/* * Copyright (c) 2016 Avago Technologies. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful. * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. * See the GNU General Public License for more details, a copy of which * can be found in the file COPYING included with this package * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include "nvme.h" #include "fabrics.h" #include #include /* *************************** Data Structures/Defines ****************** */ /* * We handle AEN commands ourselves and don't even let the * block layer know about them. */ #define NVME_FC_NR_AEN_COMMANDS 1 #define NVME_FC_AQ_BLKMQ_DEPTH \ (NVME_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS) #define AEN_CMDID_BASE (NVME_FC_AQ_BLKMQ_DEPTH + 1) enum nvme_fc_queue_flags { NVME_FC_Q_CONNECTED = (1 << 0), NVME_FC_Q_LIVE = (1 << 1), }; #define NVMEFC_QUEUE_DELAY 3 /* ms units */ struct nvme_fc_queue { struct nvme_fc_ctrl *ctrl; struct device *dev; struct blk_mq_hw_ctx *hctx; void *lldd_handle; int queue_size; size_t cmnd_capsule_len; u32 qnum; u32 rqcnt; u32 seqno; u64 connection_id; atomic_t csn; unsigned long flags; } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ enum nvme_fcop_flags { FCOP_FLAGS_TERMIO = (1 << 0), FCOP_FLAGS_RELEASED = (1 << 1), FCOP_FLAGS_COMPLETE = (1 << 2), FCOP_FLAGS_AEN = (1 << 3), }; struct nvmefc_ls_req_op { struct nvmefc_ls_req ls_req; struct nvme_fc_rport *rport; struct nvme_fc_queue *queue; struct request *rq; u32 flags; int ls_error; struct completion ls_done; struct list_head lsreq_list; /* rport->ls_req_list */ bool req_queued; }; enum nvme_fcpop_state { FCPOP_STATE_UNINIT = 0, FCPOP_STATE_IDLE = 1, FCPOP_STATE_ACTIVE = 2, FCPOP_STATE_ABORTED = 3, FCPOP_STATE_COMPLETE = 4, }; struct nvme_fc_fcp_op { struct nvme_request nreq; /* * nvme/host/core.c * requires this to be * the 1st element in the * private structure * associated with the * request. */ struct nvmefc_fcp_req fcp_req; struct nvme_fc_ctrl *ctrl; struct nvme_fc_queue *queue; struct request *rq; atomic_t state; u32 flags; u32 rqno; u32 nents; struct nvme_fc_cmd_iu cmd_iu; struct nvme_fc_ersp_iu rsp_iu; }; struct nvme_fc_lport { struct nvme_fc_local_port localport; struct ida endp_cnt; struct list_head port_list; /* nvme_fc_port_list */ struct list_head endp_list; struct device *dev; /* physical device for dma */ struct nvme_fc_port_template *ops; struct kref ref; } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ struct nvme_fc_rport { struct nvme_fc_remote_port remoteport; struct list_head endp_list; /* for lport->endp_list */ struct list_head ctrl_list; struct list_head ls_req_list; struct device *dev; /* physical device for dma */ struct nvme_fc_lport *lport; spinlock_t lock; struct kref ref; } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ enum nvme_fcctrl_flags { FCCTRL_TERMIO = (1 << 0), }; struct nvme_fc_ctrl { spinlock_t lock; struct nvme_fc_queue *queues; struct device *dev; struct nvme_fc_lport *lport; struct nvme_fc_rport *rport; u32 cnum; u64 association_id; struct list_head ctrl_list; /* rport->ctrl_list */ struct blk_mq_tag_set admin_tag_set; struct blk_mq_tag_set tag_set; struct work_struct delete_work; struct delayed_work connect_work; struct kref ref; u32 flags; u32 iocnt; wait_queue_head_t ioabort_wait; struct nvme_fc_fcp_op aen_ops[NVME_FC_NR_AEN_COMMANDS]; struct nvme_ctrl ctrl; }; static inline struct nvme_fc_ctrl * to_fc_ctrl(struct nvme_ctrl *ctrl) { return container_of(ctrl, struct nvme_fc_ctrl, ctrl); } static inline struct nvme_fc_lport * localport_to_lport(struct nvme_fc_local_port *portptr) { return container_of(portptr, struct nvme_fc_lport, localport); } static inline struct nvme_fc_rport * remoteport_to_rport(struct nvme_fc_remote_port *portptr) { return container_of(portptr, struct nvme_fc_rport, remoteport); } static inline struct nvmefc_ls_req_op * ls_req_to_lsop(struct nvmefc_ls_req *lsreq) { return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); } static inline struct nvme_fc_fcp_op * fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) { return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); } /* *************************** Globals **************************** */ static DEFINE_SPINLOCK(nvme_fc_lock); static LIST_HEAD(nvme_fc_lport_list); static DEFINE_IDA(nvme_fc_local_port_cnt); static DEFINE_IDA(nvme_fc_ctrl_cnt); /* *********************** FC-NVME Port Management ************************ */ static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *); static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, struct nvme_fc_queue *, unsigned int); static void nvme_fc_free_lport(struct kref *ref) { struct nvme_fc_lport *lport = container_of(ref, struct nvme_fc_lport, ref); unsigned long flags; WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); WARN_ON(!list_empty(&lport->endp_list)); /* remove from transport list */ spin_lock_irqsave(&nvme_fc_lock, flags); list_del(&lport->port_list); spin_unlock_irqrestore(&nvme_fc_lock, flags); /* let the LLDD know we've finished tearing it down */ lport->ops->localport_delete(&lport->localport); ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); ida_destroy(&lport->endp_cnt); put_device(lport->dev); kfree(lport); } static void nvme_fc_lport_put(struct nvme_fc_lport *lport) { kref_put(&lport->ref, nvme_fc_free_lport); } static int nvme_fc_lport_get(struct nvme_fc_lport *lport) { return kref_get_unless_zero(&lport->ref); } static struct nvme_fc_lport * nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo) { struct nvme_fc_lport *lport; unsigned long flags; spin_lock_irqsave(&nvme_fc_lock, flags); list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { if (lport->localport.node_name != pinfo->node_name || lport->localport.port_name != pinfo->port_name) continue; if (lport->localport.port_state != FC_OBJSTATE_DELETED) { lport = ERR_PTR(-EEXIST); goto out_done; } if (!nvme_fc_lport_get(lport)) { /* * fails if ref cnt already 0. If so, * act as if lport already deleted */ lport = NULL; goto out_done; } /* resume the lport */ lport->localport.port_role = pinfo->port_role; lport->localport.port_id = pinfo->port_id; lport->localport.port_state = FC_OBJSTATE_ONLINE; spin_unlock_irqrestore(&nvme_fc_lock, flags); return lport; } lport = NULL; out_done: spin_unlock_irqrestore(&nvme_fc_lock, flags); return lport; } /** * nvme_fc_register_localport - transport entry point called by an * LLDD to register the existence of a NVME * host FC port. * @pinfo: pointer to information about the port to be registered * @template: LLDD entrypoints and operational parameters for the port * @dev: physical hardware device node port corresponds to. Will be * used for DMA mappings * @lport_p: pointer to a local port pointer. Upon success, the routine * will allocate a nvme_fc_local_port structure and place its * address in the local port pointer. Upon failure, local port * pointer will be set to 0. * * Returns: * a completion status. Must be 0 upon success; a negative errno * (ex: -ENXIO) upon failure. */ int nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, struct nvme_fc_port_template *template, struct device *dev, struct nvme_fc_local_port **portptr) { struct nvme_fc_lport *newrec; unsigned long flags; int ret, idx; if (!template->localport_delete || !template->remoteport_delete || !template->ls_req || !template->fcp_io || !template->ls_abort || !template->fcp_abort || !template->max_hw_queues || !template->max_sgl_segments || !template->max_dif_sgl_segments || !template->dma_boundary) { ret = -EINVAL; goto out_reghost_failed; } /* * look to see if there is already a localport that had been * deregistered and in the process of waiting for all the * references to fully be removed. If the references haven't * expired, we can simply re-enable the localport. Remoteports * and controller reconnections should resume naturally. */ newrec = nvme_fc_attach_to_unreg_lport(pinfo); /* found an lport, but something about its state is bad */ if (IS_ERR(newrec)) { ret = PTR_ERR(newrec); goto out_reghost_failed; /* found existing lport, which was resumed */ } else if (newrec) { *portptr = &newrec->localport; return 0; } /* nothing found - allocate a new localport struct */ newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), GFP_KERNEL); if (!newrec) { ret = -ENOMEM; goto out_reghost_failed; } idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); if (idx < 0) { ret = -ENOSPC; goto out_fail_kfree; } if (!get_device(dev) && dev) { ret = -ENODEV; goto out_ida_put; } INIT_LIST_HEAD(&newrec->port_list); INIT_LIST_HEAD(&newrec->endp_list); kref_init(&newrec->ref); newrec->ops = template; newrec->dev = dev; ida_init(&newrec->endp_cnt); newrec->localport.private = &newrec[1]; newrec->localport.node_name = pinfo->node_name; newrec->localport.port_name = pinfo->port_name; newrec->localport.port_role = pinfo->port_role; newrec->localport.port_id = pinfo->port_id; newrec->localport.port_state = FC_OBJSTATE_ONLINE; newrec->localport.port_num = idx; spin_lock_irqsave(&nvme_fc_lock, flags); list_add_tail(&newrec->port_list, &nvme_fc_lport_list); spin_unlock_irqrestore(&nvme_fc_lock, flags); if (dev) dma_set_seg_boundary(dev, template->dma_boundary); *portptr = &newrec->localport; return 0; out_ida_put: ida_simple_remove(&nvme_fc_local_port_cnt, idx); out_fail_kfree: kfree(newrec); out_reghost_failed: *portptr = NULL; return ret; } EXPORT_SYMBOL_GPL(nvme_fc_register_localport); /** * nvme_fc_unregister_localport - transport entry point called by an * LLDD to deregister/remove a previously * registered a NVME host FC port. * @localport: pointer to the (registered) local port that is to be * deregistered. * * Returns: * a completion status. Must be 0 upon success; a negative errno * (ex: -ENXIO) upon failure. */ int nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) { struct nvme_fc_lport *lport = localport_to_lport(portptr); unsigned long flags; if (!portptr) return -EINVAL; spin_lock_irqsave(&nvme_fc_lock, flags); if (portptr->port_state != FC_OBJSTATE_ONLINE) { spin_unlock_irqrestore(&nvme_fc_lock, flags); return -EINVAL; } portptr->port_state = FC_OBJSTATE_DELETED; spin_unlock_irqrestore(&nvme_fc_lock, flags); nvme_fc_lport_put(lport); return 0; } EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); /** * nvme_fc_register_remoteport - transport entry point called by an * LLDD to register the existence of a NVME * subsystem FC port on its fabric. * @localport: pointer to the (registered) local port that the remote * subsystem port is connected to. * @pinfo: pointer to information about the port to be registered * @rport_p: pointer to a remote port pointer. Upon success, the routine * will allocate a nvme_fc_remote_port structure and place its * address in the remote port pointer. Upon failure, remote port * pointer will be set to 0. * * Returns: * a completion status. Must be 0 upon success; a negative errno * (ex: -ENXIO) upon failure. */ int nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, struct nvme_fc_port_info *pinfo, struct nvme_fc_remote_port **portptr) { struct nvme_fc_lport *lport = localport_to_lport(localport); struct nvme_fc_rport *newrec; unsigned long flags; int ret, idx; newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), GFP_KERNEL); if (!newrec) { ret = -ENOMEM; goto out_reghost_failed; } if (!nvme_fc_lport_get(lport)) { ret = -ESHUTDOWN; goto out_kfree_rport; } idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); if (idx < 0) { ret = -ENOSPC; goto out_lport_put; } INIT_LIST_HEAD(&newrec->endp_list); INIT_LIST_HEAD(&newrec->ctrl_list); INIT_LIST_HEAD(&newrec->ls_req_list); kref_init(&newrec->ref); spin_lock_init(&newrec->lock); newrec->remoteport.localport = &lport->localport; newrec->dev = lport->dev; newrec->lport = lport; newrec->remoteport.private = &newrec[1]; newrec->remoteport.port_role = pinfo->port_role; newrec->remoteport.node_name = pinfo->node_name; newrec->remoteport.port_name = pinfo->port_name; newrec->remoteport.port_id = pinfo->port_id; newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; newrec->remoteport.port_num = idx; spin_lock_irqsave(&nvme_fc_lock, flags); list_add_tail(&newrec->endp_list, &lport->endp_list); spin_unlock_irqrestore(&nvme_fc_lock, flags); *portptr = &newrec->remoteport; return 0; out_lport_put: nvme_fc_lport_put(lport); out_kfree_rport: kfree(newrec); out_reghost_failed: *portptr = NULL; return ret; } EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); static void nvme_fc_free_rport(struct kref *ref) { struct nvme_fc_rport *rport = container_of(ref, struct nvme_fc_rport, ref); struct nvme_fc_lport *lport = localport_to_lport(rport->remoteport.localport); unsigned long flags; WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); WARN_ON(!list_empty(&rport->ctrl_list)); /* remove from lport list */ spin_lock_irqsave(&nvme_fc_lock, flags); list_del(&rport->endp_list); spin_unlock_irqrestore(&nvme_fc_lock, flags); /* let the LLDD know we've finished tearing it down */ lport->ops->remoteport_delete(&rport->remoteport); ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); kfree(rport); nvme_fc_lport_put(lport); } static void nvme_fc_rport_put(struct nvme_fc_rport *rport) { kref_put(&rport->ref, nvme_fc_free_rport); } static int nvme_fc_rport_get(struct nvme_fc_rport *rport) { return kref_get_unless_zero(&rport->ref); } static int nvme_fc_abort_lsops(struct nvme_fc_rport *rport) { struct nvmefc_ls_req_op *lsop; unsigned long flags; restart: spin_lock_irqsave(&rport->lock, flags); list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { lsop->flags |= FCOP_FLAGS_TERMIO; spin_unlock_irqrestore(&rport->lock, flags); rport->lport->ops->ls_abort(&rport->lport->localport, &rport->remoteport, &lsop->ls_req); goto restart; } } spin_unlock_irqrestore(&rport->lock, flags); return 0; } /** * nvme_fc_unregister_remoteport - transport entry point called by an * LLDD to deregister/remove a previously * registered a NVME subsystem FC port. * @remoteport: pointer to the (registered) remote port that is to be * deregistered. * * Returns: * a completion status. Must be 0 upon success; a negative errno * (ex: -ENXIO) upon failure. */ int nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) { struct nvme_fc_rport *rport = remoteport_to_rport(portptr); struct nvme_fc_ctrl *ctrl; unsigned long flags; if (!portptr) return -EINVAL; spin_lock_irqsave(&rport->lock, flags); if (portptr->port_state != FC_OBJSTATE_ONLINE) { spin_unlock_irqrestore(&rport->lock, flags); return -EINVAL; } portptr->port_state = FC_OBJSTATE_DELETED; /* tear down all associations to the remote port */ list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) __nvme_fc_del_ctrl(ctrl); spin_unlock_irqrestore(&rport->lock, flags); nvme_fc_abort_lsops(rport); nvme_fc_rport_put(rport); return 0; } EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); /* *********************** FC-NVME DMA Handling **************************** */ /* * The fcloop device passes in a NULL device pointer. Real LLD's will * pass in a valid device pointer. If NULL is passed to the dma mapping * routines, depending on the platform, it may or may not succeed, and * may crash. * * As such: * Wrapper all the dma routines and check the dev pointer. * * If simple mappings (return just a dma address, we'll noop them, * returning a dma address of 0. * * On more complex mappings (dma_map_sg), a pseudo routine fills * in the scatter list, setting all dma addresses to 0. */ static inline dma_addr_t fc_dma_map_single(struct device *dev, void *ptr, size_t size, enum dma_data_direction dir) { return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; } static inline int fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { return dev ? dma_mapping_error(dev, dma_addr) : 0; } static inline void fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { if (dev) dma_unmap_single(dev, addr, size, dir); } static inline void fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { if (dev) dma_sync_single_for_cpu(dev, addr, size, dir); } static inline void fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { if (dev) dma_sync_single_for_device(dev, addr, size, dir); } /* pseudo dma_map_sg call */ static int fc_map_sg(struct scatterlist *sg, int nents) { struct scatterlist *s; int i; WARN_ON(nents == 0 || sg[0].length == 0); for_each_sg(sg, s, nents, i) { s->dma_address = 0L; #ifdef CONFIG_NEED_SG_DMA_LENGTH s->dma_length = s->length; #endif } return nents; } static inline int fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); } static inline void fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { if (dev) dma_unmap_sg(dev, sg, nents, dir); } /* *********************** FC-NVME LS Handling **************************** */ static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); static void __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) { struct nvme_fc_rport *rport = lsop->rport; struct nvmefc_ls_req *lsreq = &lsop->ls_req; unsigned long flags; spin_lock_irqsave(&rport->lock, flags); if (!lsop->req_queued) { spin_unlock_irqrestore(&rport->lock, flags); return; } list_del(&lsop->lsreq_list); lsop->req_queued = false; spin_unlock_irqrestore(&rport->lock, flags); fc_dma_unmap_single(rport->dev, lsreq->rqstdma, (lsreq->rqstlen + lsreq->rsplen), DMA_BIDIRECTIONAL); nvme_fc_rport_put(rport); } static int __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop, void (*done)(struct nvmefc_ls_req *req, int status)) { struct nvmefc_ls_req *lsreq = &lsop->ls_req; unsigned long flags; int ret = 0; if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) return -ECONNREFUSED; if (!nvme_fc_rport_get(rport)) return -ESHUTDOWN; lsreq->done = done; lsop->rport = rport; lsop->req_queued = false; INIT_LIST_HEAD(&lsop->lsreq_list); init_completion(&lsop->ls_done); lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, lsreq->rqstlen + lsreq->rsplen, DMA_BIDIRECTIONAL); if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { ret = -EFAULT; goto out_putrport; } lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; spin_lock_irqsave(&rport->lock, flags); list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); lsop->req_queued = true; spin_unlock_irqrestore(&rport->lock, flags); ret = rport->lport->ops->ls_req(&rport->lport->localport, &rport->remoteport, lsreq); if (ret) goto out_unlink; return 0; out_unlink: lsop->ls_error = ret; spin_lock_irqsave(&rport->lock, flags); lsop->req_queued = false; list_del(&lsop->lsreq_list); spin_unlock_irqrestore(&rport->lock, flags); fc_dma_unmap_single(rport->dev, lsreq->rqstdma, (lsreq->rqstlen + lsreq->rsplen), DMA_BIDIRECTIONAL); out_putrport: nvme_fc_rport_put(rport); return ret; } static void nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) { struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); lsop->ls_error = status; complete(&lsop->ls_done); } static int nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) { struct nvmefc_ls_req *lsreq = &lsop->ls_req; struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; int ret; ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); if (!ret) { /* * No timeout/not interruptible as we need the struct * to exist until the lldd calls us back. Thus mandate * wait until driver calls back. lldd responsible for * the timeout action */ wait_for_completion(&lsop->ls_done); __nvme_fc_finish_ls_req(lsop); ret = lsop->ls_error; } if (ret) return ret; /* ACC or RJT payload ? */ if (rjt->w0.ls_cmd == FCNVME_LS_RJT) return -ENXIO; return 0; } static int nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop, void (*done)(struct nvmefc_ls_req *req, int status)) { /* don't wait for completion */ return __nvme_fc_send_ls_req(rport, lsop, done); } /* Validation Error indexes into the string table below */ enum { VERR_NO_ERROR = 0, VERR_LSACC = 1, VERR_LSDESC_RQST = 2, VERR_LSDESC_RQST_LEN = 3, VERR_ASSOC_ID = 4, VERR_ASSOC_ID_LEN = 5, VERR_CONN_ID = 6, VERR_CONN_ID_LEN = 7, VERR_CR_ASSOC = 8, VERR_CR_ASSOC_ACC_LEN = 9, VERR_CR_CONN = 10, VERR_CR_CONN_ACC_LEN = 11, VERR_DISCONN = 12, VERR_DISCONN_ACC_LEN = 13, }; static char *validation_errors[] = { "OK", "Not LS_ACC", "Not LSDESC_RQST", "Bad LSDESC_RQST Length", "Not Association ID", "Bad Association ID Length", "Not Connection ID", "Bad Connection ID Length", "Not CR_ASSOC Rqst", "Bad CR_ASSOC ACC Length", "Not CR_CONN Rqst", "Bad CR_CONN ACC Length", "Not Disconnect Rqst", "Bad Disconnect ACC Length", }; static int nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) { struct nvmefc_ls_req_op *lsop; struct nvmefc_ls_req *lsreq; struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; struct fcnvme_ls_cr_assoc_acc *assoc_acc; int ret, fcret = 0; lsop = kzalloc((sizeof(*lsop) + ctrl->lport->ops->lsrqst_priv_sz + sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); if (!lsop) { ret = -ENOMEM; goto out_no_memory; } lsreq = &lsop->ls_req; lsreq->private = (void *)&lsop[1]; assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; assoc_rqst->desc_list_len = cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); assoc_rqst->assoc_cmd.desc_tag = cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); assoc_rqst->assoc_cmd.desc_len = fcnvme_lsdesc_len( sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize); /* Linux supports only Dynamic controllers */ assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); lsop->queue = queue; lsreq->rqstaddr = assoc_rqst; lsreq->rqstlen = sizeof(*assoc_rqst); lsreq->rspaddr = assoc_acc; lsreq->rsplen = sizeof(*assoc_acc); lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; ret = nvme_fc_send_ls_req(ctrl->rport, lsop); if (ret) goto out_free_buffer; /* process connect LS completion */ /* validate the ACC response */ if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) fcret = VERR_LSACC; else if (assoc_acc->hdr.desc_list_len != fcnvme_lsdesc_len( sizeof(struct fcnvme_ls_cr_assoc_acc))) fcret = VERR_CR_ASSOC_ACC_LEN; else if (assoc_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) fcret = VERR_LSDESC_RQST; else if (assoc_acc->hdr.rqst.desc_len != fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) fcret = VERR_LSDESC_RQST_LEN; else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) fcret = VERR_CR_ASSOC; else if (assoc_acc->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) fcret = VERR_ASSOC_ID; else if (assoc_acc->associd.desc_len != fcnvme_lsdesc_len( sizeof(struct fcnvme_lsdesc_assoc_id))) fcret = VERR_ASSOC_ID_LEN; else if (assoc_acc->connectid.desc_tag != cpu_to_be32(FCNVME_LSDESC_CONN_ID)) fcret = VERR_CONN_ID; else if (assoc_acc->connectid.desc_len != fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) fcret = VERR_CONN_ID_LEN; if (fcret) { ret = -EBADF; dev_err(ctrl->dev, "q %d connect failed: %s\n", queue->qnum, validation_errors[fcret]); } else { ctrl->association_id = be64_to_cpu(assoc_acc->associd.association_id); queue->connection_id = be64_to_cpu(assoc_acc->connectid.connection_id); set_bit(NVME_FC_Q_CONNECTED, &queue->flags); } out_free_buffer: kfree(lsop); out_no_memory: if (ret) dev_err(ctrl->dev, "queue %d connect admin queue failed (%d).\n", queue->qnum, ret); return ret; } static int nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) { struct nvmefc_ls_req_op *lsop; struct nvmefc_ls_req *lsreq; struct fcnvme_ls_cr_conn_rqst *conn_rqst; struct fcnvme_ls_cr_conn_acc *conn_acc; int ret, fcret = 0; lsop = kzalloc((sizeof(*lsop) + ctrl->lport->ops->lsrqst_priv_sz + sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); if (!lsop) { ret = -ENOMEM; goto out_no_memory; } lsreq = &lsop->ls_req; lsreq->private = (void *)&lsop[1]; conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; conn_rqst->desc_list_len = cpu_to_be32( sizeof(struct fcnvme_lsdesc_assoc_id) + sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); conn_rqst->associd.desc_len = fcnvme_lsdesc_len( sizeof(struct fcnvme_lsdesc_assoc_id)); conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); conn_rqst->connect_cmd.desc_tag = cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); conn_rqst->connect_cmd.desc_len = fcnvme_lsdesc_len( sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize); lsop->queue = queue; lsreq->rqstaddr = conn_rqst; lsreq->rqstlen = sizeof(*conn_rqst); lsreq->rspaddr = conn_acc; lsreq->rsplen = sizeof(*conn_acc); lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; ret = nvme_fc_send_ls_req(ctrl->rport, lsop); if (ret) goto out_free_buffer; /* process connect LS completion */ /* validate the ACC response */ if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) fcret = VERR_LSACC; else if (conn_acc->hdr.desc_list_len != fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) fcret = VERR_CR_CONN_ACC_LEN; else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) fcret = VERR_LSDESC_RQST; else if (conn_acc->hdr.rqst.desc_len != fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) fcret = VERR_LSDESC_RQST_LEN; else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) fcret = VERR_CR_CONN; else if (conn_acc->connectid.desc_tag != cpu_to_be32(FCNVME_LSDESC_CONN_ID)) fcret = VERR_CONN_ID; else if (conn_acc->connectid.desc_len != fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) fcret = VERR_CONN_ID_LEN; if (fcret) { ret = -EBADF; dev_err(ctrl->dev, "q %d connect failed: %s\n", queue->qnum, validation_errors[fcret]); } else { queue->connection_id = be64_to_cpu(conn_acc->connectid.connection_id); set_bit(NVME_FC_Q_CONNECTED, &queue->flags); } out_free_buffer: kfree(lsop); out_no_memory: if (ret) dev_err(ctrl->dev, "queue %d connect command failed (%d).\n", queue->qnum, ret); return ret; } static void nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) { struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); __nvme_fc_finish_ls_req(lsop); /* fc-nvme iniator doesn't care about success or failure of cmd */ kfree(lsop); } /* * This routine sends a FC-NVME LS to disconnect (aka terminate) * the FC-NVME Association. Terminating the association also * terminates the FC-NVME connections (per queue, both admin and io * queues) that are part of the association. E.g. things are torn * down, and the related FC-NVME Association ID and Connection IDs * become invalid. * * The behavior of the fc-nvme initiator is such that it's * understanding of the association and connections will implicitly * be torn down. The action is implicit as it may be due to a loss of * connectivity with the fc-nvme target, so you may never get a * response even if you tried. As such, the action of this routine * is to asynchronously send the LS, ignore any results of the LS, and * continue on with terminating the association. If the fc-nvme target * is present and receives the LS, it too can tear down. */ static void nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) { struct fcnvme_ls_disconnect_rqst *discon_rqst; struct fcnvme_ls_disconnect_acc *discon_acc; struct nvmefc_ls_req_op *lsop; struct nvmefc_ls_req *lsreq; int ret; lsop = kzalloc((sizeof(*lsop) + ctrl->lport->ops->lsrqst_priv_sz + sizeof(*discon_rqst) + sizeof(*discon_acc)), GFP_KERNEL); if (!lsop) /* couldn't sent it... too bad */ return; lsreq = &lsop->ls_req; lsreq->private = (void *)&lsop[1]; discon_rqst = (struct fcnvme_ls_disconnect_rqst *) (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1]; discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT; discon_rqst->desc_list_len = cpu_to_be32( sizeof(struct fcnvme_lsdesc_assoc_id) + sizeof(struct fcnvme_lsdesc_disconn_cmd)); discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); discon_rqst->associd.desc_len = fcnvme_lsdesc_len( sizeof(struct fcnvme_lsdesc_assoc_id)); discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); discon_rqst->discon_cmd.desc_tag = cpu_to_be32( FCNVME_LSDESC_DISCONN_CMD); discon_rqst->discon_cmd.desc_len = fcnvme_lsdesc_len( sizeof(struct fcnvme_lsdesc_disconn_cmd)); discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION; discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id); lsreq->rqstaddr = discon_rqst; lsreq->rqstlen = sizeof(*discon_rqst); lsreq->rspaddr = discon_acc; lsreq->rsplen = sizeof(*discon_acc); lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, nvme_fc_disconnect_assoc_done); if (ret) kfree(lsop); /* only meaningful part to terminating the association */ ctrl->association_id = 0; } /* *********************** NVME Ctrl Routines **************************** */ static void __nvme_fc_final_op_cleanup(struct request *rq); static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); static int nvme_fc_reinit_request(void *data, struct request *rq) { struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; memset(cmdiu, 0, sizeof(*cmdiu)); cmdiu->scsi_id = NVME_CMD_SCSI_ID; cmdiu->fc_id = NVME_CMD_FC_ID; cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); memset(&op->rsp_iu, 0, sizeof(op->rsp_iu)); return 0; } static void __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) { fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, sizeof(op->rsp_iu), DMA_FROM_DEVICE); fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, sizeof(op->cmd_iu), DMA_TO_DEVICE); atomic_set(&op->state, FCPOP_STATE_UNINIT); } static void nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx) { struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); return __nvme_fc_exit_request(set->driver_data, op); } static int __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) { int state; state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); if (state != FCPOP_STATE_ACTIVE) { atomic_set(&op->state, state); return -ECANCELED; } ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, &ctrl->rport->remoteport, op->queue->lldd_handle, &op->fcp_req); return 0; } static void nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) { struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; unsigned long flags; int i, ret; for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) { if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE) continue; spin_lock_irqsave(&ctrl->lock, flags); if (ctrl->flags & FCCTRL_TERMIO) { ctrl->iocnt++; aen_op->flags |= FCOP_FLAGS_TERMIO; } spin_unlock_irqrestore(&ctrl->lock, flags); ret = __nvme_fc_abort_op(ctrl, aen_op); if (ret) { /* * if __nvme_fc_abort_op failed the io wasn't * active. Thus this call path is running in * parallel to the io complete. Treat as non-error. */ /* back out the flags/counters */ spin_lock_irqsave(&ctrl->lock, flags); if (ctrl->flags & FCCTRL_TERMIO) ctrl->iocnt--; aen_op->flags &= ~FCOP_FLAGS_TERMIO; spin_unlock_irqrestore(&ctrl->lock, flags); return; } } } static inline int __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) { unsigned long flags; bool complete_rq = false; spin_lock_irqsave(&ctrl->lock, flags); if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) { if (ctrl->flags & FCCTRL_TERMIO) { if (!--ctrl->iocnt) wake_up(&ctrl->ioabort_wait); } } if (op->flags & FCOP_FLAGS_RELEASED) complete_rq = true; else op->flags |= FCOP_FLAGS_COMPLETE; spin_unlock_irqrestore(&ctrl->lock, flags); return complete_rq; } static void nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) { struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); struct request *rq = op->rq; struct nvmefc_fcp_req *freq = &op->fcp_req; struct nvme_fc_ctrl *ctrl = op->ctrl; struct nvme_fc_queue *queue = op->queue; struct nvme_completion *cqe = &op->rsp_iu.cqe; struct nvme_command *sqe = &op->cmd_iu.sqe; __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); union nvme_result result; bool complete_rq, terminate_assoc = true; /* * WARNING: * The current linux implementation of a nvme controller * allocates a single tag set for all io queues and sizes * the io queues to fully hold all possible tags. Thus, the * implementation does not reference or care about the sqhd * value as it never needs to use the sqhd/sqtail pointers * for submission pacing. * * This affects the FC-NVME implementation in two ways: * 1) As the value doesn't matter, we don't need to waste * cycles extracting it from ERSPs and stamping it in the * cases where the transport fabricates CQEs on successful * completions. * 2) The FC-NVME implementation requires that delivery of * ERSP completions are to go back to the nvme layer in order * relative to the rsn, such that the sqhd value will always * be "in order" for the nvme layer. As the nvme layer in * linux doesn't care about sqhd, there's no need to return * them in order. * * Additionally: * As the core nvme layer in linux currently does not look at * every field in the cqe - in cases where the FC transport must * fabricate a CQE, the following fields will not be set as they * are not referenced: * cqe.sqid, cqe.sqhd, cqe.command_id * * Failure or error of an individual i/o, in a transport * detected fashion unrelated to the nvme completion status, * potentially cause the initiator and target sides to get out * of sync on SQ head/tail (aka outstanding io count allowed). * Per FC-NVME spec, failure of an individual command requires * the connection to be terminated, which in turn requires the * association to be terminated. */ fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, sizeof(op->rsp_iu), DMA_FROM_DEVICE); if (atomic_read(&op->state) == FCPOP_STATE_ABORTED) status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1); else if (freq->status) status = cpu_to_le16(NVME_SC_INTERNAL << 1); /* * For the linux implementation, if we have an unsuccesful * status, they blk-mq layer can typically be called with the * non-zero status and the content of the cqe isn't important. */ if (status) goto done; /* * command completed successfully relative to the wire * protocol. However, validate anything received and * extract the status and result from the cqe (create it * where necessary). */ switch (freq->rcv_rsplen) { case 0: case NVME_FC_SIZEOF_ZEROS_RSP: /* * No response payload or 12 bytes of payload (which * should all be zeros) are considered successful and * no payload in the CQE by the transport. */ if (freq->transferred_length != be32_to_cpu(op->cmd_iu.data_len)) { status = cpu_to_le16(NVME_SC_INTERNAL << 1); goto done; } result.u64 = 0; break; case sizeof(struct nvme_fc_ersp_iu): /* * The ERSP IU contains a full completion with CQE. * Validate ERSP IU and look at cqe. */ if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != (freq->rcv_rsplen / 4) || be32_to_cpu(op->rsp_iu.xfrd_len) != freq->transferred_length || op->rsp_iu.status_code || sqe->common.command_id != cqe->command_id)) { status = cpu_to_le16(NVME_SC_INTERNAL << 1); goto done; } result = cqe->result; status = cqe->status; break; default: status = cpu_to_le16(NVME_SC_INTERNAL << 1); goto done; } terminate_assoc = false; done: if (op->flags & FCOP_FLAGS_AEN) { nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op); atomic_set(&op->state, FCPOP_STATE_IDLE); op->flags = FCOP_FLAGS_AEN; /* clear other flags */ nvme_fc_ctrl_put(ctrl); goto check_error; } complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op); if (!complete_rq) { if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) { status = cpu_to_le16(NVME_SC_ABORT_REQ << 1); if (blk_queue_dying(rq->q)) status |= cpu_to_le16(NVME_SC_DNR << 1); } nvme_end_request(rq, status, result); } else __nvme_fc_final_op_cleanup(rq); check_error: if (terminate_assoc) nvme_fc_error_recovery(ctrl, "transport detected io error"); } static int __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, struct request *rq, u32 rqno) { struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; int ret = 0; memset(op, 0, sizeof(*op)); op->fcp_req.cmdaddr = &op->cmd_iu; op->fcp_req.cmdlen = sizeof(op->cmd_iu); op->fcp_req.rspaddr = &op->rsp_iu; op->fcp_req.rsplen = sizeof(op->rsp_iu); op->fcp_req.done = nvme_fc_fcpio_done; op->fcp_req.first_sgl = (struct scatterlist *)&op[1]; op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE]; op->ctrl = ctrl; op->queue = queue; op->rq = rq; op->rqno = rqno; cmdiu->scsi_id = NVME_CMD_SCSI_ID; cmdiu->fc_id = NVME_CMD_FC_ID; cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { dev_err(ctrl->dev, "FCP Op failed - cmdiu dma mapping failed.\n"); ret = -EFAULT; goto out_on_error; } op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, &op->rsp_iu, sizeof(op->rsp_iu), DMA_FROM_DEVICE); if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { dev_err(ctrl->dev, "FCP Op failed - rspiu dma mapping failed.\n"); ret = -EFAULT; } atomic_set(&op->state, FCPOP_STATE_IDLE); out_on_error: return ret; } static int nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx, unsigned int numa_node) { struct nvme_fc_ctrl *ctrl = set->driver_data; struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++); } static int nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) { struct nvme_fc_fcp_op *aen_op; struct nvme_fc_cmd_iu *cmdiu; struct nvme_command *sqe; void *private; int i, ret; aen_op = ctrl->aen_ops; for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) { private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, GFP_KERNEL); if (!private) return -ENOMEM; cmdiu = &aen_op->cmd_iu; sqe = &cmdiu->sqe; ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], aen_op, (struct request *)NULL, (AEN_CMDID_BASE + i)); if (ret) { kfree(private); return ret; } aen_op->flags = FCOP_FLAGS_AEN; aen_op->fcp_req.first_sgl = NULL; /* no sg list */ aen_op->fcp_req.private = private; memset(sqe, 0, sizeof(*sqe)); sqe->common.opcode = nvme_admin_async_event; /* Note: core layer may overwrite the sqe.command_id value */ sqe->common.command_id = AEN_CMDID_BASE + i; } return 0; } static void nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) { struct nvme_fc_fcp_op *aen_op; int i; cancel_work_sync(&ctrl->ctrl.async_event_work); aen_op = ctrl->aen_ops; for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) { if (!aen_op->fcp_req.private) continue; __nvme_fc_exit_request(ctrl, aen_op); kfree(aen_op->fcp_req.private); aen_op->fcp_req.private = NULL; } } static inline void __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, unsigned int qidx) { struct nvme_fc_queue *queue = &ctrl->queues[qidx]; hctx->driver_data = queue; queue->hctx = hctx; } static int nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_fc_ctrl *ctrl = data; __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); return 0; } static int nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_fc_ctrl *ctrl = data; __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); return 0; } static void nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size) { struct nvme_fc_queue *queue; queue = &ctrl->queues[idx]; memset(queue, 0, sizeof(*queue)); queue->ctrl = ctrl; queue->qnum = idx; atomic_set(&queue->csn, 1); queue->dev = ctrl->dev; if (idx > 0) queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; else queue->cmnd_capsule_len = sizeof(struct nvme_command); queue->queue_size = queue_size; /* * Considered whether we should allocate buffers for all SQEs * and CQEs and dma map them - mapping their respective entries * into the request structures (kernel vm addr and dma address) * thus the driver could use the buffers/mappings directly. * It only makes sense if the LLDD would use them for its * messaging api. It's very unlikely most adapter api's would use * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload * structures were used instead. */ } /* * This routine terminates a queue at the transport level. * The transport has already ensured that all outstanding ios on * the queue have been terminated. * The transport will send a Disconnect LS request to terminate * the queue's connection. Termination of the admin queue will also * terminate the association at the target. */ static void nvme_fc_free_queue(struct nvme_fc_queue *queue) { if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) return; clear_bit(NVME_FC_Q_LIVE, &queue->flags); /* * Current implementation never disconnects a single queue. * It always terminates a whole association. So there is never * a disconnect(queue) LS sent to the target. */ queue->connection_id = 0; } static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, unsigned int qidx) { if (ctrl->lport->ops->delete_queue) ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, queue->lldd_handle); queue->lldd_handle = NULL; } static void nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) { int i; for (i = 1; i < ctrl->ctrl.queue_count; i++) nvme_fc_free_queue(&ctrl->queues[i]); } static int __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) { int ret = 0; queue->lldd_handle = NULL; if (ctrl->lport->ops->create_queue) ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, qidx, qsize, &queue->lldd_handle); return ret; } static void nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) { struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; int i; for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) __nvme_fc_delete_hw_queue(ctrl, queue, i); } static int nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) { struct nvme_fc_queue *queue = &ctrl->queues[1]; int i, ret; for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); if (ret) goto delete_queues; } return 0; delete_queues: for (; i >= 0; i--) __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); return ret; } static int nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) { int i, ret = 0; for (i = 1; i < ctrl->ctrl.queue_count; i++) { ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, (qsize / 5)); if (ret) break; ret = nvmf_connect_io_queue(&ctrl->ctrl, i); if (ret) break; set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); } return ret; } static void nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) { int i; for (i = 1; i < ctrl->ctrl.queue_count; i++) nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize); } static void nvme_fc_ctrl_free(struct kref *ref) { struct nvme_fc_ctrl *ctrl = container_of(ref, struct nvme_fc_ctrl, ref); unsigned long flags; if (ctrl->ctrl.tagset) { blk_cleanup_queue(ctrl->ctrl.connect_q); blk_mq_free_tag_set(&ctrl->tag_set); } /* remove from rport list */ spin_lock_irqsave(&ctrl->rport->lock, flags); list_del(&ctrl->ctrl_list); spin_unlock_irqrestore(&ctrl->rport->lock, flags); blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); blk_cleanup_queue(ctrl->ctrl.admin_q); blk_mq_free_tag_set(&ctrl->admin_tag_set); kfree(ctrl->queues); put_device(ctrl->dev); nvme_fc_rport_put(ctrl->rport); ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); if (ctrl->ctrl.opts) nvmf_free_options(ctrl->ctrl.opts); kfree(ctrl); } static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) { kref_put(&ctrl->ref, nvme_fc_ctrl_free); } static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) { return kref_get_unless_zero(&ctrl->ref); } /* * All accesses from nvme core layer done - can now free the * controller. Called after last nvme_put_ctrl() call */ static void nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) { struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); WARN_ON(nctrl != &ctrl->ctrl); nvme_fc_ctrl_put(ctrl); } static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) { /* only proceed if in LIVE state - e.g. on first error */ if (ctrl->ctrl.state != NVME_CTRL_LIVE) return; dev_warn(ctrl->ctrl.device, "NVME-FC{%d}: transport association error detected: %s\n", ctrl->cnum, errmsg); dev_warn(ctrl->ctrl.device, "NVME-FC{%d}: resetting controller\n", ctrl->cnum); if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) { dev_err(ctrl->ctrl.device, "NVME-FC{%d}: error_recovery: Couldn't change state " "to RECONNECTING\n", ctrl->cnum); return; } nvme_reset_ctrl(&ctrl->ctrl); } static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq, bool reserved) { struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); struct nvme_fc_ctrl *ctrl = op->ctrl; int ret; if (reserved) return BLK_EH_RESET_TIMER; ret = __nvme_fc_abort_op(ctrl, op); if (ret) /* io wasn't active to abort consider it done */ return BLK_EH_HANDLED; /* * we can't individually ABTS an io without affecting the queue, * thus killing the queue, adn thus the association. * So resolve by performing a controller reset, which will stop * the host/io stack, terminate the association on the link, * and recreate an association on the link. */ nvme_fc_error_recovery(ctrl, "io timeout error"); return BLK_EH_HANDLED; } static int nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, struct nvme_fc_fcp_op *op) { struct nvmefc_fcp_req *freq = &op->fcp_req; enum dma_data_direction dir; int ret; freq->sg_cnt = 0; if (!blk_rq_payload_bytes(rq)) return 0; freq->sg_table.sgl = freq->first_sgl; ret = sg_alloc_table_chained(&freq->sg_table, blk_rq_nr_phys_segments(rq), freq->sg_table.sgl); if (ret) return -ENOMEM; op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, dir); if (unlikely(freq->sg_cnt <= 0)) { sg_free_table_chained(&freq->sg_table, true); freq->sg_cnt = 0; return -EFAULT; } /* * TODO: blk_integrity_rq(rq) for DIF */ return 0; } static void nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, struct nvme_fc_fcp_op *op) { struct nvmefc_fcp_req *freq = &op->fcp_req; if (!freq->sg_cnt) return; fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, ((rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); nvme_cleanup_cmd(rq); sg_free_table_chained(&freq->sg_table, true); freq->sg_cnt = 0; } /* * In FC, the queue is a logical thing. At transport connect, the target * creates its "queue" and returns a handle that is to be given to the * target whenever it posts something to the corresponding SQ. When an * SQE is sent on a SQ, FC effectively considers the SQE, or rather the * command contained within the SQE, an io, and assigns a FC exchange * to it. The SQE and the associated SQ handle are sent in the initial * CMD IU sents on the exchange. All transfers relative to the io occur * as part of the exchange. The CQE is the last thing for the io, * which is transferred (explicitly or implicitly) with the RSP IU * sent on the exchange. After the CQE is received, the FC exchange is * terminaed and the Exchange may be used on a different io. * * The transport to LLDD api has the transport making a request for a * new fcp io request to the LLDD. The LLDD then allocates a FC exchange * resource and transfers the command. The LLDD will then process all * steps to complete the io. Upon completion, the transport done routine * is called. * * So - while the operation is outstanding to the LLDD, there is a link * level FC exchange resource that is also outstanding. This must be * considered in all cleanup operations. */ static blk_status_t nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, u32 data_len, enum nvmefc_fcp_datadir io_dir) { struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; struct nvme_command *sqe = &cmdiu->sqe; u32 csn; int ret; /* * before attempting to send the io, check to see if we believe * the target device is present */ if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) goto busy; if (!nvme_fc_ctrl_get(ctrl)) return BLK_STS_IOERR; /* format the FC-NVME CMD IU and fcp_req */ cmdiu->connection_id = cpu_to_be64(queue->connection_id); csn = atomic_inc_return(&queue->csn); cmdiu->csn = cpu_to_be32(csn); cmdiu->data_len = cpu_to_be32(data_len); switch (io_dir) { case NVMEFC_FCP_WRITE: cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; break; case NVMEFC_FCP_READ: cmdiu->flags = FCNVME_CMD_FLAGS_READ; break; case NVMEFC_FCP_NODATA: cmdiu->flags = 0; break; } op->fcp_req.payload_length = data_len; op->fcp_req.io_dir = io_dir; op->fcp_req.transferred_length = 0; op->fcp_req.rcv_rsplen = 0; op->fcp_req.status = NVME_SC_SUCCESS; op->fcp_req.sqid = cpu_to_le16(queue->qnum); /* * validate per fabric rules, set fields mandated by fabric spec * as well as those by FC-NVME spec. */ WARN_ON_ONCE(sqe->common.metadata); sqe->common.flags |= NVME_CMD_SGL_METABUF; /* * format SQE DPTR field per FC-NVME rules: * type=0x5 Transport SGL Data Block Descriptor * subtype=0xA Transport-specific value * address=0 * length=length of the data series */ sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | NVME_SGL_FMT_TRANSPORT_A; sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); sqe->rw.dptr.sgl.addr = 0; if (!(op->flags & FCOP_FLAGS_AEN)) { ret = nvme_fc_map_data(ctrl, op->rq, op); if (ret < 0) { nvme_cleanup_cmd(op->rq); nvme_fc_ctrl_put(ctrl); if (ret == -ENOMEM || ret == -EAGAIN) return BLK_STS_RESOURCE; return BLK_STS_IOERR; } } fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, sizeof(op->cmd_iu), DMA_TO_DEVICE); atomic_set(&op->state, FCPOP_STATE_ACTIVE); if (!(op->flags & FCOP_FLAGS_AEN)) blk_mq_start_request(op->rq); ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, &ctrl->rport->remoteport, queue->lldd_handle, &op->fcp_req); if (ret) { if (!(op->flags & FCOP_FLAGS_AEN)) nvme_fc_unmap_data(ctrl, op->rq, op); nvme_fc_ctrl_put(ctrl); if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && ret != -EBUSY) return BLK_STS_IOERR; goto busy; } return BLK_STS_OK; busy: if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx) blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY); return BLK_STS_RESOURCE; } static inline blk_status_t nvme_fc_is_ready(struct nvme_fc_queue *queue, struct request *rq) { if (unlikely(!test_bit(NVME_FC_Q_LIVE, &queue->flags))) return nvmf_check_init_req(&queue->ctrl->ctrl, rq); return BLK_STS_OK; } static blk_status_t nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct nvme_ns *ns = hctx->queue->queuedata; struct nvme_fc_queue *queue = hctx->driver_data; struct nvme_fc_ctrl *ctrl = queue->ctrl; struct request *rq = bd->rq; struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; struct nvme_command *sqe = &cmdiu->sqe; enum nvmefc_fcp_datadir io_dir; u32 data_len; blk_status_t ret; ret = nvme_fc_is_ready(queue, rq); if (unlikely(ret)) return ret; ret = nvme_setup_cmd(ns, rq, sqe); if (ret) return ret; data_len = blk_rq_payload_bytes(rq); if (data_len) io_dir = ((rq_data_dir(rq) == WRITE) ? NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); else io_dir = NVMEFC_FCP_NODATA; return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); } static struct blk_mq_tags * nvme_fc_tagset(struct nvme_fc_queue *queue) { if (queue->qnum == 0) return queue->ctrl->admin_tag_set.tags[queue->qnum]; return queue->ctrl->tag_set.tags[queue->qnum - 1]; } static int nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) { struct nvme_fc_queue *queue = hctx->driver_data; struct nvme_fc_ctrl *ctrl = queue->ctrl; struct request *req; struct nvme_fc_fcp_op *op; req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag); if (!req) return 0; op = blk_mq_rq_to_pdu(req); if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) && (ctrl->lport->ops->poll_queue)) ctrl->lport->ops->poll_queue(&ctrl->lport->localport, queue->lldd_handle); return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE)); } static void nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx) { struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); struct nvme_fc_fcp_op *aen_op; unsigned long flags; bool terminating = false; blk_status_t ret; if (aer_idx > NVME_FC_NR_AEN_COMMANDS) return; spin_lock_irqsave(&ctrl->lock, flags); if (ctrl->flags & FCCTRL_TERMIO) terminating = true; spin_unlock_irqrestore(&ctrl->lock, flags); if (terminating) return; aen_op = &ctrl->aen_ops[aer_idx]; ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, NVMEFC_FCP_NODATA); if (ret) dev_err(ctrl->ctrl.device, "failed async event work [%d]\n", aer_idx); } static void __nvme_fc_final_op_cleanup(struct request *rq) { struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); struct nvme_fc_ctrl *ctrl = op->ctrl; atomic_set(&op->state, FCPOP_STATE_IDLE); op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED | FCOP_FLAGS_COMPLETE); nvme_fc_unmap_data(ctrl, rq, op); nvme_complete_rq(rq); nvme_fc_ctrl_put(ctrl); } static void nvme_fc_complete_rq(struct request *rq) { struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); struct nvme_fc_ctrl *ctrl = op->ctrl; unsigned long flags; bool completed = false; /* * the core layer, on controller resets after calling * nvme_shutdown_ctrl(), calls complete_rq without our * calling blk_mq_complete_request(), thus there may still * be live i/o outstanding with the LLDD. Means transport has * to track complete calls vs fcpio_done calls to know what * path to take on completes and dones. */ spin_lock_irqsave(&ctrl->lock, flags); if (op->flags & FCOP_FLAGS_COMPLETE) completed = true; else op->flags |= FCOP_FLAGS_RELEASED; spin_unlock_irqrestore(&ctrl->lock, flags); if (completed) __nvme_fc_final_op_cleanup(rq); } /* * This routine is used by the transport when it needs to find active * io on a queue that is to be terminated. The transport uses * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke * this routine to kill them on a 1 by 1 basis. * * As FC allocates FC exchange for each io, the transport must contact * the LLDD to terminate the exchange, thus releasing the FC exchange. * After terminating the exchange the LLDD will call the transport's * normal io done path for the request, but it will have an aborted * status. The done path will return the io request back to the block * layer with an error status. */ static void nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) { struct nvme_ctrl *nctrl = data; struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); unsigned long flags; int status; if (!blk_mq_request_started(req)) return; spin_lock_irqsave(&ctrl->lock, flags); if (ctrl->flags & FCCTRL_TERMIO) { ctrl->iocnt++; op->flags |= FCOP_FLAGS_TERMIO; } spin_unlock_irqrestore(&ctrl->lock, flags); status = __nvme_fc_abort_op(ctrl, op); if (status) { /* * if __nvme_fc_abort_op failed the io wasn't * active. Thus this call path is running in * parallel to the io complete. Treat as non-error. */ /* back out the flags/counters */ spin_lock_irqsave(&ctrl->lock, flags); if (ctrl->flags & FCCTRL_TERMIO) ctrl->iocnt--; op->flags &= ~FCOP_FLAGS_TERMIO; spin_unlock_irqrestore(&ctrl->lock, flags); return; } } static const struct blk_mq_ops nvme_fc_mq_ops = { .queue_rq = nvme_fc_queue_rq, .complete = nvme_fc_complete_rq, .init_request = nvme_fc_init_request, .exit_request = nvme_fc_exit_request, .init_hctx = nvme_fc_init_hctx, .poll = nvme_fc_poll, .timeout = nvme_fc_timeout, }; static int nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) { struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; unsigned int nr_io_queues; int ret; nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), ctrl->lport->ops->max_hw_queues); ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); if (ret) { dev_info(ctrl->ctrl.device, "set_queue_count failed: %d\n", ret); return ret; } ctrl->ctrl.queue_count = nr_io_queues + 1; if (!nr_io_queues) return 0; nvme_fc_init_io_queues(ctrl); memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); ctrl->tag_set.ops = &nvme_fc_mq_ops; ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; ctrl->tag_set.reserved_tags = 1; /* fabric connect */ ctrl->tag_set.numa_node = NUMA_NO_NODE; ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + (SG_CHUNK_SIZE * sizeof(struct scatterlist)) + ctrl->lport->ops->fcprqst_priv_sz; ctrl->tag_set.driver_data = ctrl; ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; ctrl->tag_set.timeout = NVME_IO_TIMEOUT; ret = blk_mq_alloc_tag_set(&ctrl->tag_set); if (ret) return ret; ctrl->ctrl.tagset = &ctrl->tag_set; ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); if (IS_ERR(ctrl->ctrl.connect_q)) { ret = PTR_ERR(ctrl->ctrl.connect_q); goto out_free_tag_set; } ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); if (ret) goto out_cleanup_blk_queue; ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); if (ret) goto out_delete_hw_queues; return 0; out_delete_hw_queues: nvme_fc_delete_hw_io_queues(ctrl); out_cleanup_blk_queue: blk_cleanup_queue(ctrl->ctrl.connect_q); out_free_tag_set: blk_mq_free_tag_set(&ctrl->tag_set); nvme_fc_free_io_queues(ctrl); /* force put free routine to ignore io queues */ ctrl->ctrl.tagset = NULL; return ret; } static int nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl) { struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; unsigned int nr_io_queues; int ret; nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), ctrl->lport->ops->max_hw_queues); ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); if (ret) { dev_info(ctrl->ctrl.device, "set_queue_count failed: %d\n", ret); return ret; } ctrl->ctrl.queue_count = nr_io_queues + 1; /* check for io queues existing */ if (ctrl->ctrl.queue_count == 1) return 0; nvme_fc_init_io_queues(ctrl); ret = blk_mq_reinit_tagset(&ctrl->tag_set, nvme_fc_reinit_request); if (ret) goto out_free_io_queues; ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); if (ret) goto out_free_io_queues; ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); if (ret) goto out_delete_hw_queues; blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); return 0; out_delete_hw_queues: nvme_fc_delete_hw_io_queues(ctrl); out_free_io_queues: nvme_fc_free_io_queues(ctrl); return ret; } /* * This routine restarts the controller on the host side, and * on the link side, recreates the controller association. */ static int nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) { struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; u32 segs; int ret; bool changed; ++ctrl->ctrl.nr_reconnects; /* * Create the admin queue */ nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH); ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, NVME_FC_AQ_BLKMQ_DEPTH); if (ret) goto out_free_queue; ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], NVME_FC_AQ_BLKMQ_DEPTH, (NVME_FC_AQ_BLKMQ_DEPTH / 4)); if (ret) goto out_delete_hw_queue; if (ctrl->ctrl.state != NVME_CTRL_NEW) blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); ret = nvmf_connect_admin_queue(&ctrl->ctrl); if (ret) goto out_disconnect_admin_queue; set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); /* * Check controller capabilities * * todo:- add code to check if ctrl attributes changed from * prior connection values */ ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap); if (ret) { dev_err(ctrl->ctrl.device, "prop_get NVME_REG_CAP failed\n"); goto out_disconnect_admin_queue; } ctrl->ctrl.sqsize = min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize); ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); if (ret) goto out_disconnect_admin_queue; segs = min_t(u32, NVME_FC_MAX_SEGMENTS, ctrl->lport->ops->max_sgl_segments); ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9); ret = nvme_init_identify(&ctrl->ctrl); if (ret) goto out_disconnect_admin_queue; /* sanity checks */ /* FC-NVME does not have other data in the capsule */ if (ctrl->ctrl.icdoff) { dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", ctrl->ctrl.icdoff); goto out_disconnect_admin_queue; } /* FC-NVME supports normal SGL Data Block Descriptors */ if (opts->queue_size > ctrl->ctrl.maxcmd) { /* warn if maxcmd is lower than queue_size */ dev_warn(ctrl->ctrl.device, "queue_size %zu > ctrl maxcmd %u, reducing " "to queue_size\n", opts->queue_size, ctrl->ctrl.maxcmd); opts->queue_size = ctrl->ctrl.maxcmd; } ret = nvme_fc_init_aen_ops(ctrl); if (ret) goto out_term_aen_ops; /* * Create the io queues */ if (ctrl->ctrl.queue_count > 1) { if (ctrl->ctrl.state == NVME_CTRL_NEW) ret = nvme_fc_create_io_queues(ctrl); else ret = nvme_fc_reinit_io_queues(ctrl); if (ret) goto out_term_aen_ops; } changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); WARN_ON_ONCE(!changed); ctrl->ctrl.nr_reconnects = 0; nvme_start_ctrl(&ctrl->ctrl); return 0; /* Success */ out_term_aen_ops: nvme_fc_term_aen_ops(ctrl); out_disconnect_admin_queue: /* send a Disconnect(association) LS to fc-nvme target */ nvme_fc_xmt_disconnect_assoc(ctrl); out_delete_hw_queue: __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); out_free_queue: nvme_fc_free_queue(&ctrl->queues[0]); return ret; } /* * This routine stops operation of the controller on the host side. * On the host os stack side: Admin and IO queues are stopped, * outstanding ios on them terminated via FC ABTS. * On the link side: the association is terminated. */ static void nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) { unsigned long flags; spin_lock_irqsave(&ctrl->lock, flags); ctrl->flags |= FCCTRL_TERMIO; ctrl->iocnt = 0; spin_unlock_irqrestore(&ctrl->lock, flags); /* * If io queues are present, stop them and terminate all outstanding * ios on them. As FC allocates FC exchange for each io, the * transport must contact the LLDD to terminate the exchange, * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() * to tell us what io's are busy and invoke a transport routine * to kill them with the LLDD. After terminating the exchange * the LLDD will call the transport's normal io done path, but it * will have an aborted status. The done path will return the * io requests back to the block layer as part of normal completions * (but with error status). */ if (ctrl->ctrl.queue_count > 1) { nvme_stop_queues(&ctrl->ctrl); blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_fc_terminate_exchange, &ctrl->ctrl); } /* * Other transports, which don't have link-level contexts bound * to sqe's, would try to gracefully shutdown the controller by * writing the registers for shutdown and polling (call * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially * just aborted and we will wait on those contexts, and given * there was no indication of how live the controlelr is on the * link, don't send more io to create more contexts for the * shutdown. Let the controller fail via keepalive failure if * its still present. */ /* * clean up the admin queue. Same thing as above. * use blk_mq_tagset_busy_itr() and the transport routine to * terminate the exchanges. */ blk_mq_quiesce_queue(ctrl->ctrl.admin_q); blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_fc_terminate_exchange, &ctrl->ctrl); /* kill the aens as they are a separate path */ nvme_fc_abort_aen_ops(ctrl); /* wait for all io that had to be aborted */ spin_lock_irq(&ctrl->lock); wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); ctrl->flags &= ~FCCTRL_TERMIO; spin_unlock_irq(&ctrl->lock); nvme_fc_term_aen_ops(ctrl); /* * send a Disconnect(association) LS to fc-nvme target * Note: could have been sent at top of process, but * cleaner on link traffic if after the aborts complete. * Note: if association doesn't exist, association_id will be 0 */ if (ctrl->association_id) nvme_fc_xmt_disconnect_assoc(ctrl); if (ctrl->ctrl.tagset) { nvme_fc_delete_hw_io_queues(ctrl); nvme_fc_free_io_queues(ctrl); } __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); nvme_fc_free_queue(&ctrl->queues[0]); } static void nvme_fc_delete_ctrl_work(struct work_struct *work) { struct nvme_fc_ctrl *ctrl = container_of(work, struct nvme_fc_ctrl, delete_work); cancel_work_sync(&ctrl->ctrl.reset_work); cancel_delayed_work_sync(&ctrl->connect_work); nvme_stop_ctrl(&ctrl->ctrl); nvme_remove_namespaces(&ctrl->ctrl); /* * kill the association on the link side. this will block * waiting for io to terminate */ nvme_fc_delete_association(ctrl); /* * tear down the controller * After the last reference on the nvme ctrl is removed, * the transport nvme_fc_nvme_ctrl_freed() callback will be * invoked. From there, the transport will tear down it's * logical queues and association. */ nvme_uninit_ctrl(&ctrl->ctrl); nvme_put_ctrl(&ctrl->ctrl); } static bool __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl) { if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) return true; if (!queue_work(nvme_wq, &ctrl->delete_work)) return true; return false; } static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl) { return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0; } /* * Request from nvme core layer to delete the controller */ static int nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl) { struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); int ret; if (!kref_get_unless_zero(&ctrl->ctrl.kref)) return -EBUSY; ret = __nvme_fc_del_ctrl(ctrl); if (!ret) flush_workqueue(nvme_wq); nvme_put_ctrl(&ctrl->ctrl); return ret; } static void nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) { /* If we are resetting/deleting then do nothing */ if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) { WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || ctrl->ctrl.state == NVME_CTRL_LIVE); return; } dev_info(ctrl->ctrl.device, "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", ctrl->cnum, status); if (nvmf_should_reconnect(&ctrl->ctrl)) { dev_info(ctrl->ctrl.device, "NVME-FC{%d}: Reconnect attempt in %d seconds.\n", ctrl->cnum, ctrl->ctrl.opts->reconnect_delay); queue_delayed_work(nvme_wq, &ctrl->connect_work, ctrl->ctrl.opts->reconnect_delay * HZ); } else { dev_warn(ctrl->ctrl.device, "NVME-FC{%d}: Max reconnect attempts (%d) " "reached. Removing controller\n", ctrl->cnum, ctrl->ctrl.nr_reconnects); WARN_ON(__nvme_fc_schedule_delete_work(ctrl)); } } static void nvme_fc_reset_ctrl_work(struct work_struct *work) { struct nvme_fc_ctrl *ctrl = container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); int ret; nvme_stop_ctrl(&ctrl->ctrl); /* will block will waiting for io to terminate */ nvme_fc_delete_association(ctrl); ret = nvme_fc_create_association(ctrl); if (ret) nvme_fc_reconnect_or_delete(ctrl, ret); else dev_info(ctrl->ctrl.device, "NVME-FC{%d}: controller reset complete\n", ctrl->cnum); } static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { .name = "fc", .module = THIS_MODULE, .flags = NVME_F_FABRICS, .reg_read32 = nvmf_reg_read32, .reg_read64 = nvmf_reg_read64, .reg_write32 = nvmf_reg_write32, .free_ctrl = nvme_fc_nvme_ctrl_freed, .submit_async_event = nvme_fc_submit_async_event, .delete_ctrl = nvme_fc_del_nvme_ctrl, .get_address = nvmf_get_address, }; static void nvme_fc_connect_ctrl_work(struct work_struct *work) { int ret; struct nvme_fc_ctrl *ctrl = container_of(to_delayed_work(work), struct nvme_fc_ctrl, connect_work); ret = nvme_fc_create_association(ctrl); if (ret) nvme_fc_reconnect_or_delete(ctrl, ret); else dev_info(ctrl->ctrl.device, "NVME-FC{%d}: controller reconnect complete\n", ctrl->cnum); } static const struct blk_mq_ops nvme_fc_admin_mq_ops = { .queue_rq = nvme_fc_queue_rq, .complete = nvme_fc_complete_rq, .init_request = nvme_fc_init_request, .exit_request = nvme_fc_exit_request, .init_hctx = nvme_fc_init_admin_hctx, .timeout = nvme_fc_timeout, }; static struct nvme_ctrl * nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) { struct nvme_fc_ctrl *ctrl; unsigned long flags; int ret, idx, retry; if (!(rport->remoteport.port_role & (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { ret = -EBADR; goto out_fail; } ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); if (!ctrl) { ret = -ENOMEM; goto out_fail; } idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); if (idx < 0) { ret = -ENOSPC; goto out_free_ctrl; } ctrl->ctrl.opts = opts; INIT_LIST_HEAD(&ctrl->ctrl_list); ctrl->lport = lport; ctrl->rport = rport; ctrl->dev = lport->dev; ctrl->cnum = idx; init_waitqueue_head(&ctrl->ioabort_wait); get_device(ctrl->dev); kref_init(&ctrl->ref); INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work); INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); spin_lock_init(&ctrl->lock); /* io queue count */ ctrl->ctrl.queue_count = min_t(unsigned int, opts->nr_io_queues, lport->ops->max_hw_queues); ctrl->ctrl.queue_count++; /* +1 for admin queue */ ctrl->ctrl.sqsize = opts->queue_size - 1; ctrl->ctrl.kato = opts->kato; ret = -ENOMEM; ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(struct nvme_fc_queue), GFP_KERNEL); if (!ctrl->queues) goto out_free_ida; memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH; ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + (SG_CHUNK_SIZE * sizeof(struct scatterlist)) + ctrl->lport->ops->fcprqst_priv_sz; ctrl->admin_tag_set.driver_data = ctrl; ctrl->admin_tag_set.nr_hw_queues = 1; ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); if (ret) goto out_free_queues; ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); if (IS_ERR(ctrl->ctrl.admin_q)) { ret = PTR_ERR(ctrl->ctrl.admin_q); goto out_free_admin_tag_set; } /* * Would have been nice to init io queues tag set as well. * However, we require interaction from the controller * for max io queue count before we can do so. * Defer this to the connect path. */ ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); if (ret) goto out_cleanup_admin_q; /* at this point, teardown path changes to ref counting on nvme ctrl */ spin_lock_irqsave(&rport->lock, flags); list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); spin_unlock_irqrestore(&rport->lock, flags); /* * It's possible that transactions used to create the association * may fail. Examples: CreateAssociation LS or CreateIOConnection * LS gets dropped/corrupted/fails; or a frame gets dropped or a * command times out for one of the actions to init the controller * (Connect, Get/Set_Property, Set_Features, etc). Many of these * transport errors (frame drop, LS failure) inherently must kill * the association. The transport is coded so that any command used * to create the association (prior to a LIVE state transition * while NEW or RECONNECTING) will fail if it completes in error or * times out. * * As such: as the connect request was mostly likely due to a * udev event that discovered the remote port, meaning there is * not an admin or script there to restart if the connect * request fails, retry the initial connection creation up to * three times before giving up and declaring failure. */ for (retry = 0; retry < 3; retry++) { ret = nvme_fc_create_association(ctrl); if (!ret) break; } if (ret) { nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); cancel_work_sync(&ctrl->ctrl.reset_work); cancel_delayed_work_sync(&ctrl->connect_work); /* couldn't schedule retry - fail out */ dev_err(ctrl->ctrl.device, "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum); ctrl->ctrl.opts = NULL; /* initiate nvme ctrl ref counting teardown */ nvme_uninit_ctrl(&ctrl->ctrl); /* Remove core ctrl ref. */ nvme_put_ctrl(&ctrl->ctrl); /* as we're past the point where we transition to the ref * counting teardown path, if we return a bad pointer here, * the calling routine, thinking it's prior to the * transition, will do an rport put. Since the teardown * path also does a rport put, we do an extra get here to * so proper order/teardown happens. */ nvme_fc_rport_get(rport); if (ret > 0) ret = -EIO; return ERR_PTR(ret); } kref_get(&ctrl->ctrl.kref); dev_info(ctrl->ctrl.device, "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", ctrl->cnum, ctrl->ctrl.opts->subsysnqn); return &ctrl->ctrl; out_cleanup_admin_q: blk_cleanup_queue(ctrl->ctrl.admin_q); out_free_admin_tag_set: blk_mq_free_tag_set(&ctrl->admin_tag_set); out_free_queues: kfree(ctrl->queues); out_free_ida: put_device(ctrl->dev); ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); out_free_ctrl: kfree(ctrl); out_fail: /* exit via here doesn't follow ctlr ref points */ return ERR_PTR(ret); } struct nvmet_fc_traddr { u64 nn; u64 pn; }; static int __nvme_fc_parse_u64(substring_t *sstr, u64 *val) { u64 token64; if (match_u64(sstr, &token64)) return -EINVAL; *val = token64; return 0; } /* * This routine validates and extracts the WWN's from the TRADDR string. * As kernel parsers need the 0x to determine number base, universally * build string to parse with 0x prefix before parsing name strings. */ static int nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) { char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; substring_t wwn = { name, &name[sizeof(name)-1] }; int nnoffset, pnoffset; /* validate it string one of the 2 allowed formats */ if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { nnoffset = NVME_FC_TRADDR_OXNNLEN; pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + NVME_FC_TRADDR_OXNNLEN; } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], "pn-", NVME_FC_TRADDR_NNLEN))) { nnoffset = NVME_FC_TRADDR_NNLEN; pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; } else goto out_einval; name[0] = '0'; name[1] = 'x'; name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) goto out_einval; memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) goto out_einval; return 0; out_einval: pr_warn("%s: bad traddr string\n", __func__); return -EINVAL; } static struct nvme_ctrl * nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) { struct nvme_fc_lport *lport; struct nvme_fc_rport *rport; struct nvme_ctrl *ctrl; struct nvmet_fc_traddr laddr = { 0L, 0L }; struct nvmet_fc_traddr raddr = { 0L, 0L }; unsigned long flags; int ret; ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); if (ret || !raddr.nn || !raddr.pn) return ERR_PTR(-EINVAL); ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); if (ret || !laddr.nn || !laddr.pn) return ERR_PTR(-EINVAL); /* find the host and remote ports to connect together */ spin_lock_irqsave(&nvme_fc_lock, flags); list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { if (lport->localport.node_name != laddr.nn || lport->localport.port_name != laddr.pn || lport->localport.port_state != FC_OBJSTATE_ONLINE) continue; list_for_each_entry(rport, &lport->endp_list, endp_list) { if (rport->remoteport.node_name != raddr.nn || rport->remoteport.port_name != raddr.pn || rport->remoteport.port_state != FC_OBJSTATE_ONLINE) continue; /* if fail to get reference fall through. Will error */ if (!nvme_fc_rport_get(rport)) break; spin_unlock_irqrestore(&nvme_fc_lock, flags); ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); if (IS_ERR(ctrl)) nvme_fc_rport_put(rport); return ctrl; } } spin_unlock_irqrestore(&nvme_fc_lock, flags); return ERR_PTR(-ENOENT); } static struct nvmf_transport_ops nvme_fc_transport = { .name = "fc", .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, .create_ctrl = nvme_fc_create_ctrl, }; static int __init nvme_fc_init_module(void) { return nvmf_register_transport(&nvme_fc_transport); } static void __exit nvme_fc_exit_module(void) { /* sanity check - all lports should be removed */ if (!list_empty(&nvme_fc_lport_list)) pr_warn("%s: localport list not empty\n", __func__); nvmf_unregister_transport(&nvme_fc_transport); ida_destroy(&nvme_fc_local_port_cnt); ida_destroy(&nvme_fc_ctrl_cnt); } module_init(nvme_fc_init_module); module_exit(nvme_fc_exit_module); MODULE_LICENSE("GPL v2");