long) &((hfcsusb_vdata) {LED_SCHEME1, {0x02, 0, 0x01, 0x04}, "Eicon DIVA USB 4.0"}), }, { } }; /* structure defining input+output fifos (interrupt/bulk mode) */ struct usb_fifo; /* forward definition */ typedef struct iso_urb_struct { struct urb *purb; __u8 buffer[ISO_BUFFER_SIZE]; /* buffer incoming/outgoing data */ struct usb_fifo *owner_fifo; /* pointer to owner fifo */ } iso_urb_struct; struct hfcusb_data; /* forward definition */ typedef struct usb_fifo { int fifonum; /* fifo index attached to this structure */ int active; /* fifo is currently active */ struct hfcusb_data *hfc; /* pointer to main structure */ int pipe; /* address of endpoint */ __u8 usb_packet_maxlen; /* maximum length for usb transfer */ unsigned int max_size; /* maximum size of receive/send packet */ __u8 intervall; /* interrupt interval */ struct sk_buff *skbuff; /* actual used buffer */ struct urb *urb; /* transfer structure for usb routines */ __u8 buffer[128]; /* buffer incoming/outgoing data */ int bit_line; /* how much bits are in the fifo? */ volatile __u8 usb_transfer_mode; /* switched between ISO and INT */ iso_urb_struct iso[2]; /* need two urbs to have one always for pending */ struct hisax_if *hif; /* hisax interface */ int delete_flg; /* only delete skbuff once */ int last_urblen; /* remember length of last packet */ } usb_fifo; /* structure holding all data for one device */ typedef struct hfcusb_data { /* HiSax Interface for loadable Layer1 drivers */ struct hisax_d_if d_if; /* see hisax_if.h */ struct hisax_b_if b_if[2]; /* see hisax_if.h */ int protocol; struct usb_device *dev; /* our device */ int if_used; /* used interface number */ int alt_used; /* used alternate config */ int ctrl_paksize; /* control pipe packet size */ int ctrl_in_pipe, /* handles for control pipe */ ctrl_out_pipe; int cfg_used; /* configuration index used */ int vend_idx; /* vendor found */ int b_mode[2]; /* B-channel mode */ int l1_activated; /* layer 1 activated */ int disc_flag; /* TRUE if device was disonnected to avoid some USB actions */ int packet_size, iso_packet_size; /* control pipe background handling */ ctrl_buft ctrl_buff[HFC_CTRL_BUFSIZE]; /* buffer holding queued data */ volatile int ctrl_in_idx, ctrl_out_idx, ctrl_cnt; /* input/output pointer + count */ struct urb *ctrl_urb; /* transfer structure for control channel */ struct usb_ctrlrequest ctrl_write; /* buffer for control write request */ struct usb_ctrlrequest ctrl_read; /* same for read request */ __u8 old_led_state, led_state; volatile __u8 threshold_mask; /* threshold actually reported */ volatile __u8 bch_enables; /* or mask for sctrl_r and sctrl register values */ usb_fifo fifos[HFCUSB_NUM_FIFOS]; /* structure holding all fifo data */ volatile __u8 l1_state; /* actual l1 state */ struct timer_list t3_timer; /* timer 3 for activation/deactivation */ struct timer_list t4_timer; /* timer 4 for activation/deactivation */ } hfcusb_data; static void collect_rx_frame(usb_fifo *fifo, __u8 *data, int len, int finish); static inline const char * symbolic(struct hfcusb_symbolic_list list[], const int num) { int i; for (i = 0; list[i].name != NULL; i++) if (list[i].num == num) return (list[i].name); return ""; } static void ctrl_start_transfer(hfcusb_data *hfc) { if (hfc->ctrl_cnt) { hfc->ctrl_urb->pipe = hfc->ctrl_out_pipe; hfc->ctrl_urb->setup_packet = (u_char *)&hfc->ctrl_write; hfc->ctrl_urb->transfer_buffer = NULL; hfc->ctrl_urb->transfer_buffer_length = 0; hfc->ctrl_write.wIndex = cpu_to_le16(hfc->ctrl_buff[hfc->ctrl_out_idx].hfc_reg); hfc->ctrl_write.wValue = cpu_to_le16(hfc->ctrl_buff[hfc->ctrl_out_idx].reg_val); usb_submit_urb(hfc->ctrl_urb, GFP_ATOMIC); /* start transfer */ } } /* ctrl_start_transfer */ static int queue_control_request(hfcusb_data *hfc, __u8 reg, __u8 val, int action) { ctrl_buft *buf; if (hfc->ctrl_cnt >= HFC_CTRL_BUFSIZE) return (1); /* no space left */ buf = &hfc->ctrl_buff[hfc->ctrl_in_idx]; /* pointer to new index */ buf->hfc_reg = reg; buf->reg_val = val; buf->action = action; if (++hfc->ctrl_in_idx >= HFC_CTRL_BUFSIZE) hfc->ctrl_in_idx = 0; /* pointer wrap */ if (++hfc->ctrl_cnt == 1) ctrl_start_transfer(hfc); return (0); } static void ctrl_complete(struct urb *urb) { hfcusb_data *hfc = (hfcusb_data *) urb->context; urb->dev = hfc->dev; if (hfc->ctrl_cnt) { hfc->ctrl_cnt--; /* decrement actual count */ if (++hfc->ctrl_out_idx >= HFC_CTRL_BUFSIZE) hfc->ctrl_out_idx = 0; /* pointer wrap */ ctrl_start_transfer(hfc); /* start next transfer */ } } /* write led data to auxport & invert if necessary */ static void write_led(hfcusb_data *hfc, __u8 led_state) { if (led_state != hfc->old_led_state) { hfc->old_led_state = led_state; queue_control_request(hfc, HFCUSB_P_DATA, led_state, 1); } } static void set_led_bit(hfcusb_data *hfc, signed short led_bits, int on) { if (on) { if (led_bits < 0) hfc->led_state &= ~abs(led_bits); else hfc->led_state |= led_bits; } else { if (led_bits < 0) hfc->led_state |= abs(led_bits); else hfc->led_state &= ~led_bits; } } /* handle LED requests */ static void handle_led(hfcusb_data *hfc, int event) { hfcsusb_vdata *driver_info = (hfcsusb_vdata *) hfcusb_idtab[hfc->vend_idx].driver_info; /* if no scheme -> no LED action */ if (driver_info->led_scheme == LED_OFF) return; switch (event) { case LED_POWER_ON: set_led_bit(hfc, driver_info->led_bits[0], 1); set_led_bit(hfc, driver_info->led_bits[1], 0); set_led_bit(hfc, driver_info->led_bits[2], 0); set_led_bit(hfc, driver_info->led_bits[3], 0); break; case LED_POWER_OFF: set_led_bit(hfc, driver_info->led_bits[0], 0); set_led_bit(hfc, driver_info->led_bits[1], 0); set_led_bit(hfc, driver_info->led_bits[2], 0); set_led_bit(hfc, driver_info->led_bits[3], 0); break; case LED_S0_ON: set_led_bit(hfc, driver_info->led_bits[1], 1); break; case LED_S0_OFF: set_led_bit(hfc, driver_info->led_bits[1], 0); break; case LED_B1_ON: set_led_bit(hfc, driver_info->led_bits[2], 1); break; case LED_B1_OFF: set_led_bit(hfc, driver_info->led_bits[2], 0); break; case LED_B2_ON: set_led_bit(hfc, driver_info->led_bits[3], 1); break; case LED_B2_OFF: set_led_bit(hfc, driver_info->led_bits[3], 0); break; } write_led(hfc, hfc->led_state); } /* ISDN l1 timer T3 expires */ static void l1_timer_expire_t3(hfcusb_data *hfc) { hfc->d_if.ifc.l1l2(&hfc->d_if.ifc, PH_DEACTIVATE | INDICATION, NULL); DBG(HFCUSB_DBG_STATES, "HFC-S USB: PH_DEACTIVATE | INDICATION sent (T3 expire)"); hfc->l1_activated = 0; handle_led(hfc, LED_S0_OFF); /* deactivate : */ queue_control_request(hfc, HFCUSB_STATES, 0x10, 1); queue_control_request(hfc, HFCUSB_STATES, 3, 1); } /* ISDN l1 timer T4 expires */ static void l1_timer_expire_t4(hfcusb_data *hfc) { hfc->d_if.ifc.l1l2(&hfc->d_if.ifc, PH_DEACTIVATE | INDICATION, NULL); DBG(HFCUSB_DBG_STATES, "HFC-S USB: PH_DEACTIVATE | INDICATION sent (T4 expire)"); hfc->l1_activated = 0; handle_led(hfc, LED_S0_OFF); } /* S0 state changed */ static void s0_state_handler(hfcusb_data *hfc, __u8 state) { __u8 old_state; old_state = hfc->l1_state; if (state == old_state || state < 1 || state > 8) return; DBG(HFCUSB_DBG_STATES, "HFC-S USB: S0 statechange(%d -> %d)", old_state, state); if (state < 4 || state == 7 || state == 8) { if (timer_pending(&hfc->t3_timer)) del_timer(&hfc->t3_timer); DBG(HFCUSB_DBG_STATES, "HFC-S USB: T3 deactivated"); } if (state >= 7) { if (timer_pending(&hfc->t4_timer)) del_timer(&hfc->t4_timer); DBG(HFCUSB_DBG_STATES, "HFC-S USB: T4 deactivated"); } if (state == 7 && !hfc->l1_activated) { hfc->d_if.ifc.l1l2(&hfc->d_if.ifc, PH_ACTIVATE | INDICATION, NULL); DBG(HFCUSB_DBG_STATES, "HFC-S USB: PH_ACTIVATE | INDICATION sent"); hfc->l1_activated = 1; handle_led(hfc, LED_S0_ON); } else if (state <= 3 /* && activated */) { if (old_state == 7 || old_state == 8) { DBG(HFCUSB_DBG_STATES, "HFC-S USB: T4 activated"); if (!timer_pending(&hfc->t4_timer)) { hfc->t4_timer.expires = jiffies + (HFC_TIMER_T4 * HZ) / 1000; add_timer(&hfc->t4_timer); } } else { hfc->d_if.ifc.l1l2(&hfc->d_if.ifc, PH_DEACTIVATE | INDICATION, NULL); DBG(HFCUSB_DBG_STATES, "HFC-S USB: PH_DEACTIVATE | INDICATION sent"); hfc->l1_activated = 0; handle_led(hfc, LED_S0_OFF); } } hfc->l1_state = state; } static void fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe, void *buf, int num_packets, int packet_size, int interval, usb_complete_t complete, void *context) { int k; urb->dev = dev; urb->pipe = pipe; urb->complete = complete; urb->number_of_packets = num_packets; urb->transfer_buffer_length = packet_size * num_packets; urb->context = context; urb->transfer_buffer = buf; urb->transfer_flags = URB_ISO_ASAP; urb->actual_length = 0; urb->interval = interval; for (k = 0; k < num_packets; k++) { urb->iso_frame_desc[k].offset = packet_size * k; urb->iso_frame_desc[k].length = packet_size; urb->iso_frame_desc[k].actual_length = 0; } } /* allocs urbs and start isoc transfer with two pending urbs to avoid * gaps in the transfer chain */ static int start_isoc_chain(usb_fifo *fifo, int num_packets_per_urb, usb_complete_t complete, int packet_size) { int i, k, errcode; DBG(HFCUSB_DBG_INIT, "HFC-S USB: starting ISO-URBs for fifo:%d\n", fifo->fifonum); /* allocate Memory for Iso out Urbs */ for (i = 0; i < 2; i++) { if (!(fifo->iso[i].purb)) { fifo->iso[i].purb = usb_alloc_urb(num_packets_per_urb, GFP_KERNEL); if (!(fifo->iso[i].purb)) { printk(KERN_INFO "alloc urb for fifo %i failed!!!", fifo->fifonum); } fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo; /* Init the first iso */ if (ISO_BUFFER_SIZE >= (fifo->usb_packet_maxlen * num_packets_per_urb)) { fill_isoc_urb(fifo->iso[i].purb, fifo->hfc->dev, fifo->pipe, fifo->iso[i].buffer, num_packets_per_urb, fifo->usb_packet_maxlen, fifo->intervall, complete, &fifo->iso[i]); memset(fifo->iso[i].buffer, 0, sizeof(fifo->iso[i].buffer)); /* defining packet delimeters in fifo->buffer */ for (k = 0; k < num_packets_per_urb; k++) { fifo->iso[i].purb-> iso_frame_desc[k].offset = k * packet_size; fifo->iso[i].purb-> iso_frame_desc[k].length = packet_size; } } else { printk(KERN_INFO "HFC-S USB: ISO Buffer size to small!\n"); } } fifo->bit_line = BITLINE_INF; errcode = usb_submit_urb(fifo->iso[i].purb, GFP_KERNEL); fifo->active = (errcode >= 0) ? 1 : 0; if (errcode < 0) printk(KERN_INFO "HFC-S USB: usb_submit_urb URB nr:%d, error(%i): '%s'\n", i, errcode, symbolic(urb_errlist, errcode)); } return (fifo->active); } /* stops running iso chain and frees their pending urbs */ static void stop_isoc_chain(usb_fifo *fifo) { int i; for (i = 0; i < 2; i++) { if (fifo->iso[i].purb) { DBG(HFCUSB_DBG_INIT, "HFC-S USB: Stopping iso chain for fifo %i.%i", fifo->fifonum, i); usb_kill_urb(fifo->iso[i].purb); usb_free_urb(fifo->iso[i].purb); fifo->iso[i].purb = NULL; } } usb_kill_urb(fifo->urb); usb_free_urb(fifo->urb); fifo->urb = NULL; fifo->active = 0; } /* defines how much ISO packets are handled in one URB */ static int iso_packets[8] = { ISOC_PACKETS_B, ISOC_PACKETS_B, ISOC_PACKETS_B, ISOC_PACKETS_B, ISOC_PACKETS_D, ISOC_PACKETS_D, ISOC_PACKETS_D, ISOC_PACKETS_D }; static void tx_iso_complete(struct urb *urb) { iso_urb_struct *context_iso_urb = (iso_urb_struct *) urb->context; usb_fifo *fifo = context_iso_urb->owner_fifo; hfcusb_data *hfc = fifo->hfc; int k, tx_offset, num_isoc_packets, sink, len, current_len, errcode; int frame_complete, transp_mode, fifon, status; __u8 threshbit; fifon = fifo->fifonum; status = urb->status; tx_offset = 0; /* ISO transfer only partially completed, look at individual frame status for details */ if (status == -EXDEV) { DBG(HFCUSB_DBG_VERBOSE_USB, "HFC-S USB: tx_iso_complete with -EXDEV" ", urb->status %d, fifonum %d\n", status, fifon); for (k = 0; k < iso_packets[fifon]; ++k) { errcode = urb->iso_frame_desc[k].status; if (errcode) DBG(HFCUSB_DBG_VERBOSE_USB, "HFC-S USB: tx_iso_complete " "packet %i, status: %i\n", k, errcode); } // clear status, so go on with ISO transfers status = 0; } if (fifo->active && !status) { transp_mode = 0; if (fifon < 4 && hfc->b_mode[fifon / 2] == L1_MODE_TRANS) transp_mode = 1; /* is FifoFull-threshold set for our channel? */ threshbit = (hfc->threshold_mask & (1 << fifon)); num_isoc_packets = iso_packets[fifon]; /* predict dataflow to avoid fifo overflow */ if (fifon >= HFCUSB_D_TX) { sink = (threshbit) ? SINK_DMIN : SINK_DMAX; } else { sink = (threshbit) ? SINK_MIN : SINK_MAX; } fill_isoc_urb(urb, fifo->hfc->dev, fifo->pipe, context_iso_urb->buffer, num_isoc_packets, fifo->usb_packet_maxlen, fifo->intervall, tx_iso_complete, urb->context); memset(context_iso_urb->buffer, 0, sizeof(context_iso_urb->buffer)); frame_complete = 0; /* Generate next ISO Packets */ for (k = 0; k < num_isoc_packets; ++k) { if (fifo->skbuff) { len = fifo->skbuff->len; /* we lower data margin every msec */ fifo->bit_line -= sink; current_len = (0 - fifo->bit_line) / 8; /* maximum 15 byte for every ISO packet makes our life easier */ if (current_len > 14) current_len = 14; current_len = (len <= current_len) ? len : current_len; /* how much bit do we put on the line? */ fifo->bit_line += current_len * 8; context_iso_urb->buffer[tx_offset] = 0; if (current_len == len) { if (!transp_mode) { /* here frame completion */ context_iso_urb-> buffer[tx_offset] = 1; /* add 2 byte flags and 16bit CRC at end of ISDN frame */ fifo->bit_line += 32; } frame_complete = 1; } memcpy(context_iso_urb->buffer + tx_offset + 1, fifo->skbuff->data, current_len); skb_pull(fifo->skbuff, current_len); /* define packet delimeters within the URB buffer */ urb->iso_frame_desc[k].offset = tx_offset; urb->iso_frame_desc[k].length = current_len + 1; tx_offset += (current_len + 1); } else { urb->iso_frame_desc[k].offset = tx_offset++; urb->iso_frame_desc[k].length = 1; fifo->bit_line -= sink; /* we lower data margin every msec */ if (fifo->bit_line < BITLINE_INF) { fifo->bit_line = BITLINE_INF; } } if (frame_complete) { fifo->delete_flg = 1; fifo->hif->l1l2(fifo->hif, PH_DATA | CONFIRM, (void *) (unsigned long) fifo->skbuff-> truesize); if (fifo->skbuff && fifo->delete_flg) { dev_kfree_skb_any(fifo->skbuff); fifo->skbuff = NULL; fifo->delete_flg = 0; } frame_complete = 0; } } errcode = usb_submit_urb(urb, GFP_ATOMIC); if (errcode < 0) { printk(KERN_INFO "HFC-S USB: error submitting ISO URB: %d\n", errcode); } } else { if (status && !hfc->disc_flag) { printk(KERN_INFO "HFC-S USB: tx_iso_complete: error(%i): '%s', fifonum=%d\n", status, symbolic(urb_errlist, status), fifon); } } } static void rx_iso_complete(struct urb *urb) { iso_urb_struct *context_iso_urb = (iso_urb_struct *) urb->context; usb_fifo *fifo = context_iso_urb->owner_fifo; hfcusb_data *hfc = fifo->hfc; int k, len, errcode, offset, num_isoc_packets, fifon, maxlen, status; unsigned int iso_status; __u8 *buf; static __u8 eof[8]; fifon = fifo->fifonum; status = urb->status; if (urb->status == -EOVERFLOW) { DBG(HFCUSB_DBG_VERBOSE_USB, "HFC-USB: ignoring USB DATAOVERRUN fifo(%i)", fifon); status = 0; } /* ISO transfer only partially completed, look at individual frame status for details */ if (status == -EXDEV) { DBG(HFCUSB_DBG_VERBOSE_USB, "HFC-S USB: rx_iso_complete with -EXDEV " "urb->status %d, fifonum %d\n", status, fifon); status = 0; } if (fifo->active && !status) { num_isoc_packets = iso_packets[fifon]; maxlen = fifo->usb_packet_maxlen; for (k = 0; k < num_isoc_packets; ++k) { len = urb->iso_frame_desc[k].actual_length; offset = urb->iso_frame_desc[k].offset; buf = context_iso_urb->buffer + offset; iso_status = urb->iso_frame_desc[k].status; if (iso_status && !hfc->disc_flag) DBG(HFCUSB_DBG_VERBOSE_USB, "HFC-S USB: rx_iso_complete " "ISO packet %i, status: %i\n", k, iso_status); if (fifon == HFCUSB_D_RX) { DBG(HFCUSB_DBG_VERBOSE_USB, "HFC-S USB: ISO-D-RX lst_urblen:%2d " "act_urblen:%2d max-urblen:%2d EOF:0x%0x", fifo->last_urblen, len, maxlen, eof[5]); DBG_PACKET(HFCUSB_DBG_VERBOSE_USB, buf, len); } if (fifo->last_urblen != maxlen) { /* the threshold mask is in the 2nd status byte */ hfc->threshold_mask = buf[1]; /* care for L1 state only for D-Channel to avoid overlapped iso completions */ if (fifon == HFCUSB_D_RX) { /* the S0 state is in the upper half of the 1st status byte */ s0_state_handler(hfc, buf[0] >> 4); } eof[fifon] = buf[0] & 1; if (len > 2) collect_rx_frame(fifo, buf + 2, len - 2, (len < maxlen) ? eof[fifon] : 0); } else { collect_rx_frame(fifo, buf, len, (len < maxlen) ? eof[fifon] : 0); } fifo->last_urblen = len; } fill_isoc_urb(urb, fifo->hfc->dev, fifo->pipe, context_iso_urb->buffer, num_isoc_packets, fifo->usb_packet_maxlen, fifo->intervall, rx_iso_complete, urb->context); errcode = usb_submit_urb(urb, GFP_ATOMIC); if (errcode < 0) { printk(KERN_ERR "HFC-S USB: error submitting ISO URB: %d\n", errcode); } } else { if (status && !hfc->disc_flag) { printk(KERN_ERR "HFC-S USB: rx_iso_complete : " "urb->status %d, fifonum %d\n", status, fifon); } } } /* collect rx data from INT- and ISO-URBs */ static void collect_rx_frame(usb_fifo *fifo, __u8 *data, int len, int finish) { hfcusb_data *hfc = fifo->hfc; int transp_mode, fifon; fifon = fifo->fifonum; transp_mode = 0; if (fifon < 4 && hfc->b_mode[fifon / 2] == L1_MODE_TRANS) transp_mode = 1; if (!fifo->skbuff) { fifo->skbuff = dev_alloc_skb(fifo->max_size + 3); if (!fifo->skbuff) { printk(KERN_ERR "HFC-S USB: cannot allocate buffer for fifo(%d)\n", fifon); return; } } if (len) { if (fifo->skbuff->len + len < fifo->max_size) { skb_put_data(fifo->skbuff, data, len); } else { DBG(HFCUSB_DBG_FIFO_ERR, "HCF-USB: got frame exceeded fifo->max_size(%d) fifo(%d)", fifo->max_size, fifon); DBG_SKB(HFCUSB_DBG_VERBOSE_USB, fifo->skbuff); skb_trim(fifo->skbuff, 0); } } if (transp_mode && fifo->skbuff->len >= 128) { fifo->hif->l1l2(fifo->hif, PH_DATA | INDICATION, fifo->skbuff); fifo->skbuff = NULL; return; } /* we have a complete hdlc packet */ if (finish) { if (fifo->skbuff->len > 3 && !fifo->skbuff->data[fifo->skbuff->len - 1]) { if (fifon == HFCUSB_D_RX) { DBG(HFCUSB_DBG_DCHANNEL, "HFC-S USB: D-RX len(%d)", fifo->skbuff->len); DBG_SKB(HFCUSB_DBG_DCHANNEL, fifo->skbuff); } /* remove CRC & status */ skb_trim(fifo->skbuff, fifo->skbuff->len - 3); if (fifon == HFCUSB_PCM_RX) { fifo->hif->l1l2(fifo->hif, PH_DATA_E | INDICATION, fifo->skbuff); } else fifo->hif->l1l2(fifo->hif, PH_DATA | INDICATION, fifo->skbuff); fifo->skbuff = NULL; /* buffer was freed from upper layer */ } else { DBG(HFCUSB_DBG_FIFO_ERR, "HFC-S USB: ERROR frame len(%d) fifo(%d)", fifo->skbuff->len, fifon); DBG_SKB(HFCUSB_DBG_VERBOSE_USB, fifo->skbuff); skb_trim(fifo->skbuff, 0); } } } static void rx_int_complete(struct urb *urb) { int len; int status; __u8 *buf, maxlen, fifon; usb_fifo *fifo = (usb_fifo *) urb->context; hfcusb_data *hfc = fifo->hfc; static __u8 eof[8]; urb->dev = hfc->dev; /* security init */ fifon = fifo->fifonum; if ((!fifo->active) || (urb->status)) { DBG(HFCUSB_DBG_INIT, "HFC-S USB: RX-Fifo %i is going down (%i)", fifon, urb->status); fifo->urb->interval = 0; /* cancel automatic rescheduling */ if (fifo->skbuff) { dev_kfree_skb_any(fifo->skbuff); fifo->skbuff = NULL; } return; } len = urb->actual_length; buf = fifo->buffer; maxlen = fifo->usb_packet_maxlen; if (fifon == HFCUSB_D_RX) { DBG(HFCUSB_DBG_VERBOSE_USB, "HFC-S USB: INT-D-RX lst_urblen:%2d " "act_urblen:%2d max-urblen:%2d EOF:0x%0x", fifo->last_urblen, len, maxlen, eof[5]); DBG_PACKET(HFCUSB_DBG_VERBOSE_USB, buf, len); } if (fifo->last_urblen != fifo->usb_packet_maxlen) { /* the threshold mask is in the 2nd status byte */ hfc->threshold_mask = buf[1]; /* the S0 state is in the upper half of the 1st status byte */ s0_state_handler(hfc, buf[0] >> 4); eof[fifon] = buf[0] & 1; /* if we have more than the 2 status bytes -> collect data */ if (len > 2) collect_rx_frame(fifo, buf + 2, urb->actual_length - 2, (len < maxlen) ? eof[fifon] : 0); } else { collect_rx_frame(fifo, buf, urb->actual_length, (len < maxlen) ? eof[fifon] : 0); } fifo->last_urblen = urb->actual_length; status = usb_submit_urb(urb, GFP_ATOMIC); if (status) { printk(KERN_INFO "HFC-S USB: %s error resubmitting URB fifo(%d)\n", __func__, fifon); } } /* start initial INT-URB for certain fifo */ static void start_int_fifo(usb_fifo *fifo) { int errcode; DBG(HFCUSB_DBG_INIT, "HFC-S USB: starting RX INT-URB for fifo:%d\n", fifo->fifonum); if (!fifo->urb) { fifo->urb = usb_alloc_urb(0, GFP_KERNEL); if (!fifo->urb) return; } usb_fill_int_urb(fifo->urb, fifo->hfc->dev, fifo->pipe, fifo->buffer, fifo->usb_packet_maxlen, rx_int_complete, fifo, fifo->intervall); fifo->active = 1; /* must be marked active */ errcode = usb_submit_urb(fifo->urb, GFP_KERNEL); if (errcode) { printk(KERN_ERR "HFC-S USB: submit URB error(%s): status:%i\n", __func__, errcode); fifo->active = 0; fifo->skbuff = NULL; } } static void setup_bchannel(hfcusb_data *hfc, int channel, int mode) { __u8 val, idx_table[2] = { 0, 2 }; if (hfc->disc_flag) { return; } DBG(HFCUSB_DBG_STATES, "HFC-S USB: setting channel %d to mode %d", channel, mode); hfc->b_mode[channel] = mode; /* setup CON_HDLC */ val = 0; if (mode != L1_MODE_NULL) val = 8; /* enable fifo? */ if (mode == L1_MODE_TRANS) val |= 2; /* set transparent bit */ /* set FIFO to transmit register */ queue_control_request(hfc, HFCUSB_FIFO, idx_table[channel], 1); queue_control_request(hfc, HFCUSB_CON_HDLC, val, 1); /* reset fifo */ queue_control_request(hfc, HFCUSB_INC_RES_F, 2, 1); /* set FIFO to receive register */ queue_control_request(hfc, HFCUSB_FIFO, idx_table[channel] + 1, 1); queue_control_request(hfc, HFCUSB_CON_HDLC, val, 1); /* reset fifo */ queue_control_request(hfc, HFCUSB_INC_RES_F, 2, 1); val = 0x40; if (hfc->b_mode[0]) val |= 1; if (hfc->b_mode[1]) val |= 2; queue_control_request(hfc, HFCUSB_SCTRL, val, 1); val = 0; if (hfc->b_mode[0]) val |= 1; if (hfc->b_mode[1]) val |= 2; queue_control_request(hfc, HFCUSB_SCTRL_R, val, 1); if (mode == L1_MODE_NULL) { if (channel) handle_led(hfc, LED_B2_OFF); else handle_led(hfc, LED_B1_OFF); } else { if (channel) handle_led(hfc, LED_B2_ON); else handle_led(hfc, LED_B1_ON); } } static void hfc_usb_l2l1(struct hisax_if *my_hisax_if, int pr, void *arg) { usb_fifo *fifo = my_hisax_if->priv; hfcusb_data *hfc = fifo->hfc; switch (pr) { case PH_ACTIVATE | REQUEST: if (fifo->fifonum == HFCUSB_D_TX) { DBG(HFCUSB_DBG_STATES, "HFC_USB: hfc_usb_d_l2l1 D-chan: PH_ACTIVATE | REQUEST"); if (hfc->l1_state != 3 && hfc->l1_state != 7) { hfc->d_if.ifc.l1l2(&hfc->d_if.ifc, PH_DEACTIVATE | INDICATION, NULL); DBG(HFCUSB_DBG_STATES, "HFC-S USB: PH_DEACTIVATE | INDICATION sent (not state 3 or 7)"); } else { if (hfc->l1_state == 7) { /* l1 already active */ hfc->d_if.ifc.l1l2(&hfc-> d_if. ifc, PH_ACTIVATE | INDICATION, NULL); DBG(HFCUSB_DBG_STATES, "HFC-S USB: PH_ACTIVATE | INDICATION sent again ;)"); } else { /* force sending sending INFO1 */ queue_control_request(hfc, HFCUSB_STATES, 0x14, 1); mdelay(1); /* start l1 activation */ queue_control_request(hfc, HFCUSB_STATES, 0x04, 1); if (!timer_pending (&hfc->t3_timer)) { hfc->t3_timer. expires = jiffies + (HFC_TIMER_T3 * HZ) / 1000; add_timer(&hfc-> t3_timer); } } } } else { DBG(HFCUSB_DBG_STATES, "HFC_USB: hfc_usb_d_l2l1 B-chan: PH_ACTIVATE | REQUEST"); setup_bchannel(hfc, (fifo->fifonum == HFCUSB_B1_TX) ? 0 : 1, (long) arg); fifo->hif->l1l2(fifo->hif, PH_ACTIVATE | INDICATION, NULL); } break; case PH_DEACTIVATE | REQUEST: if (fifo->fifonum == HFCUSB_D_TX) { DBG(HFCUSB_DBG_STATES, "HFC_USB: hfc_usb_d_l2l1 D-chan: PH_DEACTIVATE | REQUEST"); } else { DBG(HFCUSB_DBG_STATES, "HFC_USB: hfc_usb_d_l2l1 Bx-chan: PH_DEACTIVATE | REQUEST"); setup_bchannel(hfc, (fifo->fifonum == HFCUSB_B1_TX) ? 0 : 1, (int) L1_MODE_NULL); fifo->hif->l1l2(fifo->hif, PH_DEACTIVATE | INDICATION, NULL); } break; case PH_DATA | REQUEST: if (fifo->skbuff && fifo->delete_flg) { dev_kfree_skb_any(fifo->skbuff); fifo->skbuff = NULL; fifo->delete_flg = 0; } fifo->skbuff = arg; /* we have a new buffer */ break; default: DBG(HFCUSB_DBG_STATES, "HFC_USB: hfc_usb_d_l2l1: unknown state : %#x", pr); break; } } /* initial init HFC-S USB chip registers, HiSax interface, USB URBs */ static int hfc_usb_init(hfcusb_data *hfc) { usb_fifo *fifo; int i; u_char b; struct hisax_b_if *p_b_if[2]; /* check the chip id */ if (read_usb(hfc, HFCUSB_CHIP_ID, &b) != 1) { printk(KERN_INFO "HFC-USB: cannot read chip id\n"); return (1); } if (b != HFCUSB_CHIPID) { printk(KERN_INFO "HFC-S USB: Invalid chip id 0x%02x\n", b); return (1); } /* first set the needed config, interface and alternate */ usb_set_interface(hfc->dev, hfc->if_used, hfc->alt_used); /* do Chip reset */ write_usb(hfc, HFCUSB_CIRM, 8); /* aux = output, reset off */ write_usb(hfc, HFCUSB_CIRM, 0x10); /* set USB_SIZE to match wMaxPacketSize for INT or BULK transfers */ write_usb(hfc, HFCUSB_USB_SIZE, (hfc->packet_size / 8) | ((hfc->packet_size / 8) << 4)); /* set USB_SIZE_I to match wMaxPacketSize for ISO transfers */ write_usb(hfc, HFCUSB_USB_SIZE_I, hfc->iso_packet_size); /* enable PCM/GCI master mode */ write_usb(hfc, HFCUSB_MST_MODE1, 0); /* set default values */ write_usb(hfc, HFCUSB_MST_MODE0, 1); /* enable master mode */ /* init the fifos */ write_usb(hfc, HFCUSB_F_THRES, (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4)); fifo = hfc->fifos; for (i = 0; i < HFCUSB_NUM_FIFOS; i++) { write_usb(hfc, HFCUSB_FIFO, i); /* select the desired fifo */ fifo[i].skbuff = NULL; /* init buffer pointer */ fifo[i].max_size = (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN; fifo[i].last_urblen = 0; /* set 2 bit for D- & E-channel */ write_usb(hfc, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2)); /* rx hdlc, enable IFF for D-channel */ write_usb(hfc, HFCUSB_CON_HDLC, ((i == HFCUSB_D_TX) ? 0x09 : 0x08)); write_usb(hfc, HFCUSB_INC_RES_F, 2); /* reset the fifo */ } write_usb(hfc, HFCUSB_CLKDEL, 0x0f); /* clock delay value */ write_usb(hfc, HFCUSB_STATES, 3 | 0x10); /* set deactivated mode */ write_usb(hfc, HFCUSB_STATES, 3); /* enable state machine */ write_usb(hfc, HFCUSB_SCTRL_R, 0); /* disable both B receivers */ write_usb(hfc, HFCUSB_SCTRL, 0x40); /* disable B transmitters + capacitive mode */ /* set both B-channel to not connected */ hfc->b_mode[0] = L1_MODE_NULL; hfc->b_mode[1] = L1_MODE_NULL; hfc->l1_activated = 0; hfc->disc_flag = 0; hfc->led_state = 0; hfc->old_led_state = 0; /* init the t3 timer */ setup_timer(&hfc->t3_timer, (void *)l1_timer_expire_t3, (long)hfc); /* init the t4 timer */ setup_timer(&hfc->t4_timer, (void *)l1_timer_expire_t4, (long)hfc); /* init the background machinery for control requests */ hfc->ctrl_read.bRequestType = 0xc0; hfc->ctrl_read.bRequest = 1; hfc->ctrl_read.wLength = cpu_to_le16(1); hfc->ctrl_write.bRequestType = 0x40; hfc->ctrl_write.bRequest = 0; hfc->ctrl_write.wLength = 0; usb_fill_control_urb(hfc->ctrl_urb, hfc->dev, hfc->ctrl_out_pipe, (u_char *)&hfc->ctrl_write, NULL, 0, ctrl_complete, hfc); /* Init All Fifos */ for (i = 0; i < HFCUSB_NUM_FIFOS; i++) { hfc->fifos[i].iso[0].purb = NULL; hfc->fifos[i].iso[1].purb = NULL; hfc->fifos[i].active = 0; } /* register Modul to upper Hisax Layers */ hfc->d_if.owner = THIS_MODULE; hfc->d_if.ifc.priv = &hfc->fifos[HFCUSB_D_TX]; hfc->d_if.ifc.l2l1 = hfc_usb_l2l1; for (i = 0; i < 2; i++) { hfc->b_if[i].ifc.priv = &hfc->fifos[HFCUSB_B1_TX + i * 2]; hfc->b_if[i].ifc.l2l1 = hfc_usb_l2l1; p_b_if[i] = &hfc->b_if[i]; } /* default Prot: EURO ISDN, should be a module_param */ hfc->protocol = 2; i = hisax_register(&hfc->d_if, p_b_if, "hfc_usb", hfc->protocol); if (i) { printk(KERN_INFO "HFC-S USB: hisax_register -> %d\n", i); return i; } #ifdef CONFIG_HISAX_DEBUG hfc_debug = debug; #endif for (i = 0; i < 4; i++) hfc->fifos[i].hif = &p_b_if[i / 2]->ifc; for (i = 4; i < 8; i++) hfc->fifos[i].hif = &hfc->d_if.ifc; /* 3 (+1) INT IN + 3 ISO OUT */ if (hfc->cfg_used == CNF_3INT3ISO || hfc->cfg_used == CNF_4INT3ISO) { start_int_fifo(hfc->fifos + HFCUSB_D_RX); if (hfc->fifos[HFCUSB_PCM_RX].pipe) start_int_fifo(hfc->fifos + HFCUSB_PCM_RX); start_int_fifo(hfc->fifos + HFCUSB_B1_RX); start_int_fifo(hfc->fifos + HFCUSB_B2_RX); } /* 3 (+1) ISO IN + 3 ISO OUT */ if (hfc->cfg_used == CNF_3ISO3ISO || hfc->cfg_used == CNF_4ISO3ISO) { start_isoc_chain(hfc->fifos + HFCUSB_D_RX, ISOC_PACKETS_D, rx_iso_complete, 16); if (hfc->fifos[HFCUSB_PCM_RX].pipe) start_isoc_chain(hfc->fifos + HFCUSB_PCM_RX, ISOC_PACKETS_D, rx_iso_complete, 16); start_isoc_chain(hfc->fifos + HFCUSB_B1_RX, ISOC_PACKETS_B, rx_iso_complete, 16); start_isoc_chain(hfc->fifos + HFCUSB_B2_RX, ISOC_PACKETS_B, rx_iso_complete, 16); } start_isoc_chain(hfc->fifos + HFCUSB_D_TX, ISOC_PACKETS_D, tx_iso_complete, 1); start_isoc_chain(hfc->fifos + HFCUSB_B1_TX, ISOC_PACKETS_B, tx_iso_complete, 1); start_isoc_chain(hfc->fifos + HFCUSB_B2_TX, ISOC_PACKETS_B, tx_iso_complete, 1); handle_led(hfc, LED_POWER_ON); return (0); } /* initial callback for each plugged USB device */ static int hfc_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = interface_to_usbdev(intf); hfcusb_data *context; struct usb_host_interface *iface = intf->cur_altsetting; struct usb_host_interface *iface_used = NULL; struct usb_host_endpoint *ep; int ifnum = iface->desc.bInterfaceNumber; int i, idx, alt_idx, probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found, cidx, ep_addr; int cmptbl[16], small_match, iso_packet_size, packet_size, alt_used = 0; hfcsusb_vdata *driver_info; vend_idx = 0xffff; for (i = 0; hfcusb_idtab[i].idVendor; i++) { if ((le16_to_cpu(dev->descriptor.idVendor) == hfcusb_idtab[i].idVendor) && (le16_to_cpu(dev->descriptor.idProduct) == hfcusb_idtab[i].idProduct)) { vend_idx = i; continue; } } printk(KERN_INFO "HFC-S USB: probing interface(%d) actalt(%d) minor(%d)\n", ifnum, iface->desc.bAlternateSetting, intf->minor); if (vend_idx != 0xffff) { /* if vendor and product ID is OK, start probing alternate settings */ alt_idx = 0; small_match = 0xffff; /* default settings */ iso_packet_size = 16; packet_size = 64; while (alt_idx < intf->num_altsetting) { iface = intf->altsetting + alt_idx; probe_alt_setting = iface->desc.bAlternateSetting; cfg_used = 0; /* check for config EOL element */ while (validconf[cfg_used][0]) { cfg_found = 1; vcf = validconf[cfg_used]; /* first endpoint descriptor */ ep = iface->endpoint; memcpy(cmptbl, vcf, 16 * sizeof(int)); /* check for all endpoints in this alternate setting */ for (i = 0; i < iface->desc.bNumEndpoints; i++) { ep_addr = ep->desc.bEndpointAddress; /* get endpoint base */ idx = ((ep_addr & 0x7f) - 1) * 2; if (ep_addr & 0x80) idx++; attr = ep->desc.bmAttributes; if (cmptbl[idx] == EP_NUL) { cfg_found = 0; } if (attr == USB_ENDPOINT_XFER_INT && cmptbl[idx] == EP_INT) cmptbl[idx] = EP_NUL; if (attr == USB_ENDPOINT_XFER_BULK && cmptbl[idx] == EP_BLK) cmptbl[idx] = EP_NUL; if (attr == USB_ENDPOINT_XFER_ISOC && cmptbl[idx] == EP_ISO) cmptbl[idx] = EP_NUL; /* check if all INT endpoints match minimum interval */ if ((attr == USB_ENDPOINT_XFER_INT) && (ep->desc.bInterval < vcf[17])) { cfg_found = 0; } ep++; } for (i = 0; i < 16; i++) { /* all entries must be EP_NOP or EP_NUL for a valid config */ if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL) cfg_found = 0; } if (cfg_found) { if (cfg_used < small_match) { small_match = cfg_used; alt_used = probe_alt_setting; iface_used = iface; } } cfg_used++; } alt_idx++; } /* (alt_idx < intf->num_altsetting) */ /* found a valid USB Ta Endpint config */ if (small_match != 0xffff) { iface = iface_used; if (!(context = kzalloc(sizeof(hfcusb_data), GFP_KERNEL))) return (-ENOMEM); /* got no mem */ ep = iface->endpoint; vcf = validconf[small_match]; for (i = 0; i < iface->desc.bNumEndpoints; i++) { ep_addr = ep->desc.bEndpointAddress; /* get endpoint base */ idx = ((ep_addr & 0x7f) - 1) * 2; if (ep_addr & 0x80) idx++; cidx = idx & 7; attr = ep->desc.bmAttributes; /* init Endpoints */ if (vcf[idx] != EP_NOP && vcf[idx] != EP_NUL) { switch (attr) { case USB_ENDPOINT_XFER_INT: context-> fifos[cidx]. pipe = usb_rcvintpipe (dev, ep->desc. bEndpointAddress); context-> fifos[cidx]. usb_transfer_mode = USB_INT; packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); break; case USB_ENDPOINT_XFER_BULK: if (ep_addr & 0x80) context-> fifos [cidx]. pipe = usb_rcvbulkpipe (dev, ep-> desc. bEndpointAddress); else context-> fifos [cidx]. pipe = usb_sndbulkpipe (dev, ep-> desc. bEndpointAddress); context-> fifos[cidx]. usb_transfer_mode = USB_BULK; packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); break; case USB_ENDPOINT_XFER_ISOC: if (ep_addr & 0x80) context-> fifos [cidx]. pipe = usb_rcvisocpipe (dev, ep-> desc. bEndpointAddress); else context-> fifos [cidx]. pipe = usb_sndisocpipe (dev, ep-> desc. bEndpointAddress); context-> fifos[cidx]. usb_transfer_mode = USB_ISOC; iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); break; default: context-> fifos[cidx]. pipe = 0; } /* switch attribute */ if (context->fifos[cidx].pipe) { context->fifos[cidx]. fifonum = cidx; context->fifos[cidx].hfc = context; context->fifos[cidx].usb_packet_maxlen = le16_to_cpu(ep->desc.wMaxPacketSize); context->fifos[cidx]. intervall = ep->desc.bInterval; context->fifos[cidx]. skbuff = NULL; } } ep++; } context->dev = dev; /* save device */ context->if_used = ifnum; /* save used interface */ context->alt_used = alt_used; /* and alternate config */ context->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */ context->cfg_used = vcf[16]; /* store used config */ context->vend_idx = vend_idx; /* store found vendor */ context->packet_size = packet_size; context->iso_packet_size = iso_packet_size; /* create the control pipes needed for register access */ context->ctrl_in_pipe = usb_rcvctrlpipe(context->dev, 0); context->ctrl_out_pipe = usb_sndctrlpipe(context->dev, 0); driver_info = (hfcsusb_vdata *) hfcusb_idtab[vend_idx].driver_info; context->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL); if (!context->ctrl_urb) { pr_warn("%s: No memory for control urb\n", driver_info->vend_name); kfree(context); return -ENOMEM; } pr_info("HFC-S USB: detected \"%s\"\n", driver_info->vend_name); DBG(HFCUSB_DBG_INIT, "HFC-S USB: Endpoint-Config: %s (if=%d alt=%d), E-Channel(%d)", conf_str[small_match], context->if_used, context->alt_used, validconf[small_match][18]); /* init the chip and register the driver */ if (hfc_usb_init(context)) { usb_kill_urb(context->ctrl_urb); usb_free_urb(context->ctrl_urb); context->ctrl_urb = NULL; kfree(context); return (-EIO); } usb_set_intfdata(intf, context); return (0); } } else { printk(KERN_INFO "HFC-S USB: no valid vendor found in USB descriptor\n"); } return (-EIO); } /* callback for unplugged USB device */ static void hfc_usb_disconnect(struct usb_interface *intf) { hfcusb_data *context = usb_get_intfdata(intf); int i; handle_led(context, LED_POWER_OFF); schedule_timeout(HZ / 100); printk(KERN_INFO "HFC-S USB: device disconnect\n"); context->disc_flag = 1; usb_set_intfdata(intf, NULL); if (timer_pending(&context->t3_timer)) del_timer(&context->t3_timer); if (timer_pending(&context->t4_timer)) del_timer(&context->t4_timer); /* tell all fifos to terminate */ for (i = 0; i < HFCUSB_NUM_FIFOS; i++) { if (context->fifos[i].usb_transfer_mode == USB_ISOC) { if (context->fifos[i].active > 0) { stop_isoc_chain(&context->fifos[i]); DBG(HFCUSB_DBG_INIT, "HFC-S USB: %s stopping ISOC chain Fifo(%i)", __func__, i); } } else { if (context->fifos[i].active > 0) { context->fifos[i].active = 0; DBG(HFCUSB_DBG_INIT, "HFC-S USB: %s unlinking URB for Fifo(%i)", __func__, i); } usb_kill_urb(context->fifos[i].urb); usb_free_urb(context->fifos[i].urb); context->fifos[i].urb = NULL; } context->fifos[i].active = 0; } usb_kill_urb(context->ctrl_urb); usb_free_urb(context->ctrl_urb); context->ctrl_urb = NULL; hisax_unregister(&context->d_if); kfree(context); /* free our structure again */ } static struct usb_driver hfc_drv = { .name = "hfc_usb", .id_table = hfcusb_idtab, .probe = hfc_usb_probe, .disconnect = hfc_usb_disconnect, .disable_hub_initiated_lpm = 1, }; static void __exit hfc_usb_mod_exit(void) { usb_deregister(&hfc_drv); /* release our driver */ printk(KERN_INFO "HFC-S USB: module removed\n"); } static int __init hfc_usb_mod_init(void) { char revstr[30], datestr[30], dummy[30]; #ifndef CONFIG_HISAX_DEBUG hfc_debug = debug; #endif sscanf(hfcusb_revision, "%s %s $ %s %s %s $ ", dummy, revstr, dummy, datestr, dummy); printk(KERN_INFO "HFC-S USB: driver module revision %s date %s loaded, (debug=%i)\n", revstr, datestr, debug); if (usb_register(&hfc_drv)) { printk(KERN_INFO "HFC-S USB: Unable to register HFC-S USB module at usb stack\n"); return (-1); /* unable to register */ } return (0); } module_init(hfc_usb_mod_init); module_exit(hfc_usb_mod_exit); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(usb, hfcusb_idtab);