// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include "super.h" #include "mds_client.h" #include #include #include #include #include #include /* * A cluster of MDS (metadata server) daemons is responsible for * managing the file system namespace (the directory hierarchy and * inodes) and for coordinating shared access to storage. Metadata is * partitioning hierarchically across a number of servers, and that * partition varies over time as the cluster adjusts the distribution * in order to balance load. * * The MDS client is primarily responsible to managing synchronous * metadata requests for operations like open, unlink, and so forth. * If there is a MDS failure, we find out about it when we (possibly * request and) receive a new MDS map, and can resubmit affected * requests. * * For the most part, though, we take advantage of a lossless * communications channel to the MDS, and do not need to worry about * timing out or resubmitting requests. * * We maintain a stateful "session" with each MDS we interact with. * Within each session, we sent periodic heartbeat messages to ensure * any capabilities or leases we have been issues remain valid. If * the session times out and goes stale, our leases and capabilities * are no longer valid. */ struct ceph_reconnect_state { int nr_caps; struct ceph_pagelist *pagelist; unsigned msg_version; }; static void __wake_requests(struct ceph_mds_client *mdsc, struct list_head *head); static const struct ceph_connection_operations mds_con_ops; /* * mds reply parsing */ /* * parse individual inode info */ static int parse_reply_info_in(void **p, void *end, struct ceph_mds_reply_info_in *info, u64 features) { int err = -EIO; info->in = *p; *p += sizeof(struct ceph_mds_reply_inode) + sizeof(*info->in->fragtree.splits) * le32_to_cpu(info->in->fragtree.nsplits); ceph_decode_32_safe(p, end, info->symlink_len, bad); ceph_decode_need(p, end, info->symlink_len, bad); info->symlink = *p; *p += info->symlink_len; if (features & CEPH_FEATURE_DIRLAYOUTHASH) ceph_decode_copy_safe(p, end, &info->dir_layout, sizeof(info->dir_layout), bad); else memset(&info->dir_layout, 0, sizeof(info->dir_layout)); ceph_decode_32_safe(p, end, info->xattr_len, bad); ceph_decode_need(p, end, info->xattr_len, bad); info->xattr_data = *p; *p += info->xattr_len; if (features & CEPH_FEATURE_MDS_INLINE_DATA) { ceph_decode_64_safe(p, end, info->inline_version, bad); ceph_decode_32_safe(p, end, info->inline_len, bad); ceph_decode_need(p, end, info->inline_len, bad); info->inline_data = *p; *p += info->inline_len; } else info->inline_version = CEPH_INLINE_NONE; info->pool_ns_len = 0; info->pool_ns_data = NULL; if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) { ceph_decode_32_safe(p, end, info->pool_ns_len, bad); if (info->pool_ns_len > 0) { ceph_decode_need(p, end, info->pool_ns_len, bad); info->pool_ns_data = *p; *p += info->pool_ns_len; } } return 0; bad: return err; } /* * parse a normal reply, which may contain a (dir+)dentry and/or a * target inode. */ static int parse_reply_info_trace(void **p, void *end, struct ceph_mds_reply_info_parsed *info, u64 features) { int err; if (info->head->is_dentry) { err = parse_reply_info_in(p, end, &info->diri, features); if (err < 0) goto out_bad; if (unlikely(*p + sizeof(*info->dirfrag) > end)) goto bad; info->dirfrag = *p; *p += sizeof(*info->dirfrag) + sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); if (unlikely(*p > end)) goto bad; ceph_decode_32_safe(p, end, info->dname_len, bad); ceph_decode_need(p, end, info->dname_len, bad); info->dname = *p; *p += info->dname_len; info->dlease = *p; *p += sizeof(*info->dlease); } if (info->head->is_target) { err = parse_reply_info_in(p, end, &info->targeti, features); if (err < 0) goto out_bad; } if (unlikely(*p != end)) goto bad; return 0; bad: err = -EIO; out_bad: pr_err("problem parsing mds trace %d\n", err); return err; } /* * parse readdir results */ static int parse_reply_info_dir(void **p, void *end, struct ceph_mds_reply_info_parsed *info, u64 features) { u32 num, i = 0; int err; info->dir_dir = *p; if (*p + sizeof(*info->dir_dir) > end) goto bad; *p += sizeof(*info->dir_dir) + sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); if (*p > end) goto bad; ceph_decode_need(p, end, sizeof(num) + 2, bad); num = ceph_decode_32(p); { u16 flags = ceph_decode_16(p); info->dir_end = !!(flags & CEPH_READDIR_FRAG_END); info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE); info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER); info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH); } if (num == 0) goto done; BUG_ON(!info->dir_entries); if ((unsigned long)(info->dir_entries + num) > (unsigned long)info->dir_entries + info->dir_buf_size) { pr_err("dir contents are larger than expected\n"); WARN_ON(1); goto bad; } info->dir_nr = num; while (num) { struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; /* dentry */ ceph_decode_need(p, end, sizeof(u32)*2, bad); rde->name_len = ceph_decode_32(p); ceph_decode_need(p, end, rde->name_len, bad); rde->name = *p; *p += rde->name_len; dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name); rde->lease = *p; *p += sizeof(struct ceph_mds_reply_lease); /* inode */ err = parse_reply_info_in(p, end, &rde->inode, features); if (err < 0) goto out_bad; /* ceph_readdir_prepopulate() will update it */ rde->offset = 0; i++; num--; } done: if (*p != end) goto bad; return 0; bad: err = -EIO; out_bad: pr_err("problem parsing dir contents %d\n", err); return err; } /* * parse fcntl F_GETLK results */ static int parse_reply_info_filelock(void **p, void *end, struct ceph_mds_reply_info_parsed *info, u64 features) { if (*p + sizeof(*info->filelock_reply) > end) goto bad; info->filelock_reply = *p; *p += sizeof(*info->filelock_reply); if (unlikely(*p != end)) goto bad; return 0; bad: return -EIO; } /* * parse create results */ static int parse_reply_info_create(void **p, void *end, struct ceph_mds_reply_info_parsed *info, u64 features) { if (features & CEPH_FEATURE_REPLY_CREATE_INODE) { if (*p == end) { info->has_create_ino = false; } else { info->has_create_ino = true; info->ino = ceph_decode_64(p); } } if (unlikely(*p != end)) goto bad; return 0; bad: return -EIO; } /* * parse extra results */ static int parse_reply_info_extra(void **p, void *end, struct ceph_mds_reply_info_parsed *info, u64 features) { u32 op = le32_to_cpu(info->head->op); if (op == CEPH_MDS_OP_GETFILELOCK) return parse_reply_info_filelock(p, end, info, features); else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP) return parse_reply_info_dir(p, end, info, features); else if (op == CEPH_MDS_OP_CREATE) return parse_reply_info_create(p, end, info, features); else return -EIO; } /* * parse entire mds reply */ static int parse_reply_info(struct ceph_msg *msg, struct ceph_mds_reply_info_parsed *info, u64 features) { void *p, *end; u32 len; int err; info->head = msg->front.iov_base; p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); /* trace */ ceph_decode_32_safe(&p, end, len, bad); if (len > 0) { ceph_decode_need(&p, end, len, bad); err = parse_reply_info_trace(&p, p+len, info, features); if (err < 0) goto out_bad; } /* extra */ ceph_decode_32_safe(&p, end, len, bad); if (len > 0) { ceph_decode_need(&p, end, len, bad); err = parse_reply_info_extra(&p, p+len, info, features); if (err < 0) goto out_bad; } /* snap blob */ ceph_decode_32_safe(&p, end, len, bad); info->snapblob_len = len; info->snapblob = p; p += len; if (p != end) goto bad; return 0; bad: err = -EIO; out_bad: pr_err("mds parse_reply err %d\n", err); return err; } static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) { if (!info->dir_entries) return; free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size)); } /* * sessions */ const char *ceph_session_state_name(int s) { switch (s) { case CEPH_MDS_SESSION_NEW: return "new"; case CEPH_MDS_SESSION_OPENING: return "opening"; case CEPH_MDS_SESSION_OPEN: return "open"; case CEPH_MDS_SESSION_HUNG: return "hung"; case CEPH_MDS_SESSION_CLOSING: return "closing"; case CEPH_MDS_SESSION_RESTARTING: return "restarting"; case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; case CEPH_MDS_SESSION_REJECTED: return "rejected"; default: return "???"; } } static struct ceph_mds_session *get_session(struct ceph_mds_session *s) { if (refcount_inc_not_zero(&s->s_ref)) { dout("mdsc get_session %p %d -> %d\n", s, refcount_read(&s->s_ref)-1, refcount_read(&s->s_ref)); return s; } else { dout("mdsc get_session %p 0 -- FAIL", s); return NULL; } } void ceph_put_mds_session(struct ceph_mds_session *s) { dout("mdsc put_session %p %d -> %d\n", s, refcount_read(&s->s_ref), refcount_read(&s->s_ref)-1); if (refcount_dec_and_test(&s->s_ref)) { if (s->s_auth.authorizer) ceph_auth_destroy_authorizer(s->s_auth.authorizer); kfree(s); } } /* * called under mdsc->mutex */ struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, int mds) { struct ceph_mds_session *session; if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) return NULL; session = mdsc->sessions[mds]; dout("lookup_mds_session %p %d\n", session, refcount_read(&session->s_ref)); get_session(session); return session; } static bool __have_session(struct ceph_mds_client *mdsc, int mds) { if (mds >= mdsc->max_sessions) return false; return mdsc->sessions[mds]; } static int __verify_registered_session(struct ceph_mds_client *mdsc, struct ceph_mds_session *s) { if (s->s_mds >= mdsc->max_sessions || mdsc->sessions[s->s_mds] != s) return -ENOENT; return 0; } /* * create+register a new session for given mds. * called under mdsc->mutex. */ static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, int mds) { struct ceph_mds_session *s; if (mds >= mdsc->mdsmap->m_num_mds) return ERR_PTR(-EINVAL); s = kzalloc(sizeof(*s), GFP_NOFS); if (!s) return ERR_PTR(-ENOMEM); s->s_mdsc = mdsc; s->s_mds = mds; s->s_state = CEPH_MDS_SESSION_NEW; s->s_ttl = 0; s->s_seq = 0; mutex_init(&s->s_mutex); ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); spin_lock_init(&s->s_gen_ttl_lock); s->s_cap_gen = 0; s->s_cap_ttl = jiffies - 1; spin_lock_init(&s->s_cap_lock); s->s_renew_requested = 0; s->s_renew_seq = 0; INIT_LIST_HEAD(&s->s_caps); s->s_nr_caps = 0; s->s_trim_caps = 0; refcount_set(&s->s_ref, 1); INIT_LIST_HEAD(&s->s_waiting); INIT_LIST_HEAD(&s->s_unsafe); s->s_num_cap_releases = 0; s->s_cap_reconnect = 0; s->s_cap_iterator = NULL; INIT_LIST_HEAD(&s->s_cap_releases); INIT_LIST_HEAD(&s->s_cap_flushing); dout("register_session mds%d\n", mds); if (mds >= mdsc->max_sessions) { int newmax = 1 << get_count_order(mds+1); struct ceph_mds_session **sa; dout("register_session realloc to %d\n", newmax); sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); if (!sa) goto fail_realloc; if (mdsc->sessions) { memcpy(sa, mdsc->sessions, mdsc->max_sessions * sizeof(void *)); kfree(mdsc->sessions); } mdsc->sessions = sa; mdsc->max_sessions = newmax; } mdsc->sessions[mds] = s; atomic_inc(&mdsc->num_sessions); refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */ ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); return s; fail_realloc: kfree(s); return ERR_PTR(-ENOMEM); } /* * called under mdsc->mutex */ static void __unregister_session(struct ceph_mds_client *mdsc, struct ceph_mds_session *s) { dout("__unregister_session mds%d %p\n", s->s_mds, s); BUG_ON(mdsc->sessions[s->s_mds] != s); mdsc->sessions[s->s_mds] = NULL; ceph_con_close(&s->s_con); ceph_put_mds_session(s); atomic_dec(&mdsc->num_sessions); } /* * drop session refs in request. * * should be last request ref, or hold mdsc->mutex */ static void put_request_session(struct ceph_mds_request *req) { if (req->r_session) { ceph_put_mds_session(req->r_session); req->r_session = NULL; } } void ceph_mdsc_release_request(struct kref *kref) { struct ceph_mds_request *req = container_of(kref, struct ceph_mds_request, r_kref); destroy_reply_info(&req->r_reply_info); if (req->r_request) ceph_msg_put(req->r_request); if (req->r_reply) ceph_msg_put(req->r_reply); if (req->r_inode) { ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); iput(req->r_inode); } if (req->r_parent) ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN); iput(req->r_target_inode); if (req->r_dentry) dput(req->r_dentry); if (req->r_old_dentry) dput(req->r_old_dentry); if (req->r_old_dentry_dir) { /* * track (and drop pins for) r_old_dentry_dir * separately, since r_old_dentry's d_parent may have * changed between the dir mutex being dropped and * this request being freed. */ ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), CEPH_CAP_PIN); iput(req->r_old_dentry_dir); } kfree(req->r_path1); kfree(req->r_path2); if (req->r_pagelist) ceph_pagelist_release(req->r_pagelist); put_request_session(req); ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); kfree(req); } DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node) /* * lookup session, bump ref if found. * * called under mdsc->mutex. */ static struct ceph_mds_request * lookup_get_request(struct ceph_mds_client *mdsc, u64 tid) { struct ceph_mds_request *req; req = lookup_request(&mdsc->request_tree, tid); if (req) ceph_mdsc_get_request(req); return req; } /* * Register an in-flight request, and assign a tid. Link to directory * are modifying (if any). * * Called under mdsc->mutex. */ static void __register_request(struct ceph_mds_client *mdsc, struct ceph_mds_request *req, struct inode *dir) { req->r_tid = ++mdsc->last_tid; if (req->r_num_caps) ceph_reserve_caps(mdsc, &req->r_caps_reservation, req->r_num_caps); dout("__register_request %p tid %lld\n", req, req->r_tid); ceph_mdsc_get_request(req); insert_request(&mdsc->request_tree, req); req->r_uid = current_fsuid(); req->r_gid = current_fsgid(); if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) mdsc->oldest_tid = req->r_tid; if (dir) { ihold(dir); req->r_unsafe_dir = dir; } } static void __unregister_request(struct ceph_mds_client *mdsc, struct ceph_mds_request *req) { dout("__unregister_request %p tid %lld\n", req, req->r_tid); /* Never leave an unregistered request on an unsafe list! */ list_del_init(&req->r_unsafe_item); if (req->r_tid == mdsc->oldest_tid) { struct rb_node *p = rb_next(&req->r_node); mdsc->oldest_tid = 0; while (p) { struct ceph_mds_request *next_req = rb_entry(p, struct ceph_mds_request, r_node); if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { mdsc->oldest_tid = next_req->r_tid; break; } p = rb_next(p); } } erase_request(&mdsc->request_tree, req); if (req->r_unsafe_dir && test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); spin_lock(&ci->i_unsafe_lock); list_del_init(&req->r_unsafe_dir_item); spin_unlock(&ci->i_unsafe_lock); } if (req->r_target_inode && test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); spin_lock(&ci->i_unsafe_lock); list_del_init(&req->r_unsafe_target_item); spin_unlock(&ci->i_unsafe_lock); } if (req->r_unsafe_dir) { iput(req->r_unsafe_dir); req->r_unsafe_dir = NULL; } complete_all(&req->r_safe_completion); ceph_mdsc_put_request(req); } /* * Walk back up the dentry tree until we hit a dentry representing a * non-snapshot inode. We do this using the rcu_read_lock (which must be held * when calling this) to ensure that the objects won't disappear while we're * working with them. Once we hit a candidate dentry, we attempt to take a * reference to it, and return that as the result. */ static struct inode *get_nonsnap_parent(struct dentry *dentry) { struct inode *inode = NULL; while (dentry && !IS_ROOT(dentry)) { inode = d_inode_rcu(dentry); if (!inode || ceph_snap(inode) == CEPH_NOSNAP) break; dentry = dentry->d_parent; } if (inode) inode = igrab(inode); return inode; } /* * Choose mds to send request to next. If there is a hint set in the * request (e.g., due to a prior forward hint from the mds), use that. * Otherwise, consult frag tree and/or caps to identify the * appropriate mds. If all else fails, choose randomly. * * Called under mdsc->mutex. */ static int __choose_mds(struct ceph_mds_client *mdsc, struct ceph_mds_request *req) { struct inode *inode; struct ceph_inode_info *ci; struct ceph_cap *cap; int mode = req->r_direct_mode; int mds = -1; u32 hash = req->r_direct_hash; bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags); /* * is there a specific mds we should try? ignore hint if we have * no session and the mds is not up (active or recovering). */ if (req->r_resend_mds >= 0 && (__have_session(mdsc, req->r_resend_mds) || ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { dout("choose_mds using resend_mds mds%d\n", req->r_resend_mds); return req->r_resend_mds; } if (mode == USE_RANDOM_MDS) goto random; inode = NULL; if (req->r_inode) { if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) { inode = req->r_inode; ihold(inode); } else { /* req->r_dentry is non-null for LSSNAP request */ rcu_read_lock(); inode = get_nonsnap_parent(req->r_dentry); rcu_read_unlock(); dout("__choose_mds using snapdir's parent %p\n", inode); } } else if (req->r_dentry) { /* ignore race with rename; old or new d_parent is okay */ struct dentry *parent; struct inode *dir; rcu_read_lock(); parent = req->r_dentry->d_parent; dir = req->r_parent ? : d_inode_rcu(parent); if (!dir || dir->i_sb != mdsc->fsc->sb) { /* not this fs or parent went negative */ inode = d_inode(req->r_dentry); if (inode) ihold(inode); } else if (ceph_snap(dir) != CEPH_NOSNAP) { /* direct snapped/virtual snapdir requests * based on parent dir inode */ inode = get_nonsnap_parent(parent); dout("__choose_mds using nonsnap parent %p\n", inode); } else { /* dentry target */ inode = d_inode(req->r_dentry); if (!inode || mode == USE_AUTH_MDS) { /* dir + name */ inode = igrab(dir); hash = ceph_dentry_hash(dir, req->r_dentry); is_hash = true; } else { ihold(inode); } } rcu_read_unlock(); } dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, (int)hash, mode); if (!inode) goto random; ci = ceph_inode(inode); if (is_hash && S_ISDIR(inode->i_mode)) { struct ceph_inode_frag frag; int found; ceph_choose_frag(ci, hash, &frag, &found); if (found) { if (mode == USE_ANY_MDS && frag.ndist > 0) { u8 r; /* choose a random replica */ get_random_bytes(&r, 1); r %= frag.ndist; mds = frag.dist[r]; dout("choose_mds %p %llx.%llx " "frag %u mds%d (%d/%d)\n", inode, ceph_vinop(inode), frag.frag, mds, (int)r, frag.ndist); if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= CEPH_MDS_STATE_ACTIVE) goto out; } /* since this file/dir wasn't known to be * replicated, then we want to look for the * authoritative mds. */ mode = USE_AUTH_MDS; if (frag.mds >= 0) { /* choose auth mds */ mds = frag.mds; dout("choose_mds %p %llx.%llx " "frag %u mds%d (auth)\n", inode, ceph_vinop(inode), frag.frag, mds); if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= CEPH_MDS_STATE_ACTIVE) goto out; } } } spin_lock(&ci->i_ceph_lock); cap = NULL; if (mode == USE_AUTH_MDS) cap = ci->i_auth_cap; if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); if (!cap) { spin_unlock(&ci->i_ceph_lock); iput(inode); goto random; } mds = cap->session->s_mds; dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", inode, ceph_vinop(inode), mds, cap == ci->i_auth_cap ? "auth " : "", cap); spin_unlock(&ci->i_ceph_lock); out: iput(inode); return mds; random: mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); dout("choose_mds chose random mds%d\n", mds); return mds; } /* * session messages */ static struct ceph_msg *create_session_msg(u32 op, u64 seq) { struct ceph_msg *msg; struct ceph_mds_session_head *h; msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, false); if (!msg) { pr_err("create_session_msg ENOMEM creating msg\n"); return NULL; } h = msg->front.iov_base; h->op = cpu_to_le32(op); h->seq = cpu_to_le64(seq); return msg; } /* * session message, specialization for CEPH_SESSION_REQUEST_OPEN * to include additional client metadata fields. */ static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq) { struct ceph_msg *msg; struct ceph_mds_session_head *h; int i = -1; int metadata_bytes = 0; int metadata_key_count = 0; struct ceph_options *opt = mdsc->fsc->client->options; struct ceph_mount_options *fsopt = mdsc->fsc->mount_options; void *p; const char* metadata[][2] = { {"hostname", mdsc->nodename}, {"kernel_version", init_utsname()->release}, {"entity_id", opt->name ? : ""}, {"root", fsopt->server_path ? : "/"}, {NULL, NULL} }; /* Calculate serialized length of metadata */ metadata_bytes = 4; /* map length */ for (i = 0; metadata[i][0]; ++i) { metadata_bytes += 8 + strlen(metadata[i][0]) + strlen(metadata[i][1]); metadata_key_count++; } /* Allocate the message */ msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes, GFP_NOFS, false); if (!msg) { pr_err("create_session_msg ENOMEM creating msg\n"); return NULL; } h = msg->front.iov_base; h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN); h->seq = cpu_to_le64(seq); /* * Serialize client metadata into waiting buffer space, using * the format that userspace expects for map * * ClientSession messages with metadata are v2 */ msg->hdr.version = cpu_to_le16(2); msg->hdr.compat_version = cpu_to_le16(1); /* The write pointer, following the session_head structure */ p = msg->front.iov_base + sizeof(*h); /* Number of entries in the map */ ceph_encode_32(&p, metadata_key_count); /* Two length-prefixed strings for each entry in the map */ for (i = 0; metadata[i][0]; ++i) { size_t const key_len = strlen(metadata[i][0]); size_t const val_len = strlen(metadata[i][1]); ceph_encode_32(&p, key_len); memcpy(p, metadata[i][0], key_len); p += key_len; ceph_encode_32(&p, val_len); memcpy(p, metadata[i][1], val_len); p += val_len; } return msg; } /* * send session open request. * * called under mdsc->mutex */ static int __open_session(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_msg *msg; int mstate; int mds = session->s_mds; /* wait for mds to go active? */ mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); dout("open_session to mds%d (%s)\n", mds, ceph_mds_state_name(mstate)); session->s_state = CEPH_MDS_SESSION_OPENING; session->s_renew_requested = jiffies; /* send connect message */ msg = create_session_open_msg(mdsc, session->s_seq); if (!msg) return -ENOMEM; ceph_con_send(&session->s_con, msg); return 0; } /* * open sessions for any export targets for the given mds * * called under mdsc->mutex */ static struct ceph_mds_session * __open_export_target_session(struct ceph_mds_client *mdsc, int target) { struct ceph_mds_session *session; session = __ceph_lookup_mds_session(mdsc, target); if (!session) { session = register_session(mdsc, target); if (IS_ERR(session)) return session; } if (session->s_state == CEPH_MDS_SESSION_NEW || session->s_state == CEPH_MDS_SESSION_CLOSING) __open_session(mdsc, session); return session; } struct ceph_mds_session * ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) { struct ceph_mds_session *session; dout("open_export_target_session to mds%d\n", target); mutex_lock(&mdsc->mutex); session = __open_export_target_session(mdsc, target); mutex_unlock(&mdsc->mutex); return session; } static void __open_export_target_sessions(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_mds_info *mi; struct ceph_mds_session *ts; int i, mds = session->s_mds; if (mds >= mdsc->mdsmap->m_num_mds) return; mi = &mdsc->mdsmap->m_info[mds]; dout("open_export_target_sessions for mds%d (%d targets)\n", session->s_mds, mi->num_export_targets); for (i = 0; i < mi->num_export_targets; i++) { ts = __open_export_target_session(mdsc, mi->export_targets[i]); if (!IS_ERR(ts)) ceph_put_mds_session(ts); } } void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { mutex_lock(&mdsc->mutex); __open_export_target_sessions(mdsc, session); mutex_unlock(&mdsc->mutex); } /* * session caps */ /* caller holds s_cap_lock, we drop it */ static void cleanup_cap_releases(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) __releases(session->s_cap_lock) { LIST_HEAD(tmp_list); list_splice_init(&session->s_cap_releases, &tmp_list); session->s_num_cap_releases = 0; spin_unlock(&session->s_cap_lock); dout("cleanup_cap_releases mds%d\n", session->s_mds); while (!list_empty(&tmp_list)) { struct ceph_cap *cap; /* zero out the in-progress message */ cap = list_first_entry(&tmp_list, struct ceph_cap, session_caps); list_del(&cap->session_caps); ceph_put_cap(mdsc, cap); } } static void cleanup_session_requests(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_mds_request *req; struct rb_node *p; dout("cleanup_session_requests mds%d\n", session->s_mds); mutex_lock(&mdsc->mutex); while (!list_empty(&session->s_unsafe)) { req = list_first_entry(&session->s_unsafe, struct ceph_mds_request, r_unsafe_item); pr_warn_ratelimited(" dropping unsafe request %llu\n", req->r_tid); __unregister_request(mdsc, req); } /* zero r_attempts, so kick_requests() will re-send requests */ p = rb_first(&mdsc->request_tree); while (p) { req = rb_entry(p, struct ceph_mds_request, r_node); p = rb_next(p); if (req->r_session && req->r_session->s_mds == session->s_mds) req->r_attempts = 0; } mutex_unlock(&mdsc->mutex); } /* * Helper to safely iterate over all caps associated with a session, with * special care taken to handle a racing __ceph_remove_cap(). * * Caller must hold session s_mutex. */ static int iterate_session_caps(struct ceph_mds_session *session, int (*cb)(struct inode *, struct ceph_cap *, void *), void *arg) { struct list_head *p; struct ceph_cap *cap; struct inode *inode, *last_inode = NULL; struct ceph_cap *old_cap = NULL; int ret; dout("iterate_session_caps %p mds%d\n", session, session->s_mds); spin_lock(&session->s_cap_lock); p = session->s_caps.next; while (p != &session->s_caps) { cap = list_entry(p, struct ceph_cap, session_caps); inode = igrab(&cap->ci->vfs_inode); if (!inode) { p = p->next; continue; } session->s_cap_iterator = cap; spin_unlock(&session->s_cap_lock); if (last_inode) { iput(last_inode); last_inode = NULL; } if (old_cap) { ceph_put_cap(session->s_mdsc, old_cap); old_cap = NULL; } ret = cb(inode, cap, arg); last_inode = inode; spin_lock(&session->s_cap_lock); p = p->next; if (!cap->ci) { dout("iterate_session_caps finishing cap %p removal\n", cap); BUG_ON(cap->session != session); cap->session = NULL; list_del_init(&cap->session_caps); session->s_nr_caps--; if (cap->queue_release) { list_add_tail(&cap->session_caps, &session->s_cap_releases); session->s_num_cap_releases++; } else { old_cap = cap; /* put_cap it w/o locks held */ } } if (ret < 0) goto out; } ret = 0; out: session->s_cap_iterator = NULL; spin_unlock(&session->s_cap_lock); iput(last_inode); if (old_cap) ceph_put_cap(session->s_mdsc, old_cap); return ret; } static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) { struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg; struct ceph_inode_info *ci = ceph_inode(inode); LIST_HEAD(to_remove); bool drop = false; bool invalidate = false; dout("removing cap %p, ci is %p, inode is %p\n", cap, ci, &ci->vfs_inode); spin_lock(&ci->i_ceph_lock); __ceph_remove_cap(cap, false); if (!ci->i_auth_cap) { struct ceph_cap_flush *cf; struct ceph_mds_client *mdsc = fsc->mdsc; ci->i_ceph_flags |= CEPH_I_CAP_DROPPED; if (ci->i_wrbuffer_ref > 0 && READ_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) invalidate = true; while (!list_empty(&ci->i_cap_flush_list)) { cf = list_first_entry(&ci->i_cap_flush_list, struct ceph_cap_flush, i_list); list_move(&cf->i_list, &to_remove); } spin_lock(&mdsc->cap_dirty_lock); list_for_each_entry(cf, &to_remove, i_list) list_del(&cf->g_list); if (!list_empty(&ci->i_dirty_item)) { pr_warn_ratelimited( " dropping dirty %s state for %p %lld\n", ceph_cap_string(ci->i_dirty_caps), inode, ceph_ino(inode)); ci->i_dirty_caps = 0; list_del_init(&ci->i_dirty_item); drop = true; } if (!list_empty(&ci->i_flushing_item)) { pr_warn_ratelimited( " dropping dirty+flushing %s state for %p %lld\n", ceph_cap_string(ci->i_flushing_caps), inode, ceph_ino(inode)); ci->i_flushing_caps = 0; list_del_init(&ci->i_flushing_item); mdsc->num_cap_flushing--; drop = true; } spin_unlock(&mdsc->cap_dirty_lock); if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) { list_add(&ci->i_prealloc_cap_flush->i_list, &to_remove); ci->i_prealloc_cap_flush = NULL; } if (drop && ci->i_wrbuffer_ref_head == 0 && ci->i_wr_ref == 0 && ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { ceph_put_snap_context(ci->i_head_snapc); ci->i_head_snapc = NULL; } } spin_unlock(&ci->i_ceph_lock); while (!list_empty(&to_remove)) { struct ceph_cap_flush *cf; cf = list_first_entry(&to_remove, struct ceph_cap_flush, i_list); list_del(&cf->i_list); ceph_free_cap_flush(cf); } wake_up_all(&ci->i_cap_wq); if (invalidate) ceph_queue_invalidate(inode); if (drop) iput(inode); return 0; } /* * caller must hold session s_mutex */ static void remove_session_caps(struct ceph_mds_session *session) { struct ceph_fs_client *fsc = session->s_mdsc->fsc; struct super_block *sb = fsc->sb; dout("remove_session_caps on %p\n", session); iterate_session_caps(session, remove_session_caps_cb, fsc); wake_up_all(&fsc->mdsc->cap_flushing_wq); spin_lock(&session->s_cap_lock); if (session->s_nr_caps > 0) { struct inode *inode; struct ceph_cap *cap, *prev = NULL; struct ceph_vino vino; /* * iterate_session_caps() skips inodes that are being * deleted, we need to wait until deletions are complete. * __wait_on_freeing_inode() is designed for the job, * but it is not exported, so use lookup inode function * to access it. */ while (!list_empty(&session->s_caps)) { cap = list_entry(session->s_caps.next, struct ceph_cap, session_caps); if (cap == prev) break; prev = cap; vino = cap->ci->i_vino; spin_unlock(&session->s_cap_lock); inode = ceph_find_inode(sb, vino); iput(inode); spin_lock(&session->s_cap_lock); } } // drop cap expires and unlock s_cap_lock cleanup_cap_releases(session->s_mdsc, session); BUG_ON(session->s_nr_caps > 0); BUG_ON(!list_empty(&session->s_cap_flushing)); } /* * wake up any threads waiting on this session's caps. if the cap is * old (didn't get renewed on the client reconnect), remove it now. * * caller must hold s_mutex. */ static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, void *arg) { struct ceph_inode_info *ci = ceph_inode(inode); if (arg) { spin_lock(&ci->i_ceph_lock); ci->i_wanted_max_size = 0; ci->i_requested_max_size = 0; spin_unlock(&ci->i_ceph_lock); } wake_up_all(&ci->i_cap_wq); return 0; } static void wake_up_session_caps(struct ceph_mds_session *session, int reconnect) { dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); iterate_session_caps(session, wake_up_session_cb, (void *)(unsigned long)reconnect); } /* * Send periodic message to MDS renewing all currently held caps. The * ack will reset the expiration for all caps from this session. * * caller holds s_mutex */ static int send_renew_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_msg *msg; int state; if (time_after_eq(jiffies, session->s_cap_ttl) && time_after_eq(session->s_cap_ttl, session->s_renew_requested)) pr_info("mds%d caps stale\n", session->s_mds); session->s_renew_requested = jiffies; /* do not try to renew caps until a recovering mds has reconnected * with its clients. */ state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); if (state < CEPH_MDS_STATE_RECONNECT) { dout("send_renew_caps ignoring mds%d (%s)\n", session->s_mds, ceph_mds_state_name(state)); return 0; } dout("send_renew_caps to mds%d (%s)\n", session->s_mds, ceph_mds_state_name(state)); msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, ++session->s_renew_seq); if (!msg) return -ENOMEM; ceph_con_send(&session->s_con, msg); return 0; } static int send_flushmsg_ack(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, u64 seq) { struct ceph_msg *msg; dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", session->s_mds, ceph_session_state_name(session->s_state), seq); msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); if (!msg) return -ENOMEM; ceph_con_send(&session->s_con, msg); return 0; } /* * Note new cap ttl, and any transition from stale -> not stale (fresh?). * * Called under session->s_mutex */ static void renewed_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, int is_renew) { int was_stale; int wake = 0; spin_lock(&session->s_cap_lock); was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); session->s_cap_ttl = session->s_renew_requested + mdsc->mdsmap->m_session_timeout*HZ; if (was_stale) { if (time_before(jiffies, session->s_cap_ttl)) { pr_info("mds%d caps renewed\n", session->s_mds); wake = 1; } else { pr_info("mds%d caps still stale\n", session->s_mds); } } dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); spin_unlock(&session->s_cap_lock); if (wake) wake_up_session_caps(session, 0); } /* * send a session close request */ static int request_close_session(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_msg *msg; dout("request_close_session mds%d state %s seq %lld\n", session->s_mds, ceph_session_state_name(session->s_state), session->s_seq); msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); if (!msg) return -ENOMEM; ceph_con_send(&session->s_con, msg); return 1; } /* * Called with s_mutex held. */ static int __close_session(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { if (session->s_state >= CEPH_MDS_SESSION_CLOSING) return 0; session->s_state = CEPH_MDS_SESSION_CLOSING; return request_close_session(mdsc, session); } static bool drop_negative_children(struct dentry *dentry) { struct dentry *child; bool all_negative = true; if (!d_is_dir(dentry)) goto out; spin_lock(&dentry->d_lock); list_for_each_entry(child, &dentry->d_subdirs, d_child) { if (d_really_is_positive(child)) { all_negative = false; break; } } spin_unlock(&dentry->d_lock); if (all_negative) shrink_dcache_parent(dentry); out: return all_negative; } /* * Trim old(er) caps. * * Because we can't cache an inode without one or more caps, we do * this indirectly: if a cap is unused, we prune its aliases, at which * point the inode will hopefully get dropped to. * * Yes, this is a bit sloppy. Our only real goal here is to respond to * memory pressure from the MDS, though, so it needn't be perfect. */ static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) { struct ceph_mds_session *session = arg; struct ceph_inode_info *ci = ceph_inode(inode); int used, wanted, oissued, mine; if (session->s_trim_caps <= 0) return -1; spin_lock(&ci->i_ceph_lock); mine = cap->issued | cap->implemented; used = __ceph_caps_used(ci); wanted = __ceph_caps_file_wanted(ci); oissued = __ceph_caps_issued_other(ci, cap); dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), ceph_cap_string(used), ceph_cap_string(wanted)); if (cap == ci->i_auth_cap) { if (ci->i_dirty_caps || ci->i_flushing_caps || !list_empty(&ci->i_cap_snaps)) goto out; if ((used | wanted) & CEPH_CAP_ANY_WR) goto out; } /* The inode has cached pages, but it's no longer used. * we can safely drop it */ if (wanted == 0 && used == CEPH_CAP_FILE_CACHE && !(oissued & CEPH_CAP_FILE_CACHE)) { used = 0; oissued = 0; } if ((used | wanted) & ~oissued & mine) goto out; /* we need these caps */ if (oissued) { /* we aren't the only cap.. just remove us */ __ceph_remove_cap(cap, true); session->s_trim_caps--; } else { struct dentry *dentry; /* try dropping referring dentries */ spin_unlock(&ci->i_ceph_lock); dentry = d_find_any_alias(inode); if (dentry && drop_negative_children(dentry)) { int count; dput(dentry); d_prune_aliases(inode); count = atomic_read(&inode->i_count); if (count == 1) session->s_trim_caps--; dout("trim_caps_cb %p cap %p pruned, count now %d\n", inode, cap, count); } else { dput(dentry); } return 0; } out: spin_unlock(&ci->i_ceph_lock); return 0; } /* * Trim session cap count down to some max number. */ static int trim_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, int max_caps) { int trim_caps = session->s_nr_caps - max_caps; dout("trim_caps mds%d start: %d / %d, trim %d\n", session->s_mds, session->s_nr_caps, max_caps, trim_caps); if (trim_caps > 0) { session->s_trim_caps = trim_caps; iterate_session_caps(session, trim_caps_cb, session); dout("trim_caps mds%d done: %d / %d, trimmed %d\n", session->s_mds, session->s_nr_caps, max_caps, trim_caps - session->s_trim_caps); session->s_trim_caps = 0; } ceph_send_cap_releases(mdsc, session); return 0; } static int check_caps_flush(struct ceph_mds_client *mdsc, u64 want_flush_tid) { int ret = 1; spin_lock(&mdsc->cap_dirty_lock); if (!list_empty(&mdsc->cap_flush_list)) { struct ceph_cap_flush *cf = list_first_entry(&mdsc->cap_flush_list, struct ceph_cap_flush, g_list); if (cf->tid <= want_flush_tid) { dout("check_caps_flush still flushing tid " "%llu <= %llu\n", cf->tid, want_flush_tid); ret = 0; } } spin_unlock(&mdsc->cap_dirty_lock); return ret; } /* * flush all dirty inode data to disk. * * returns true if we've flushed through want_flush_tid */ static void wait_caps_flush(struct ceph_mds_client *mdsc, u64 want_flush_tid) { dout("check_caps_flush want %llu\n", want_flush_tid); wait_event(mdsc->cap_flushing_wq, check_caps_flush(mdsc, want_flush_tid)); dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid); } /* * called under s_mutex */ void ceph_send_cap_releases(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_msg *msg = NULL; struct ceph_mds_cap_release *head; struct ceph_mds_cap_item *item; struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc; struct ceph_cap *cap; LIST_HEAD(tmp_list); int num_cap_releases; __le32 barrier, *cap_barrier; down_read(&osdc->lock); barrier = cpu_to_le32(osdc->epoch_barrier); up_read(&osdc->lock); spin_lock(&session->s_cap_lock); again: list_splice_init(&session->s_cap_releases, &tmp_list); num_cap_releases = session->s_num_cap_releases; session->s_num_cap_releases = 0; spin_unlock(&session->s_cap_lock); while (!list_empty(&tmp_list)) { if (!msg) { msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_SIZE, GFP_NOFS, false); if (!msg) goto out_err; head = msg->front.iov_base; head->num = cpu_to_le32(0); msg->front.iov_len = sizeof(*head); msg->hdr.version = cpu_to_le16(2); msg->hdr.compat_version = cpu_to_le16(1); } cap = list_first_entry(&tmp_list, struct ceph_cap, session_caps); list_del(&cap->session_caps); num_cap_releases--; head = msg->front.iov_base; le32_add_cpu(&head->num, 1); item = msg->front.iov_base + msg->front.iov_len; item->ino = cpu_to_le64(cap->cap_ino); item->cap_id = cpu_to_le64(cap->cap_id); item->migrate_seq = cpu_to_le32(cap->mseq); item->seq = cpu_to_le32(cap->issue_seq); msg->front.iov_len += sizeof(*item); ceph_put_cap(mdsc, cap); if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { // Append cap_barrier field cap_barrier = msg->front.iov_base + msg->front.iov_len; *cap_barrier = barrier; msg->front.iov_len += sizeof(*cap_barrier); msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); dout("send_cap_releases mds%d %p\n", session->s_mds, msg); ceph_con_send(&session->s_con, msg); msg = NULL; } } BUG_ON(num_cap_releases != 0); spin_lock(&session->s_cap_lock); if (!list_empty(&session->s_cap_releases)) goto again; spin_unlock(&session->s_cap_lock); if (msg) { // Append cap_barrier field cap_barrier = msg->front.iov_base + msg->front.iov_len; *cap_barrier = barrier; msg->front.iov_len += sizeof(*cap_barrier); msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); dout("send_cap_releases mds%d %p\n", session->s_mds, msg); ceph_con_send(&session->s_con, msg); } return; out_err: pr_err("send_cap_releases mds%d, failed to allocate message\n", session->s_mds); spin_lock(&session->s_cap_lock); list_splice(&tmp_list, &session->s_cap_releases); session->s_num_cap_releases += num_cap_releases; spin_unlock(&session->s_cap_lock); } /* * requests */ int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, struct inode *dir) { struct ceph_inode_info *ci = ceph_inode(dir); struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; size_t size = sizeof(struct ceph_mds_reply_dir_entry); int order, num_entries; spin_lock(&ci->i_ceph_lock); num_entries = ci->i_files + ci->i_subdirs; spin_unlock(&ci->i_ceph_lock); num_entries = max(num_entries, 1); num_entries = min(num_entries, opt->max_readdir); order = get_order(size * num_entries); while (order >= 0) { rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL | __GFP_NOWARN, order); if (rinfo->dir_entries) break; order--; } if (!rinfo->dir_entries) return -ENOMEM; num_entries = (PAGE_SIZE << order) / size; num_entries = min(num_entries, opt->max_readdir); rinfo->dir_buf_size = PAGE_SIZE << order; req->r_num_caps = num_entries + 1; req->r_args.readdir.max_entries = cpu_to_le32(num_entries); req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); return 0; } /* * Create an mds request. */ struct ceph_mds_request * ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) { struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); if (!req) return ERR_PTR(-ENOMEM); mutex_init(&req->r_fill_mutex); req->r_mdsc = mdsc; req->r_started = jiffies; req->r_resend_mds = -1; INIT_LIST_HEAD(&req->r_unsafe_dir_item); INIT_LIST_HEAD(&req->r_unsafe_target_item); req->r_fmode = -1; kref_init(&req->r_kref); RB_CLEAR_NODE(&req->r_node); INIT_LIST_HEAD(&req->r_wait); init_completion(&req->r_completion); init_completion(&req->r_safe_completion); INIT_LIST_HEAD(&req->r_unsafe_item); req->r_stamp = timespec_trunc(current_kernel_time(), mdsc->fsc->sb->s_time_gran); req->r_op = op; req->r_direct_mode = mode; return req; } /* * return oldest (lowest) request, tid in request tree, 0 if none. * * called under mdsc->mutex. */ static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) { if (RB_EMPTY_ROOT(&mdsc->request_tree)) return NULL; return rb_entry(rb_first(&mdsc->request_tree), struct ceph_mds_request, r_node); } static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) { return mdsc->oldest_tid; } /* * Build a dentry's path. Allocate on heap; caller must kfree. Based * on build_path_from_dentry in fs/cifs/dir.c. * * If @stop_on_nosnap, generate path relative to the first non-snapped * inode. * * Encode hidden .snap dirs as a double /, i.e. * foo/.snap/bar -> foo//bar */ char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, int stop_on_nosnap) { struct dentry *temp; char *path; int len, pos; unsigned seq; if (!dentry) return ERR_PTR(-EINVAL); retry: len = 0; seq = read_seqbegin(&rename_lock); rcu_read_lock(); for (temp = dentry; !IS_ROOT(temp);) { struct inode *inode = d_inode(temp); if (inode && ceph_snap(inode) == CEPH_SNAPDIR) len++; /* slash only */ else if (stop_on_nosnap && inode && ceph_snap(inode) == CEPH_NOSNAP) break; else len += 1 + temp->d_name.len; temp = temp->d_parent; } rcu_read_unlock(); if (len) len--; /* no leading '/' */ path = kmalloc(len+1, GFP_NOFS); if (!path) return ERR_PTR(-ENOMEM); pos = len; path[pos] = 0; /* trailing null */ rcu_read_lock(); for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { struct inode *inode; spin_lock(&temp->d_lock); inode = d_inode(temp); if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { dout("build_path path+%d: %p SNAPDIR\n", pos, temp); } else if (stop_on_nosnap && inode && ceph_snap(inode) == CEPH_NOSNAP) { spin_unlock(&temp->d_lock); break; } else { pos -= temp->d_name.len; if (pos < 0) { spin_unlock(&temp->d_lock); break; } strncpy(path + pos, temp->d_name.name, temp->d_name.len); } spin_unlock(&temp->d_lock); if (pos) path[--pos] = '/'; temp = temp->d_parent; } rcu_read_unlock(); if (pos != 0 || read_seqretry(&rename_lock, seq)) { pr_err("build_path did not end path lookup where " "expected, namelen is %d, pos is %d\n", len, pos); /* presumably this is only possible if racing with a rename of one of the parent directories (we can not lock the dentries above us to prevent this, but retrying should be harmless) */ kfree(path); goto retry; } *base = ceph_ino(d_inode(temp)); *plen = len; dout("build_path on %p %d built %llx '%.*s'\n", dentry, d_count(dentry), *base, len, path); return path; } /* Duplicate the dentry->d_name.name safely */ static int clone_dentry_name(struct dentry *dentry, const char **ppath, int *ppathlen) { u32 len; char *name; retry: len = READ_ONCE(dentry->d_name.len); name = kmalloc(len + 1, GFP_NOFS); if (!name) return -ENOMEM; spin_lock(&dentry->d_lock); if (dentry->d_name.len != len) { spin_unlock(&dentry->d_lock); kfree(name); goto retry; } memcpy(name, dentry->d_name.name, len); spin_unlock(&dentry->d_lock); name[len] = '\0'; *ppath = name; *ppathlen = len; return 0; } static int build_dentry_path(struct dentry *dentry, struct inode *dir, const char **ppath, int *ppathlen, u64 *pino, bool *pfreepath, bool parent_locked) { int ret; char *path; rcu_read_lock(); if (!dir) dir = d_inode_rcu(dentry->d_parent); if (dir && ceph_snap(dir) == CEPH_NOSNAP) { *pino = ceph_ino(dir); rcu_read_unlock(); if (parent_locked) { *ppath = dentry->d_name.name; *ppathlen = dentry->d_name.len; } else { ret = clone_dentry_name(dentry, ppath, ppathlen); if (ret) return ret; *pfreepath = true; } return 0; } rcu_read_unlock(); path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); if (IS_ERR(path)) return PTR_ERR(path); *ppath = path; *pfreepath = true; return 0; } static int build_inode_path(struct inode *inode, const char **ppath, int *ppathlen, u64 *pino, bool *pfreepath) { struct dentry *dentry; char *path; if (ceph_snap(inode) == CEPH_NOSNAP) { *pino = ceph_ino(inode); *ppathlen = 0; return 0; } dentry = d_find_alias(inode); path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); dput(dentry); if (IS_ERR(path)) return PTR_ERR(path); *ppath = path; *pfreepath = true; return 0; } /* * request arguments may be specified via an inode *, a dentry *, or * an explicit ino+path. */ static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, struct inode *rdiri, const char *rpath, u64 rino, const char **ppath, int *pathlen, u64 *ino, bool *freepath, bool parent_locked) { int r = 0; if (rinode) { r = build_inode_path(rinode, ppath, pathlen, ino, freepath); dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), ceph_snap(rinode)); } else if (rdentry) { r = build_dentry_path(rdentry, rdiri, ppath, pathlen, ino, freepath, parent_locked); dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, *ppath); } else if (rpath || rino) { *ino = rino; *ppath = rpath; *pathlen = rpath ? strlen(rpath) : 0; dout(" path %.*s\n", *pathlen, rpath); } return r; } /* * called under mdsc->mutex */ static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, struct ceph_mds_request *req, int mds, bool drop_cap_releases) { struct ceph_msg *msg; struct ceph_mds_request_head *head; const char *path1 = NULL; const char *path2 = NULL; u64 ino1 = 0, ino2 = 0; int pathlen1 = 0, pathlen2 = 0; bool freepath1 = false, freepath2 = false; int len; u16 releases; void *p, *end; int ret; ret = set_request_path_attr(req->r_inode, req->r_dentry, req->r_parent, req->r_path1, req->r_ino1.ino, &path1, &pathlen1, &ino1, &freepath1, test_bit(CEPH_MDS_R_PARENT_LOCKED, &req->r_req_flags)); if (ret < 0) { msg = ERR_PTR(ret); goto out; } /* If r_old_dentry is set, then assume that its parent is locked */ ret = set_request_path_attr(NULL, req->r_old_dentry, req->r_old_dentry_dir, req->r_path2, req->r_ino2.ino, &path2, &pathlen2, &ino2, &freepath2, true); if (ret < 0) { msg = ERR_PTR(ret); goto out_free1; } len = sizeof(*head) + pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) + sizeof(struct ceph_timespec); /* calculate (max) length for cap releases */ len += sizeof(struct ceph_mds_request_release) * (!!req->r_inode_drop + !!req->r_dentry_drop + !!req->r_old_inode_drop + !!req->r_old_dentry_drop); if (req->r_dentry_drop) len += req->r_dentry->d_name.len; if (req->r_old_dentry_drop) len += req->r_old_dentry->d_name.len; msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); if (!msg) { msg = ERR_PTR(-ENOMEM); goto out_free2; } msg->hdr.version = cpu_to_le16(2); msg->hdr.tid = cpu_to_le64(req->r_tid); head = msg->front.iov_base; p = msg->front.iov_base + sizeof(*head); end = msg->front.iov_base + msg->front.iov_len; head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); head->op = cpu_to_le32(req->r_op); head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); head->args = req->r_args; ceph_encode_filepath(&p, end, ino1, path1); ceph_encode_filepath(&p, end, ino2, path2); /* make note of release offset, in case we need to replay */ req->r_request_release_offset = p - msg->front.iov_base; /* cap releases */ releases = 0; if (req->r_inode_drop) releases += ceph_encode_inode_release(&p, req->r_inode ? req->r_inode : d_inode(req->r_dentry), mds, req->r_inode_drop, req->r_inode_unless, 0); if (req->r_dentry_drop) releases += ceph_encode_dentry_release(&p, req->r_dentry, req->r_parent, mds, req->r_dentry_drop, req->r_dentry_unless); if (req->r_old_dentry_drop) releases += ceph_encode_dentry_release(&p, req->r_old_dentry, req->r_old_dentry_dir, mds, req->r_old_dentry_drop, req->r_old_dentry_unless); if (req->r_old_inode_drop) releases += ceph_encode_inode_release(&p, d_inode(req->r_old_dentry), mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); if (drop_cap_releases) { releases = 0; p = msg->front.iov_base + req->r_request_release_offset; } head->num_releases = cpu_to_le16(releases); /* time stamp */ { struct ceph_timespec ts; ceph_encode_timespec(&ts, &req->r_stamp); ceph_encode_copy(&p, &ts, sizeof(ts)); } BUG_ON(p > end); msg->front.iov_len = p - msg->front.iov_base; msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); if (req->r_pagelist) { struct ceph_pagelist *pagelist = req->r_pagelist; refcount_inc(&pagelist->refcnt); ceph_msg_data_add_pagelist(msg, pagelist); msg->hdr.data_len = cpu_to_le32(pagelist->length); } else { msg->hdr.data_len = 0; } msg->hdr.data_off = cpu_to_le16(0); out_free2: if (freepath2) kfree((char *)path2); out_free1: if (freepath1) kfree((char *)path1); out: return msg; } /* * called under mdsc->mutex if error, under no mutex if * success. */ static void complete_request(struct ceph_mds_client *mdsc, struct ceph_mds_request *req) { if (req->r_callback) req->r_callback(mdsc, req); else complete_all(&req->r_completion); } /* * called under mdsc->mutex */ static int __prepare_send_request(struct ceph_mds_client *mdsc, struct ceph_mds_request *req, int mds, bool drop_cap_releases) { struct ceph_mds_request_head *rhead; struct ceph_msg *msg; int flags = 0; req->r_attempts++; if (req->r_inode) { struct ceph_cap *cap = ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); if (cap) req->r_sent_on_mseq = cap->mseq; else req->r_sent_on_mseq = -1; } dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { void *p; /* * Replay. Do not regenerate message (and rebuild * paths, etc.); just use the original message. * Rebuilding paths will break for renames because * d_move mangles the src name. */ msg = req->r_request; rhead = msg->front.iov_base; flags = le32_to_cpu(rhead->flags); flags |= CEPH_MDS_FLAG_REPLAY; rhead->flags = cpu_to_le32(flags); if (req->r_target_inode) rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); rhead->num_retry = req->r_attempts - 1; /* remove cap/dentry releases from message */ rhead->num_releases = 0; /* time stamp */ p = msg->front.iov_base + req->r_request_release_offset; { struct ceph_timespec ts; ceph_encode_timespec(&ts, &req->r_stamp); ceph_encode_copy(&p, &ts, sizeof(ts)); } msg->front.iov_len = p - msg->front.iov_base; msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); return 0; } if (req->r_request) { ceph_msg_put(req->r_request); req->r_request = NULL; } msg = create_request_message(mdsc, req, mds, drop_cap_releases); if (IS_ERR(msg)) { req->r_err = PTR_ERR(msg); return PTR_ERR(msg); } req->r_request = msg; rhead = msg->front.iov_base; rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) flags |= CEPH_MDS_FLAG_REPLAY; if (req->r_parent) flags |= CEPH_MDS_FLAG_WANT_DENTRY; rhead->flags = cpu_to_le32(flags); rhead->num_fwd = req->r_num_fwd; rhead->num_retry = req->r_attempts - 1; rhead->ino = 0; dout(" r_parent = %p\n", req->r_parent); return 0; } /* * send request, or put it on the appropriate wait list. */ static int __do_request(struct ceph_mds_client *mdsc, struct ceph_mds_request *req) { struct ceph_mds_session *session = NULL; int mds = -1; int err = 0; if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) __unregister_request(mdsc, req); goto out; } if (req->r_timeout && time_after_eq(jiffies, req->r_started + req->r_timeout)) { dout("do_request timed out\n"); err = -EIO; goto finish; } if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { dout("do_request forced umount\n"); err = -EIO; goto finish; } if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) { if (mdsc->mdsmap_err) { err = mdsc->mdsmap_err; dout("do_request mdsmap err %d\n", err); goto finish; } if (mdsc->mdsmap->m_epoch == 0) { dout("do_request no mdsmap, waiting for map\n"); list_add(&req->r_wait, &mdsc->waiting_for_map); goto finish; } if (!(mdsc->fsc->mount_options->flags & CEPH_MOUNT_OPT_MOUNTWAIT) && !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) { err = -EHOSTUNREACH; goto finish; } } put_request_session(req); mds = __choose_mds(mdsc, req); if (mds < 0 || ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { dout("do_request no mds or not active, waiting for map\n"); list_add(&req->r_wait, &mdsc->waiting_for_map); goto out; } /* get, open session */ session = __ceph_lookup_mds_session(mdsc, mds); if (!session) { session = register_session(mdsc, mds); if (IS_ERR(session)) { err = PTR_ERR(session); goto finish; } } req->r_session = get_session(session); dout("do_request mds%d session %p state %s\n", mds, session, ceph_session_state_name(session->s_state)); if (session->s_state != CEPH_MDS_SESSION_OPEN && session->s_state != CEPH_MDS_SESSION_HUNG) { if (session->s_state == CEPH_MDS_SESSION_REJECTED) { err = -EACCES; goto out_session; } if (session->s_state == CEPH_MDS_SESSION_NEW || session->s_state == CEPH_MDS_SESSION_CLOSING) __open_session(mdsc, session); list_add(&req->r_wait, &session->s_waiting); goto out_session; } /* send request */ req->r_resend_mds = -1; /* forget any previous mds hint */ if (req->r_request_started == 0) /* note request start time */ req->r_request_started = jiffies; err = __prepare_send_request(mdsc, req, mds, false); if (!err) { ceph_msg_get(req->r_request); ceph_con_send(&session->s_con, req->r_request); } out_session: ceph_put_mds_session(session); finish: if (err) { dout("__do_request early error %d\n", err); req->r_err = err; complete_request(mdsc, req); __unregister_request(mdsc, req); } out: return err; } /* * called under mdsc->mutex */ static void __wake_requests(struct ceph_mds_client *mdsc, struct list_head *head) { struct ceph_mds_request *req; LIST_HEAD(tmp_list); list_splice_init(head, &tmp_list); while (!list_empty(&tmp_list)) { req = list_entry(tmp_list.next, struct ceph_mds_request, r_wait); list_del_init(&req->r_wait); dout(" wake request %p tid %llu\n", req, req->r_tid); __do_request(mdsc, req); } } /* * Wake up threads with requests pending for @mds, so that they can * resubmit their requests to a possibly different mds. */ static void kick_requests(struct ceph_mds_client *mdsc, int mds) { struct ceph_mds_request *req; struct rb_node *p = rb_first(&mdsc->request_tree); dout("kick_requests mds%d\n", mds); while (p) { req = rb_entry(p, struct ceph_mds_request, r_node); p = rb_next(p); if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) continue; if (req->r_attempts > 0) continue; /* only new requests */ if (req->r_session && req->r_session->s_mds == mds) { dout(" kicking tid %llu\n", req->r_tid); list_del_init(&req->r_wait); __do_request(mdsc, req); } } } void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct ceph_mds_request *req) { dout("submit_request on %p\n", req); mutex_lock(&mdsc->mutex); __register_request(mdsc, req, NULL); __do_request(mdsc, req); mutex_unlock(&mdsc->mutex); } /* * Synchrously perform an mds request. Take care of all of the * session setup, forwarding, retry details. */ int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, struct inode *dir, struct ceph_mds_request *req) { int err; dout("do_request on %p\n", req); /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */ if (req->r_inode) ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); if (req->r_parent) ceph_get_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN); if (req->r_old_dentry_dir) ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), CEPH_CAP_PIN); /* issue */ mutex_lock(&mdsc->mutex); __register_request(mdsc, req, dir); __do_request(mdsc, req); if (req->r_err) { err = req->r_err; goto out; } /* wait */ mutex_unlock(&mdsc->mutex); dout("do_request waiting\n"); if (!req->r_timeout && req->r_wait_for_completion) { err = req->r_wait_for_completion(mdsc, req); } else { long timeleft = wait_for_completion_killable_timeout( &req->r_completion, ceph_timeout_jiffies(req->r_timeout)); if (timeleft > 0) err = 0; else if (!timeleft) err = -EIO; /* timed out */ else err = timeleft; /* killed */ } dout("do_request waited, got %d\n", err); mutex_lock(&mdsc->mutex); /* only abort if we didn't race with a real reply */ if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { err = le32_to_cpu(req->r_reply_info.head->result); } else if (err < 0) { dout("aborted request %lld with %d\n", req->r_tid, err); /* * ensure we aren't running concurrently with * ceph_fill_trace or ceph_readdir_prepopulate, which * rely on locks (dir mutex) held by our caller. */ mutex_lock(&req->r_fill_mutex); req->r_err = err; set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); mutex_unlock(&req->r_fill_mutex); if (req->r_parent && (req->r_op & CEPH_MDS_OP_WRITE)) ceph_invalidate_dir_request(req); } else { err = req->r_err; } out: mutex_unlock(&mdsc->mutex); dout("do_request %p done, result %d\n", req, err); return err; } /* * Invalidate dir's completeness, dentry lease state on an aborted MDS * namespace request. */ void ceph_invalidate_dir_request(struct ceph_mds_request *req) { struct inode *inode = req->r_parent; dout("invalidate_dir_request %p (complete, lease(s))\n", inode); ceph_dir_clear_complete(inode); if (req->r_dentry) ceph_invalidate_dentry_lease(req->r_dentry); if (req->r_old_dentry) ceph_invalidate_dentry_lease(req->r_old_dentry); } /* * Handle mds reply. * * We take the session mutex and parse and process the reply immediately. * This preserves the logical ordering of replies, capabilities, etc., sent * by the MDS as they are applied to our local cache. */ static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) { struct ceph_mds_client *mdsc = session->s_mdsc; struct ceph_mds_request *req; struct ceph_mds_reply_head *head = msg->front.iov_base; struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ struct ceph_snap_realm *realm; u64 tid; int err, result; int mds = session->s_mds; if (msg->front.iov_len < sizeof(*head)) { pr_err("mdsc_handle_reply got corrupt (short) reply\n"); ceph_msg_dump(msg); return; } /* get request, session */ tid = le64_to_cpu(msg->hdr.tid); mutex_lock(&mdsc->mutex); req = lookup_get_request(mdsc, tid); if (!req) { dout("handle_reply on unknown tid %llu\n", tid); mutex_unlock(&mdsc->mutex); return; } dout("handle_reply %p\n", req); /* correct session? */ if (req->r_session != session) { pr_err("mdsc_handle_reply got %llu on session mds%d" " not mds%d\n", tid, session->s_mds, req->r_session ? req->r_session->s_mds : -1); mutex_unlock(&mdsc->mutex); goto out; } /* dup? */ if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) || (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) { pr_warn("got a dup %s reply on %llu from mds%d\n", head->safe ? "safe" : "unsafe", tid, mds); mutex_unlock(&mdsc->mutex); goto out; } if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) { pr_warn("got unsafe after safe on %llu from mds%d\n", tid, mds); mutex_unlock(&mdsc->mutex); goto out; } result = le32_to_cpu(head->result); /* * Handle an ESTALE * if we're not talking to the authority, send to them * if the authority has changed while we weren't looking, * send to new authority * Otherwise we just have to return an ESTALE */ if (result == -ESTALE) { dout("got ESTALE on request %llu", req->r_tid); req->r_resend_mds = -1; if (req->r_direct_mode != USE_AUTH_MDS) { dout("not using auth, setting for that now"); req->r_direct_mode = USE_AUTH_MDS; __do_request(mdsc, req); mutex_unlock(&mdsc->mutex); goto out; } else { int mds = __choose_mds(mdsc, req); if (mds >= 0 && mds != req->r_session->s_mds) { dout("but auth changed, so resending"); __do_request(mdsc, req); mutex_unlock(&mdsc->mutex); goto out; } } dout("have to return ESTALE on request %llu", req->r_tid); } if (head->safe) { set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags); __unregister_request(mdsc, req); if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { /* * We already handled the unsafe response, now do the * cleanup. No need to examine the response; the MDS * doesn't include any result info in the safe * response. And even if it did, there is nothing * useful we could do with a revised return value. */ dout("got safe reply %llu, mds%d\n", tid, mds); /* last unsafe request during umount? */ if (mdsc->stopping && !__get_oldest_req(mdsc)) complete_all(&mdsc->safe_umount_waiters); mutex_unlock(&mdsc->mutex); goto out; } } else { set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags); list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); if (req->r_unsafe_dir) { struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); spin_lock(&ci->i_unsafe_lock); list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); spin_unlock(&ci->i_unsafe_lock); } } dout("handle_reply tid %lld result %d\n", tid, result); rinfo = &req->r_reply_info; err = parse_reply_info(msg, rinfo, session->s_con.peer_features); mutex_unlock(&mdsc->mutex); mutex_lock(&session->s_mutex); if (err < 0) { pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); ceph_msg_dump(msg); goto out_err; } /* snap trace */ realm = NULL; if (rinfo->snapblob_len) { down_write(&mdsc->snap_rwsem); ceph_update_snap_trace(mdsc, rinfo->snapblob, rinfo->snapblob + rinfo->snapblob_len, le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, &realm); downgrade_write(&mdsc->snap_rwsem); } else { down_read(&mdsc->snap_rwsem); } /* insert trace into our cache */ mutex_lock(&req->r_fill_mutex); current->journal_info = req; err = ceph_fill_trace(mdsc->fsc->sb, req); if (err == 0) { if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || req->r_op == CEPH_MDS_OP_LSSNAP)) ceph_readdir_prepopulate(req, req->r_session); ceph_unreserve_caps(mdsc, &req->r_caps_reservation); } current->journal_info = NULL; mutex_unlock(&req->r_fill_mutex); up_read(&mdsc->snap_rwsem); if (realm) ceph_put_snap_realm(mdsc, realm); if (err == 0 && req->r_target_inode && test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); spin_lock(&ci->i_unsafe_lock); list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops); spin_unlock(&ci->i_unsafe_lock); } out_err: mutex_lock(&mdsc->mutex); if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { if (err) { req->r_err = err; } else { req->r_reply = ceph_msg_get(msg); set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags); } } else { dout("reply arrived after request %lld was aborted\n", tid); } mutex_unlock(&mdsc->mutex); mutex_unlock(&session->s_mutex); /* kick calling process */ complete_request(mdsc, req); out: ceph_mdsc_put_request(req); return; } /* * handle mds notification that our request has been forwarded. */ static void handle_forward(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, struct ceph_msg *msg) { struct ceph_mds_request *req; u64 tid = le64_to_cpu(msg->hdr.tid); u32 next_mds; u32 fwd_seq; int err = -EINVAL; void *p = msg->front.iov_base; void *end = p + msg->front.iov_len; ceph_decode_need(&p, end, 2*sizeof(u32), bad); next_mds = ceph_decode_32(&p); fwd_seq = ceph_decode_32(&p); mutex_lock(&mdsc->mutex); req = lookup_get_request(mdsc, tid); if (!req) { dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); goto out; /* dup reply? */ } if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { dout("forward tid %llu aborted, unregistering\n", tid); __unregister_request(mdsc, req); } else if (fwd_seq <= req->r_num_fwd) { dout("forward tid %llu to mds%d - old seq %d <= %d\n", tid, next_mds, req->r_num_fwd, fwd_seq); } else { /* resend. forward race not possible; mds would drop */ dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); BUG_ON(req->r_err); BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)); req->r_attempts = 0; req->r_num_fwd = fwd_seq; req->r_resend_mds = next_mds; put_request_session(req); __do_request(mdsc, req); } ceph_mdsc_put_request(req); out: mutex_unlock(&mdsc->mutex); return; bad: pr_err("mdsc_handle_forward decode error err=%d\n", err); } /* * handle a mds session control message */ static void handle_session(struct ceph_mds_session *session, struct ceph_msg *msg) { struct ceph_mds_client *mdsc = session->s_mdsc; u32 op; u64 seq; int mds = session->s_mds; struct ceph_mds_session_head *h = msg->front.iov_base; int wake = 0; /* decode */ if (msg->front.iov_len != sizeof(*h)) goto bad; op = le32_to_cpu(h->op); seq = le64_to_cpu(h->seq); mutex_lock(&mdsc->mutex); if (op == CEPH_SESSION_CLOSE) { get_session(session); __unregister_session(mdsc, session); } /* FIXME: this ttl calculation is generous */ session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; mutex_unlock(&mdsc->mutex); mutex_lock(&session->s_mutex); dout("handle_session mds%d %s %p state %s seq %llu\n", mds, ceph_session_op_name(op), session, ceph_session_state_name(session->s_state), seq); if (session->s_state == CEPH_MDS_SESSION_HUNG) { session->s_state = CEPH_MDS_SESSION_OPEN; pr_info("mds%d came back\n", session->s_mds); } switch (op) { case CEPH_SESSION_OPEN: if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) pr_info("mds%d reconnect success\n", session->s_mds); session->s_state = CEPH_MDS_SESSION_OPEN; renewed_caps(mdsc, session, 0); wake = 1; if (mdsc->stopping) __close_session(mdsc, session); break; case CEPH_SESSION_RENEWCAPS: if (session->s_renew_seq == seq) renewed_caps(mdsc, session, 1); break; case CEPH_SESSION_CLOSE: if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) pr_info("mds%d reconnect denied\n", session->s_mds); cleanup_session_requests(mdsc, session); remove_session_caps(session); wake = 2; /* for good measure */ wake_up_all(&mdsc->session_close_wq); break; case CEPH_SESSION_STALE: pr_info("mds%d caps went stale, renewing\n", session->s_mds); spin_lock(&session->s_gen_ttl_lock); session->s_cap_gen++; session->s_cap_ttl = jiffies - 1; spin_unlock(&session->s_gen_ttl_lock); send_renew_caps(mdsc, session); break; case CEPH_SESSION_RECALL_STATE: trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); break; case CEPH_SESSION_FLUSHMSG: send_flushmsg_ack(mdsc, session, seq); break; case CEPH_SESSION_FORCE_RO: dout("force_session_readonly %p\n", session); spin_lock(&session->s_cap_lock); session->s_readonly = true; spin_unlock(&session->s_cap_lock); wake_up_session_caps(session, 0); break; case CEPH_SESSION_REJECT: WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING); pr_info("mds%d rejected session\n", session->s_mds); session->s_state = CEPH_MDS_SESSION_REJECTED; cleanup_session_requests(mdsc, session); remove_session_caps(session); wake = 2; /* for good measure */ break; default: pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); WARN_ON(1); } mutex_unlock(&session->s_mutex); if (wake) { mutex_lock(&mdsc->mutex); __wake_requests(mdsc, &session->s_waiting); if (wake == 2) kick_requests(mdsc, mds); mutex_unlock(&mdsc->mutex); } if (op == CEPH_SESSION_CLOSE) ceph_put_mds_session(session); return; bad: pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, (int)msg->front.iov_len); ceph_msg_dump(msg); return; } /* * called under session->mutex. */ static void replay_unsafe_requests(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_mds_request *req, *nreq; struct rb_node *p; int err; dout("replay_unsafe_requests mds%d\n", session->s_mds); mutex_lock(&mdsc->mutex); list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { err = __prepare_send_request(mdsc, req, session->s_mds, true); if (!err) { ceph_msg_get(req->r_request); ceph_con_send(&session->s_con, req->r_request); } } /* * also re-send old requests when MDS enters reconnect stage. So that MDS * can process completed request in clientreplay stage. */ p = rb_first(&mdsc->request_tree); while (p) { req = rb_entry(p, struct ceph_mds_request, r_node); p = rb_next(p); if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) continue; if (req->r_attempts == 0) continue; /* only old requests */ if (req->r_session && req->r_session->s_mds == session->s_mds) { err = __prepare_send_request(mdsc, req, session->s_mds, true); if (!err) { ceph_msg_get(req->r_request); ceph_con_send(&session->s_con, req->r_request); } } } mutex_unlock(&mdsc->mutex); } /* * Encode information about a cap for a reconnect with the MDS. */ static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) { union { struct ceph_mds_cap_reconnect v2; struct ceph_mds_cap_reconnect_v1 v1; } rec; struct ceph_inode_info *ci; struct ceph_reconnect_state *recon_state = arg; struct ceph_pagelist *pagelist = recon_state->pagelist; char *path; int pathlen, err; u64 pathbase; u64 snap_follows; struct dentry *dentry; ci = cap->ci; dout(" adding %p ino %llx.%llx cap %p %lld %s\n", inode, ceph_vinop(inode), cap, cap->cap_id, ceph_cap_string(cap->issued)); err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); if (err) return err; dentry = d_find_alias(inode); if (dentry) { path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); if (IS_ERR(path)) { err = PTR_ERR(path); goto out_dput; } } else { path = NULL; pathlen = 0; pathbase = 0; } spin_lock(&ci->i_ceph_lock); cap->seq = 0; /* reset cap seq */ cap->issue_seq = 0; /* and issue_seq */ cap->mseq = 0; /* and migrate_seq */ cap->cap_gen = cap->session->s_cap_gen; if (recon_state->msg_version >= 2) { rec.v2.cap_id = cpu_to_le64(cap->cap_id); rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); rec.v2.issued = cpu_to_le32(cap->issued); rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); rec.v2.pathbase = cpu_to_le64(pathbase); rec.v2.flock_len = 0; } else { rec.v1.cap_id = cpu_to_le64(cap->cap_id); rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); rec.v1.issued = cpu_to_le32(cap->issued); rec.v1.size = cpu_to_le64(inode->i_size); ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); rec.v1.pathbase = cpu_to_le64(pathbase); } if (list_empty(&ci->i_cap_snaps)) { snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0; } else { struct ceph_cap_snap *capsnap = list_first_entry(&ci->i_cap_snaps, struct ceph_cap_snap, ci_item); snap_follows = capsnap->follows; } spin_unlock(&ci->i_ceph_lock); if (recon_state->msg_version >= 2) { int num_fcntl_locks, num_flock_locks; struct ceph_filelock *flocks; size_t struct_len, total_len = 0; u8 struct_v = 0; encode_again: ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); flocks = kmalloc((num_fcntl_locks+num_flock_locks) * sizeof(struct ceph_filelock), GFP_NOFS); if (!flocks) { err = -ENOMEM; goto out_free; } err = ceph_encode_locks_to_buffer(inode, flocks, num_fcntl_locks, num_flock_locks); if (err) { kfree(flocks); if (err == -ENOSPC) goto encode_again; goto out_free; } if (recon_state->msg_version >= 3) { /* version, compat_version and struct_len */ total_len = 2 * sizeof(u8) + sizeof(u32); struct_v = 2; } /* * number of encoded locks is stable, so copy to pagelist */ struct_len = 2 * sizeof(u32) + (num_fcntl_locks + num_flock_locks) * sizeof(struct ceph_filelock); rec.v2.flock_len = cpu_to_le32(struct_len); struct_len += sizeof(rec.v2); struct_len += sizeof(u32) + pathlen; if (struct_v >= 2) struct_len += sizeof(u64); /* snap_follows */ total_len += struct_len; err = ceph_pagelist_reserve(pagelist, total_len); if (!err) { if (recon_state->msg_version >= 3) { ceph_pagelist_encode_8(pagelist, struct_v); ceph_pagelist_encode_8(pagelist, 1); ceph_pagelist_encode_32(pagelist, struct_len); } ceph_pagelist_encode_string(pagelist, path, pathlen); ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2)); ceph_locks_to_pagelist(flocks, pagelist, num_fcntl_locks, num_flock_locks); if (struct_v >= 2) ceph_pagelist_encode_64(pagelist, snap_follows); } kfree(flocks); } else { size_t size = sizeof(u32) + pathlen + sizeof(rec.v1); err = ceph_pagelist_reserve(pagelist, size); if (!err) { ceph_pagelist_encode_string(pagelist, path, pathlen); ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1)); } } recon_state->nr_caps++; out_free: kfree(path); out_dput: dput(dentry); return err; } /* * If an MDS fails and recovers, clients need to reconnect in order to * reestablish shared state. This includes all caps issued through * this session _and_ the snap_realm hierarchy. Because it's not * clear which snap realms the mds cares about, we send everything we * know about.. that ensures we'll then get any new info the * recovering MDS might have. * * This is a relatively heavyweight operation, but it's rare. * * called with mdsc->mutex held. */ static void send_mds_reconnect(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_msg *reply; struct rb_node *p; int mds = session->s_mds; int err = -ENOMEM; int s_nr_caps; struct ceph_pagelist *pagelist; struct ceph_reconnect_state recon_state; pr_info("mds%d reconnect start\n", mds); pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); if (!pagelist) goto fail_nopagelist; ceph_pagelist_init(pagelist); reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); if (!reply) goto fail_nomsg; mutex_lock(&session->s_mutex); session->s_state = CEPH_MDS_SESSION_RECONNECTING; session->s_seq = 0; dout("session %p state %s\n", session, ceph_session_state_name(session->s_state)); spin_lock(&session->s_gen_ttl_lock); session->s_cap_gen++; spin_unlock(&session->s_gen_ttl_lock); spin_lock(&session->s_cap_lock); /* don't know if session is readonly */ session->s_readonly = 0; /* * notify __ceph_remove_cap() that we are composing cap reconnect. * If a cap get released before being added to the cap reconnect, * __ceph_remove_cap() should skip queuing cap release. */ session->s_cap_reconnect = 1; /* drop old cap expires; we're about to reestablish that state */ cleanup_cap_releases(mdsc, session); /* trim unused caps to reduce MDS's cache rejoin time */ if (mdsc->fsc->sb->s_root) shrink_dcache_parent(mdsc->fsc->sb->s_root); ceph_con_close(&session->s_con); ceph_con_open(&session->s_con, CEPH_ENTITY_TYPE_MDS, mds, ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); /* replay unsafe requests */ replay_unsafe_requests(mdsc, session); down_read(&mdsc->snap_rwsem); /* traverse this session's caps */ s_nr_caps = session->s_nr_caps; err = ceph_pagelist_encode_32(pagelist, s_nr_caps); if (err) goto fail; recon_state.nr_caps = 0; recon_state.pagelist = pagelist; if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) recon_state.msg_version = 3; else if (session->s_con.peer_features & CEPH_FEATURE_FLOCK) recon_state.msg_version = 2; else recon_state.msg_version = 1; err = iterate_session_caps(session, encode_caps_cb, &recon_state); if (err < 0) goto fail; spin_lock(&session->s_cap_lock); session->s_cap_reconnect = 0; spin_unlock(&session->s_cap_lock); /* * snaprealms. we provide mds with the ino, seq (version), and * parent for all of our realms. If the mds has any newer info, * it will tell us. */ for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { struct ceph_snap_realm *realm = rb_entry(p, struct ceph_snap_realm, node); struct ceph_mds_snaprealm_reconnect sr_rec; dout(" adding snap realm %llx seq %lld parent %llx\n", realm->ino, realm->seq, realm->parent_ino); sr_rec.ino = cpu_to_le64(realm->ino); sr_rec.seq = cpu_to_le64(realm->seq); sr_rec.parent = cpu_to_le64(realm->parent_ino); err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); if (err) goto fail; } reply->hdr.version = cpu_to_le16(recon_state.msg_version); /* raced with cap release? */ if (s_nr_caps != recon_state.nr_caps) { struct page *page = list_first_entry(&pagelist->head, struct page, lru); __le32 *addr = kmap_atomic(page); *addr = cpu_to_le32(recon_state.nr_caps); kunmap_atomic(addr); } reply->hdr.data_len = cpu_to_le32(pagelist->length); ceph_msg_data_add_pagelist(reply, pagelist); ceph_early_kick_flushing_caps(mdsc, session); ceph_con_send(&session->s_con, reply); mutex_unlock(&session->s_mutex); mutex_lock(&mdsc->mutex); __wake_requests(mdsc, &session->s_waiting); mutex_unlock(&mdsc->mutex); up_read(&mdsc->snap_rwsem); return; fail: ceph_msg_put(reply); up_read(&mdsc->snap_rwsem); mutex_unlock(&session->s_mutex); fail_nomsg: ceph_pagelist_release(pagelist); fail_nopagelist: pr_err("error %d preparing reconnect for mds%d\n", err, mds); return; } /* * compare old and new mdsmaps, kicking requests * and closing out old connections as necessary * * called under mdsc->mutex. */ static void check_new_map(struct ceph_mds_client *mdsc, struct ceph_mdsmap *newmap, struct ceph_mdsmap *oldmap) { int i; int oldstate, newstate; struct ceph_mds_session *s; dout("check_new_map new %u old %u\n", newmap->m_epoch, oldmap->m_epoch); for (i = 0; i < oldmap->m_num_mds && i < mdsc->max_sessions; i++) { if (!mdsc->sessions[i]) continue; s = mdsc->sessions[i]; oldstate = ceph_mdsmap_get_state(oldmap, i); newstate = ceph_mdsmap_get_state(newmap, i); dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", i, ceph_mds_state_name(oldstate), ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", ceph_mds_state_name(newstate), ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", ceph_session_state_name(s->s_state)); if (i >= newmap->m_num_mds || memcmp(ceph_mdsmap_get_addr(oldmap, i), ceph_mdsmap_get_addr(newmap, i), sizeof(struct ceph_entity_addr))) { if (s->s_state == CEPH_MDS_SESSION_OPENING) { /* the session never opened, just close it * out now */ get_session(s); __unregister_session(mdsc, s); __wake_requests(mdsc, &s->s_waiting); ceph_put_mds_session(s); } else if (i >= newmap->m_num_mds) { /* force close session for stopped mds */ get_session(s); __unregister_session(mdsc, s); __wake_requests(mdsc, &s->s_waiting); kick_requests(mdsc, i); mutex_unlock(&mdsc->mutex); mutex_lock(&s->s_mutex); cleanup_session_requests(mdsc, s); remove_session_caps(s); mutex_unlock(&s->s_mutex); ceph_put_mds_session(s); mutex_lock(&mdsc->mutex); } else { /* just close it */ mutex_unlock(&mdsc->mutex); mutex_lock(&s->s_mutex); mutex_lock(&mdsc->mutex); ceph_con_close(&s->s_con); mutex_unlock(&s->s_mutex); s->s_state = CEPH_MDS_SESSION_RESTARTING; } } else if (oldstate == newstate) { continue; /* nothing new with this mds */ } /* * send reconnect? */ if (s->s_state == CEPH_MDS_SESSION_RESTARTING && newstate >= CEPH_MDS_STATE_RECONNECT) { mutex_unlock(&mdsc->mutex); send_mds_reconnect(mdsc, s); mutex_lock(&mdsc->mutex); } /* * kick request on any mds that has gone active. */ if (oldstate < CEPH_MDS_STATE_ACTIVE && newstate >= CEPH_MDS_STATE_ACTIVE) { if (oldstate != CEPH_MDS_STATE_CREATING && oldstate != CEPH_MDS_STATE_STARTING) pr_info("mds%d recovery completed\n", s->s_mds); kick_requests(mdsc, i); ceph_kick_flushing_caps(mdsc, s); wake_up_session_caps(s, 1); } } for (i = 0; i < newmap->m_num_mds && i < mdsc->max_sessions; i++) { s = mdsc->sessions[i]; if (!s) continue; if (!ceph_mdsmap_is_laggy(newmap, i)) continue; if (s->s_state == CEPH_MDS_SESSION_OPEN || s->s_state == CEPH_MDS_SESSION_HUNG || s->s_state == CEPH_MDS_SESSION_CLOSING) { dout(" connecting to export targets of laggy mds%d\n", i); __open_export_target_sessions(mdsc, s); } } } /* * leases */ /* * caller must hold session s_mutex, dentry->d_lock */ void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) { struct ceph_dentry_info *di = ceph_dentry(dentry); ceph_put_mds_session(di->lease_session); di->lease_session = NULL; } static void handle_lease(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, struct ceph_msg *msg) { struct super_block *sb = mdsc->fsc->sb; struct inode *inode; struct dentry *parent, *dentry; struct ceph_dentry_info *di; int mds = session->s_mds; struct ceph_mds_lease *h = msg->front.iov_base; u32 seq; struct ceph_vino vino; struct qstr dname; int release = 0; dout("handle_lease from mds%d\n", mds); /* decode */ if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) goto bad; vino.ino = le64_to_cpu(h->ino); vino.snap = CEPH_NOSNAP; seq = le32_to_cpu(h->seq); dname.name = (void *)h + sizeof(*h) + sizeof(u32); dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); if (dname.len != get_unaligned_le32(h+1)) goto bad; /* lookup inode */ inode = ceph_find_inode(sb, vino); dout("handle_lease %s, ino %llx %p %.*s\n", ceph_lease_op_name(h->action), vino.ino, inode, dname.len, dname.name); mutex_lock(&session->s_mutex); session->s_seq++; if (!inode) { dout("handle_lease no inode %llx\n", vino.ino); goto release; } /* dentry */ parent = d_find_alias(inode); if (!parent) { dout("no parent dentry on inode %p\n", inode); WARN_ON(1); goto release; /* hrm... */ } dname.hash = full_name_hash(parent, dname.name, dname.len); dentry = d_lookup(parent, &dname); dput(parent); if (!dentry) goto release; spin_lock(&dentry->d_lock); di = ceph_dentry(dentry); switch (h->action) { case CEPH_MDS_LEASE_REVOKE: if (di->lease_session == session) { if (ceph_seq_cmp(di->lease_seq, seq) > 0) h->seq = cpu_to_le32(di->lease_seq); __ceph_mdsc_drop_dentry_lease(dentry); } release = 1; break; case CEPH_MDS_LEASE_RENEW: if (di->lease_session == session && di->lease_gen == session->s_cap_gen && di->lease_renew_from && di->lease_renew_after == 0) { unsigned long duration = msecs_to_jiffies(le32_to_cpu(h->duration_ms)); di->lease_seq = seq; di->time = di->lease_renew_from + duration; di->lease_renew_after = di->lease_renew_from + (duration >> 1); di->lease_renew_from = 0; } break; } spin_unlock(&dentry->d_lock); dput(dentry); if (!release) goto out; release: /* let's just reuse the same message */ h->action = CEPH_MDS_LEASE_REVOKE_ACK; ceph_msg_get(msg); ceph_con_send(&session->s_con, msg); out: iput(inode); mutex_unlock(&session->s_mutex); return; bad: pr_err("corrupt lease message\n"); ceph_msg_dump(msg); } void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, struct inode *inode, struct dentry *dentry, char action, u32 seq) { struct ceph_msg *msg; struct ceph_mds_lease *lease; int len = sizeof(*lease) + sizeof(u32); int dnamelen = 0; dout("lease_send_msg inode %p dentry %p %s to mds%d\n", inode, dentry, ceph_lease_op_name(action), session->s_mds); dnamelen = dentry->d_name.len; len += dnamelen; msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); if (!msg) return; lease = msg->front.iov_base; lease->action = action; lease->ino = cpu_to_le64(ceph_vino(inode).ino); lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); lease->seq = cpu_to_le32(seq); put_unaligned_le32(dnamelen, lease + 1); memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); /* * if this is a preemptive lease RELEASE, no need to * flush request stream, since the actual request will * soon follow. */ msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); ceph_con_send(&session->s_con, msg); } /* * drop all leases (and dentry refs) in preparation for umount */ static void drop_leases(struct ceph_mds_client *mdsc) { int i; dout("drop_leases\n"); mutex_lock(&mdsc->mutex); for (i = 0; i < mdsc->max_sessions; i++) { struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); if (!s) continue; mutex_unlock(&mdsc->mutex); mutex_lock(&s->s_mutex); mutex_unlock(&s->s_mutex); ceph_put_mds_session(s); mutex_lock(&mdsc->mutex); } mutex_unlock(&mdsc->mutex); } /* * delayed work -- periodically trim expired leases, renew caps with mds */ static void schedule_delayed(struct ceph_mds_client *mdsc) { int delay = 5; unsigned hz = round_jiffies_relative(HZ * delay); schedule_delayed_work(&mdsc->delayed_work, hz); } static void delayed_work(struct work_struct *work) { int i; struct ceph_mds_client *mdsc = container_of(work, struct ceph_mds_client, delayed_work.work); int renew_interval; int renew_caps; dout("mdsc delayed_work\n"); ceph_check_delayed_caps(mdsc); if (mdsc->stopping) return; mutex_lock(&mdsc->mutex); renew_interval = mdsc->mdsmap->m_session_timeout >> 2; renew_caps = time_after_eq(jiffies, HZ*renew_interval + mdsc->last_renew_caps); if (renew_caps) mdsc->last_renew_caps = jiffies; for (i = 0; i < mdsc->max_sessions; i++) { struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); if (!s) continue; if (s->s_state == CEPH_MDS_SESSION_CLOSING) { dout("resending session close request for mds%d\n", s->s_mds); request_close_session(mdsc, s); ceph_put_mds_session(s); continue; } if (s->s_ttl && time_after(jiffies, s->s_ttl)) { if (s->s_state == CEPH_MDS_SESSION_OPEN) { s->s_state = CEPH_MDS_SESSION_HUNG; pr_info("mds%d hung\n", s->s_mds); } } if (s->s_state == CEPH_MDS_SESSION_NEW || s->s_state == CEPH_MDS_SESSION_RESTARTING || s->s_state == CEPH_MDS_SESSION_REJECTED) { /* this mds is failed or recovering, just wait */ ceph_put_mds_session(s); continue; } mutex_unlock(&mdsc->mutex); mutex_lock(&s->s_mutex); if (renew_caps) send_renew_caps(mdsc, s); else ceph_con_keepalive(&s->s_con); if (s->s_state == CEPH_MDS_SESSION_OPEN || s->s_state == CEPH_MDS_SESSION_HUNG) ceph_send_cap_releases(mdsc, s); mutex_unlock(&s->s_mutex); ceph_put_mds_session(s); mutex_lock(&mdsc->mutex); } mutex_unlock(&mdsc->mutex); schedule_delayed(mdsc); } int ceph_mdsc_init(struct ceph_fs_client *fsc) { struct ceph_mds_client *mdsc; mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); if (!mdsc) return -ENOMEM; mdsc->fsc = fsc; fsc->mdsc = mdsc; mutex_init(&mdsc->mutex); mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); if (!mdsc->mdsmap) { kfree(mdsc); return -ENOMEM; } init_completion(&mdsc->safe_umount_waiters); init_waitqueue_head(&mdsc->session_close_wq); INIT_LIST_HEAD(&mdsc->waiting_for_map); mdsc->sessions = NULL; atomic_set(&mdsc->num_sessions, 0); mdsc->max_sessions = 0; mdsc->stopping = 0; mdsc->last_snap_seq = 0; init_rwsem(&mdsc->snap_rwsem); mdsc->snap_realms = RB_ROOT; INIT_LIST_HEAD(&mdsc->snap_empty); spin_lock_init(&mdsc->snap_empty_lock); mdsc->last_tid = 0; mdsc->oldest_tid = 0; mdsc->request_tree = RB_ROOT; INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); mdsc->last_renew_caps = jiffies; INIT_LIST_HEAD(&mdsc->cap_delay_list); spin_lock_init(&mdsc->cap_delay_lock); INIT_LIST_HEAD(&mdsc->snap_flush_list); spin_lock_init(&mdsc->snap_flush_lock); mdsc->last_cap_flush_tid = 1; INIT_LIST_HEAD(&mdsc->cap_flush_list); INIT_LIST_HEAD(&mdsc->cap_dirty); INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); mdsc->num_cap_flushing = 0; spin_lock_init(&mdsc->cap_dirty_lock); init_waitqueue_head(&mdsc->cap_flushing_wq); spin_lock_init(&mdsc->dentry_lru_lock); INIT_LIST_HEAD(&mdsc->dentry_lru); ceph_caps_init(mdsc); ceph_adjust_min_caps(mdsc, fsc->min_caps); init_rwsem(&mdsc->pool_perm_rwsem); mdsc->pool_perm_tree = RB_ROOT; strncpy(mdsc->nodename, utsname()->nodename, sizeof(mdsc->nodename) - 1); return 0; } /* * Wait for safe replies on open mds requests. If we time out, drop * all requests from the tree to avoid dangling dentry refs. */ static void wait_requests(struct ceph_mds_client *mdsc) { struct ceph_options *opts = mdsc->fsc->client->options; struct ceph_mds_request *req; mutex_lock(&mdsc->mutex); if (__get_oldest_req(mdsc)) { mutex_unlock(&mdsc->mutex); dout("wait_requests waiting for requests\n"); wait_for_completion_timeout(&mdsc->safe_umount_waiters, ceph_timeout_jiffies(opts->mount_timeout)); /* tear down remaining requests */ mutex_lock(&mdsc->mutex); while ((req = __get_oldest_req(mdsc))) { dout("wait_requests timed out on tid %llu\n", req->r_tid); __unregister_request(mdsc, req); } } mutex_unlock(&mdsc->mutex); dout("wait_requests done\n"); } /* * called before mount is ro, and before dentries are torn down. * (hmm, does this still race with new lookups?) */ void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) { dout("pre_umount\n"); mdsc->stopping = 1; drop_leases(mdsc); ceph_flush_dirty_caps(mdsc); wait_requests(mdsc); /* * wait for reply handlers to drop their request refs and * their inode/dcache refs */ ceph_msgr_flush(); } /* * wait for all write mds requests to flush. */ static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) { struct ceph_mds_request *req = NULL, *nextreq; struct rb_node *n; mutex_lock(&mdsc->mutex); dout("wait_unsafe_requests want %lld\n", want_tid); restart: req = __get_oldest_req(mdsc); while (req && req->r_tid <= want_tid) { /* find next request */ n = rb_next(&req->r_node); if (n) nextreq = rb_entry(n, struct ceph_mds_request, r_node); else nextreq = NULL; if (req->r_op != CEPH_MDS_OP_SETFILELOCK && (req->r_op & CEPH_MDS_OP_WRITE)) { /* write op */ ceph_mdsc_get_request(req); if (nextreq) ceph_mdsc_get_request(nextreq); mutex_unlock(&mdsc->mutex); dout("wait_unsafe_requests wait on %llu (want %llu)\n", req->r_tid, want_tid); wait_for_completion(&req->r_safe_completion); mutex_lock(&mdsc->mutex); ceph_mdsc_put_request(req); if (!nextreq) break; /* next dne before, so we're done! */ if (RB_EMPTY_NODE(&nextreq->r_node)) { /* next request was removed from tree */ ceph_mdsc_put_request(nextreq); goto restart; } ceph_mdsc_put_request(nextreq); /* won't go away */ } req = nextreq; } mutex_unlock(&mdsc->mutex); dout("wait_unsafe_requests done\n"); } void ceph_mdsc_sync(struct ceph_mds_client *mdsc) { u64 want_tid, want_flush; if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) return; dout("sync\n"); mutex_lock(&mdsc->mutex); want_tid = mdsc->last_tid; mutex_unlock(&mdsc->mutex); ceph_flush_dirty_caps(mdsc); spin_lock(&mdsc->cap_dirty_lock); want_flush = mdsc->last_cap_flush_tid; if (!list_empty(&mdsc->cap_flush_list)) { struct ceph_cap_flush *cf = list_last_entry(&mdsc->cap_flush_list, struct ceph_cap_flush, g_list); cf->wake = true; } spin_unlock(&mdsc->cap_dirty_lock); dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); wait_unsafe_requests(mdsc, want_tid); wait_caps_flush(mdsc, want_flush); } /* * true if all sessions are closed, or we force unmount */ static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped) { if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) return true; return atomic_read(&mdsc->num_sessions) <= skipped; } /* * called after sb is ro. */ void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) { struct ceph_options *opts = mdsc->fsc->client->options; struct ceph_mds_session *session; int i; int skipped = 0; dout("close_sessions\n"); /* close sessions */ mutex_lock(&mdsc->mutex); for (i = 0; i < mdsc->max_sessions; i++) { session = __ceph_lookup_mds_session(mdsc, i); if (!session) continue; mutex_unlock(&mdsc->mutex); mutex_lock(&session->s_mutex); if (__close_session(mdsc, session) <= 0) skipped++; mutex_unlock(&session->s_mutex); ceph_put_mds_session(session); mutex_lock(&mdsc->mutex); } mutex_unlock(&mdsc->mutex); dout("waiting for sessions to close\n"); wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc, skipped), ceph_timeout_jiffies(opts->mount_timeout)); /* tear down remaining sessions */ mutex_lock(&mdsc->mutex); for (i = 0; i < mdsc->max_sessions; i++) { if (mdsc->sessions[i]) { session = get_session(mdsc->sessions[i]); __unregister_session(mdsc, session); mutex_unlock(&mdsc->mutex); mutex_lock(&session->s_mutex); remove_session_caps(session); mutex_unlock(&session->s_mutex); ceph_put_mds_session(session); mutex_lock(&mdsc->mutex); } } WARN_ON(!list_empty(&mdsc->cap_delay_list)); mutex_unlock(&mdsc->mutex); ceph_cleanup_empty_realms(mdsc); cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ dout("stopped\n"); } void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) { struct ceph_mds_session *session; int mds; dout("force umount\n"); mutex_lock(&mdsc->mutex); for (mds = 0; mds < mdsc->max_sessions; mds++) { session = __ceph_lookup_mds_session(mdsc, mds); if (!session) continue; mutex_unlock(&mdsc->mutex); mutex_lock(&session->s_mutex); __close_session(mdsc, session); if (session->s_state == CEPH_MDS_SESSION_CLOSING) { cleanup_session_requests(mdsc, session); remove_session_caps(session); } mutex_unlock(&session->s_mutex); ceph_put_mds_session(session); mutex_lock(&mdsc->mutex); kick_requests(mdsc, mds); } __wake_requests(mdsc, &mdsc->waiting_for_map); mutex_unlock(&mdsc->mutex); } static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) { dout("stop\n"); /* * Make sure the delayed work stopped before releasing * the resources. * * Because the cancel_delayed_work_sync() will only * guarantee that the work finishes executing. But the * delayed work will re-arm itself again after that. */ flush_delayed_work(&mdsc->delayed_work); if (mdsc->mdsmap) ceph_mdsmap_destroy(mdsc->mdsmap); kfree(mdsc->sessions); ceph_caps_finalize(mdsc); ceph_pool_perm_destroy(mdsc); } void ceph_mdsc_destroy(struct ceph_fs_client *fsc) { struct ceph_mds_client *mdsc = fsc->mdsc; dout("mdsc_destroy %p\n", mdsc); /* flush out any connection work with references to us */ ceph_msgr_flush(); ceph_mdsc_stop(mdsc); fsc->mdsc = NULL; kfree(mdsc); dout("mdsc_destroy %p done\n", mdsc); } void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) { struct ceph_fs_client *fsc = mdsc->fsc; const char *mds_namespace = fsc->mount_options->mds_namespace; void *p = msg->front.iov_base; void *end = p + msg->front.iov_len; u32 epoch; u32 map_len; u32 num_fs; u32 mount_fscid = (u32)-1; u8 struct_v, struct_cv; int err = -EINVAL; ceph_decode_need(&p, end, sizeof(u32), bad); epoch = ceph_decode_32(&p); dout("handle_fsmap epoch %u\n", epoch); ceph_decode_need(&p, end, 2 + sizeof(u32), bad); struct_v = ceph_decode_8(&p); struct_cv = ceph_decode_8(&p); map_len = ceph_decode_32(&p); ceph_decode_need(&p, end, sizeof(u32) * 3, bad); p += sizeof(u32) * 2; /* skip epoch and legacy_client_fscid */ num_fs = ceph_decode_32(&p); while (num_fs-- > 0) { void *info_p, *info_end; u32 info_len; u8 info_v, info_cv; u32 fscid, namelen; ceph_decode_need(&p, end, 2 + sizeof(u32), bad); info_v = ceph_decode_8(&p); info_cv = ceph_decode_8(&p); info_len = ceph_decode_32(&p); ceph_decode_need(&p, end, info_len, bad); info_p = p; info_end = p + info_len; p = info_end; ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad); fscid = ceph_decode_32(&info_p); namelen = ceph_decode_32(&info_p); ceph_decode_need(&info_p, info_end, namelen, bad); if (mds_namespace && strlen(mds_namespace) == namelen && !strncmp(mds_namespace, (char *)info_p, namelen)) { mount_fscid = fscid; break; } } ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch); if (mount_fscid != (u32)-1) { fsc->client->monc.fs_cluster_id = mount_fscid; ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP, 0, true); ceph_monc_renew_subs(&fsc->client->monc); } else { err = -ENOENT; goto err_out; } return; bad: pr_err("error decoding fsmap\n"); err_out: mutex_lock(&mdsc->mutex); mdsc->mdsmap_err = -ENOENT; __wake_requests(mdsc, &mdsc->waiting_for_map); mutex_unlock(&mdsc->mutex); return; } /* * handle mds map update. */ void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) { u32 epoch; u32 maplen; void *p = msg->front.iov_base; void *end = p + msg->front.iov_len; struct ceph_mdsmap *newmap, *oldmap; struct ceph_fsid fsid; int err = -EINVAL; ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); ceph_decode_copy(&p, &fsid, sizeof(fsid)); if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) return; epoch = ceph_decode_32(&p); maplen = ceph_decode_32(&p); dout("handle_map epoch %u len %d\n", epoch, (int)maplen); /* do we need it? */ mutex_lock(&mdsc->mutex); if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { dout("handle_map epoch %u <= our %u\n", epoch, mdsc->mdsmap->m_epoch); mutex_unlock(&mdsc->mutex); return; } newmap = ceph_mdsmap_decode(&p, end); if (IS_ERR(newmap)) { err = PTR_ERR(newmap); goto bad_unlock; } /* swap into place */ if (mdsc->mdsmap) { oldmap = mdsc->mdsmap; mdsc->mdsmap = newmap; check_new_map(mdsc, newmap, oldmap); ceph_mdsmap_destroy(oldmap); } else { mdsc->mdsmap = newmap; /* first mds map */ } mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; __wake_requests(mdsc, &mdsc->waiting_for_map); ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP, mdsc->mdsmap->m_epoch); mutex_unlock(&mdsc->mutex); schedule_delayed(mdsc); return; bad_unlock: mutex_unlock(&mdsc->mutex); bad: pr_err("error decoding mdsmap %d\n", err); return; } static struct ceph_connection *con_get(struct ceph_connection *con) { struct ceph_mds_session *s = con->private; if (get_session(s)) { dout("mdsc con_get %p ok (%d)\n", s, refcount_read(&s->s_ref)); return con; } dout("mdsc con_get %p FAIL\n", s); return NULL; } static void con_put(struct ceph_connection *con) { struct ceph_mds_session *s = con->private; dout("mdsc con_put %p (%d)\n", s, refcount_read(&s->s_ref) - 1); ceph_put_mds_session(s); } /* * if the client is unresponsive for long enough, the mds will kill * the session entirely. */ static void peer_reset(struct ceph_connection *con) { struct ceph_mds_session *s = con->private; struct ceph_mds_client *mdsc = s->s_mdsc; pr_warn("mds%d closed our session\n", s->s_mds); send_mds_reconnect(mdsc, s); } static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) { struct ceph_mds_session *s = con->private; struct ceph_mds_client *mdsc = s->s_mdsc; int type = le16_to_cpu(msg->hdr.type); mutex_lock(&mdsc->mutex); if (__verify_registered_session(mdsc, s) < 0) { mutex_unlock(&mdsc->mutex); goto out; } mutex_unlock(&mdsc->mutex); switch (type) { case CEPH_MSG_MDS_MAP: ceph_mdsc_handle_mdsmap(mdsc, msg); break; case CEPH_MSG_FS_MAP_USER: ceph_mdsc_handle_fsmap(mdsc, msg); break; case CEPH_MSG_CLIENT_SESSION: handle_session(s, msg); break; case CEPH_MSG_CLIENT_REPLY: handle_reply(s, msg); break; case CEPH_MSG_CLIENT_REQUEST_FORWARD: handle_forward(mdsc, s, msg); break; case CEPH_MSG_CLIENT_CAPS: ceph_handle_caps(s, msg); break; case CEPH_MSG_CLIENT_SNAP: ceph_handle_snap(mdsc, s, msg); break; case CEPH_MSG_CLIENT_LEASE: handle_lease(mdsc, s, msg); break; default: pr_err("received unknown message type %d %s\n", type, ceph_msg_type_name(type)); } out: ceph_msg_put(msg); } /* * authentication */ /* * Note: returned pointer is the address of a structure that's * managed separately. Caller must *not* attempt to free it. */ static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, int *proto, int force_new) { struct ceph_mds_session *s = con->private; struct ceph_mds_client *mdsc = s->s_mdsc; struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; struct ceph_auth_handshake *auth = &s->s_auth; if (force_new && auth->authorizer) { ceph_auth_destroy_authorizer(auth->authorizer); auth->authorizer = NULL; } if (!auth->authorizer) { int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, auth); if (ret) return ERR_PTR(ret); } else { int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, auth); if (ret) return ERR_PTR(ret); } *proto = ac->protocol; return auth; } static int add_authorizer_challenge(struct ceph_connection *con, void *challenge_buf, int challenge_buf_len) { struct ceph_mds_session *s = con->private; struct ceph_mds_client *mdsc = s->s_mdsc; struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer, challenge_buf, challenge_buf_len); } static int verify_authorizer_reply(struct ceph_connection *con) { struct ceph_mds_session *s = con->private; struct ceph_mds_client *mdsc = s->s_mdsc; struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer); } static int invalidate_authorizer(struct ceph_connection *con) { struct ceph_mds_session *s = con->private; struct ceph_mds_client *mdsc = s->s_mdsc; struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); return ceph_monc_validate_auth(&mdsc->fsc->client->monc); } static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, struct ceph_msg_header *hdr, int *skip) { struct ceph_msg *msg; int type = (int) le16_to_cpu(hdr->type); int front_len = (int) le32_to_cpu(hdr->front_len); if (con->in_msg) return con->in_msg; *skip = 0; msg = ceph_msg_new(type, front_len, GFP_NOFS, false); if (!msg) { pr_err("unable to allocate msg type %d len %d\n", type, front_len); return NULL; } return msg; } static int mds_sign_message(struct ceph_msg *msg) { struct ceph_mds_session *s = msg->con->private; struct ceph_auth_handshake *auth = &s->s_auth; return ceph_auth_sign_message(auth, msg); } static int mds_check_message_signature(struct ceph_msg *msg) { struct ceph_mds_session *s = msg->con->private; struct ceph_auth_handshake *auth = &s->s_auth; return ceph_auth_check_message_signature(auth, msg); } static const struct ceph_connection_operations mds_con_ops = { .get = con_get, .put = con_put, .dispatch = dispatch, .get_authorizer = get_authorizer, .add_authorizer_challenge = add_authorizer_challenge, .verify_authorizer_reply = verify_authorizer_reply, .invalidate_authorizer = invalidate_authorizer, .peer_reset = peer_reset, .alloc_msg = mds_alloc_msg, .sign_message = mds_sign_message, .check_message_signature = mds_check_message_signature, }; /* eof */