/* * fs/f2fs/super.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "f2fs.h" #include "node.h" #include "segment.h" #include "xattr.h" #include "gc.h" #include "trace.h" #define CREATE_TRACE_POINTS #include static struct kmem_cache *f2fs_inode_cachep; #ifdef CONFIG_F2FS_FAULT_INJECTION char *fault_name[FAULT_MAX] = { [FAULT_KMALLOC] = "kmalloc", [FAULT_PAGE_ALLOC] = "page alloc", [FAULT_ALLOC_NID] = "alloc nid", [FAULT_ORPHAN] = "orphan", [FAULT_BLOCK] = "no more block", [FAULT_DIR_DEPTH] = "too big dir depth", [FAULT_EVICT_INODE] = "evict_inode fail", [FAULT_TRUNCATE] = "truncate fail", [FAULT_IO] = "IO error", [FAULT_CHECKPOINT] = "checkpoint error", }; static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate) { struct f2fs_fault_info *ffi = &sbi->fault_info; if (rate) { atomic_set(&ffi->inject_ops, 0); ffi->inject_rate = rate; ffi->inject_type = (1 << FAULT_MAX) - 1; } else { memset(ffi, 0, sizeof(struct f2fs_fault_info)); } } #endif /* f2fs-wide shrinker description */ static struct shrinker f2fs_shrinker_info = { .scan_objects = f2fs_shrink_scan, .count_objects = f2fs_shrink_count, .seeks = DEFAULT_SEEKS, }; enum { Opt_gc_background, Opt_disable_roll_forward, Opt_norecovery, Opt_discard, Opt_nodiscard, Opt_noheap, Opt_heap, Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, Opt_active_logs, Opt_disable_ext_identify, Opt_inline_xattr, Opt_noinline_xattr, Opt_inline_data, Opt_inline_dentry, Opt_noinline_dentry, Opt_flush_merge, Opt_noflush_merge, Opt_nobarrier, Opt_fastboot, Opt_extent_cache, Opt_noextent_cache, Opt_noinline_data, Opt_data_flush, Opt_mode, Opt_io_size_bits, Opt_fault_injection, Opt_lazytime, Opt_nolazytime, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_usrjquota, Opt_grpjquota, Opt_prjjquota, Opt_offusrjquota, Opt_offgrpjquota, Opt_offprjjquota, Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_err, }; static match_table_t f2fs_tokens = { {Opt_gc_background, "background_gc=%s"}, {Opt_disable_roll_forward, "disable_roll_forward"}, {Opt_norecovery, "norecovery"}, {Opt_discard, "discard"}, {Opt_nodiscard, "nodiscard"}, {Opt_noheap, "no_heap"}, {Opt_heap, "heap"}, {Opt_user_xattr, "user_xattr"}, {Opt_nouser_xattr, "nouser_xattr"}, {Opt_acl, "acl"}, {Opt_noacl, "noacl"}, {Opt_active_logs, "active_logs=%u"}, {Opt_disable_ext_identify, "disable_ext_identify"}, {Opt_inline_xattr, "inline_xattr"}, {Opt_noinline_xattr, "noinline_xattr"}, {Opt_inline_data, "inline_data"}, {Opt_inline_dentry, "inline_dentry"}, {Opt_noinline_dentry, "noinline_dentry"}, {Opt_flush_merge, "flush_merge"}, {Opt_noflush_merge, "noflush_merge"}, {Opt_nobarrier, "nobarrier"}, {Opt_fastboot, "fastboot"}, {Opt_extent_cache, "extent_cache"}, {Opt_noextent_cache, "noextent_cache"}, {Opt_noinline_data, "noinline_data"}, {Opt_data_flush, "data_flush"}, {Opt_mode, "mode=%s"}, {Opt_io_size_bits, "io_bits=%u"}, {Opt_fault_injection, "fault_injection=%u"}, {Opt_lazytime, "lazytime"}, {Opt_nolazytime, "nolazytime"}, {Opt_quota, "quota"}, {Opt_noquota, "noquota"}, {Opt_usrquota, "usrquota"}, {Opt_grpquota, "grpquota"}, {Opt_prjquota, "prjquota"}, {Opt_usrjquota, "usrjquota=%s"}, {Opt_grpjquota, "grpjquota=%s"}, {Opt_prjjquota, "prjjquota=%s"}, {Opt_offusrjquota, "usrjquota="}, {Opt_offgrpjquota, "grpjquota="}, {Opt_offprjjquota, "prjjquota="}, {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, {Opt_err, NULL}, }; void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); va_end(args); } static void init_once(void *foo) { struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; inode_init_once(&fi->vfs_inode); } #ifdef CONFIG_QUOTA static const char * const quotatypes[] = INITQFNAMES; #define QTYPE2NAME(t) (quotatypes[t]) static int f2fs_set_qf_name(struct super_block *sb, int qtype, substring_t *args) { struct f2fs_sb_info *sbi = F2FS_SB(sb); char *qname; int ret = -EINVAL; if (sb_any_quota_loaded(sb) && !sbi->s_qf_names[qtype]) { f2fs_msg(sb, KERN_ERR, "Cannot change journaled " "quota options when quota turned on"); return -EINVAL; } qname = match_strdup(args); if (!qname) { f2fs_msg(sb, KERN_ERR, "Not enough memory for storing quotafile name"); return -EINVAL; } if (sbi->s_qf_names[qtype]) { if (strcmp(sbi->s_qf_names[qtype], qname) == 0) ret = 0; else f2fs_msg(sb, KERN_ERR, "%s quota file already specified", QTYPE2NAME(qtype)); goto errout; } if (strchr(qname, '/')) { f2fs_msg(sb, KERN_ERR, "quotafile must be on filesystem root"); goto errout; } sbi->s_qf_names[qtype] = qname; set_opt(sbi, QUOTA); return 0; errout: kfree(qname); return ret; } static int f2fs_clear_qf_name(struct super_block *sb, int qtype) { struct f2fs_sb_info *sbi = F2FS_SB(sb); if (sb_any_quota_loaded(sb) && sbi->s_qf_names[qtype]) { f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options" " when quota turned on"); return -EINVAL; } kfree(sbi->s_qf_names[qtype]); sbi->s_qf_names[qtype] = NULL; return 0; } static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) { /* * We do the test below only for project quotas. 'usrquota' and * 'grpquota' mount options are allowed even without quota feature * to support legacy quotas in quota files. */ if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) { f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. " "Cannot enable project quota enforcement."); return -1; } if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA] || sbi->s_qf_names[PRJQUOTA]) { if (test_opt(sbi, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) clear_opt(sbi, USRQUOTA); if (test_opt(sbi, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) clear_opt(sbi, GRPQUOTA); if (test_opt(sbi, PRJQUOTA) && sbi->s_qf_names[PRJQUOTA]) clear_opt(sbi, PRJQUOTA); if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || test_opt(sbi, PRJQUOTA)) { f2fs_msg(sbi->sb, KERN_ERR, "old and new quota " "format mixing"); return -1; } if (!sbi->s_jquota_fmt) { f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format " "not specified"); return -1; } } return 0; } #endif static int parse_options(struct super_block *sb, char *options) { struct f2fs_sb_info *sbi = F2FS_SB(sb); struct request_queue *q; substring_t args[MAX_OPT_ARGS]; char *p, *name; int arg = 0; #ifdef CONFIG_QUOTA int ret; #endif if (!options) return 0; while ((p = strsep(&options, ",")) != NULL) { int token; if (!*p) continue; /* * Initialize args struct so we know whether arg was * found; some options take optional arguments. */ args[0].to = args[0].from = NULL; token = match_token(p, f2fs_tokens, args); switch (token) { case Opt_gc_background: name = match_strdup(&args[0]); if (!name) return -ENOMEM; if (strlen(name) == 2 && !strncmp(name, "on", 2)) { set_opt(sbi, BG_GC); clear_opt(sbi, FORCE_FG_GC); } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { clear_opt(sbi, BG_GC); clear_opt(sbi, FORCE_FG_GC); } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { set_opt(sbi, BG_GC); set_opt(sbi, FORCE_FG_GC); } else { kfree(name); return -EINVAL; } kfree(name); break; case Opt_disable_roll_forward: set_opt(sbi, DISABLE_ROLL_FORWARD); break; case Opt_norecovery: /* this option mounts f2fs with ro */ set_opt(sbi, DISABLE_ROLL_FORWARD); if (!f2fs_readonly(sb)) return -EINVAL; break; case Opt_discard: q = bdev_get_queue(sb->s_bdev); if (blk_queue_discard(q)) { set_opt(sbi, DISCARD); } else if (!f2fs_sb_mounted_blkzoned(sb)) { f2fs_msg(sb, KERN_WARNING, "mounting with \"discard\" option, but " "the device does not support discard"); } break; case Opt_nodiscard: if (f2fs_sb_mounted_blkzoned(sb)) { f2fs_msg(sb, KERN_WARNING, "discard is required for zoned block devices"); return -EINVAL; } clear_opt(sbi, DISCARD); break; case Opt_noheap: set_opt(sbi, NOHEAP); break; case Opt_heap: clear_opt(sbi, NOHEAP); break; #ifdef CONFIG_F2FS_FS_XATTR case Opt_user_xattr: set_opt(sbi, XATTR_USER); break; case Opt_nouser_xattr: clear_opt(sbi, XATTR_USER); break; case Opt_inline_xattr: set_opt(sbi, INLINE_XATTR); break; case Opt_noinline_xattr: clear_opt(sbi, INLINE_XATTR); break; #else case Opt_user_xattr: f2fs_msg(sb, KERN_INFO, "user_xattr options not supported"); break; case Opt_nouser_xattr: f2fs_msg(sb, KERN_INFO, "nouser_xattr options not supported"); break; case Opt_inline_xattr: f2fs_msg(sb, KERN_INFO, "inline_xattr options not supported"); break; case Opt_noinline_xattr: f2fs_msg(sb, KERN_INFO, "noinline_xattr options not supported"); break; #endif #ifdef CONFIG_F2FS_FS_POSIX_ACL case Opt_acl: set_opt(sbi, POSIX_ACL); break; case Opt_noacl: clear_opt(sbi, POSIX_ACL); break; #else case Opt_acl: f2fs_msg(sb, KERN_INFO, "acl options not supported"); break; case Opt_noacl: f2fs_msg(sb, KERN_INFO, "noacl options not supported"); break; #endif case Opt_active_logs: if (args->from && match_int(args, &arg)) return -EINVAL; if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) return -EINVAL; sbi->active_logs = arg; break; case Opt_disable_ext_identify: set_opt(sbi, DISABLE_EXT_IDENTIFY); break; case Opt_inline_data: set_opt(sbi, INLINE_DATA); break; case Opt_inline_dentry: set_opt(sbi, INLINE_DENTRY); break; case Opt_noinline_dentry: clear_opt(sbi, INLINE_DENTRY); break; case Opt_flush_merge: set_opt(sbi, FLUSH_MERGE); break; case Opt_noflush_merge: clear_opt(sbi, FLUSH_MERGE); break; case Opt_nobarrier: set_opt(sbi, NOBARRIER); break; case Opt_fastboot: set_opt(sbi, FASTBOOT); break; case Opt_extent_cache: set_opt(sbi, EXTENT_CACHE); break; case Opt_noextent_cache: clear_opt(sbi, EXTENT_CACHE); break; case Opt_noinline_data: clear_opt(sbi, INLINE_DATA); break; case Opt_data_flush: set_opt(sbi, DATA_FLUSH); break; case Opt_mode: name = match_strdup(&args[0]); if (!name) return -ENOMEM; if (strlen(name) == 8 && !strncmp(name, "adaptive", 8)) { if (f2fs_sb_mounted_blkzoned(sb)) { f2fs_msg(sb, KERN_WARNING, "adaptive mode is not allowed with " "zoned block device feature"); kfree(name); return -EINVAL; } set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); } else if (strlen(name) == 3 && !strncmp(name, "lfs", 3)) { set_opt_mode(sbi, F2FS_MOUNT_LFS); } else { kfree(name); return -EINVAL; } kfree(name); break; case Opt_io_size_bits: if (args->from && match_int(args, &arg)) return -EINVAL; if (arg > __ilog2_u32(BIO_MAX_PAGES)) { f2fs_msg(sb, KERN_WARNING, "Not support %d, larger than %d", 1 << arg, BIO_MAX_PAGES); return -EINVAL; } sbi->write_io_size_bits = arg; break; case Opt_fault_injection: if (args->from && match_int(args, &arg)) return -EINVAL; #ifdef CONFIG_F2FS_FAULT_INJECTION f2fs_build_fault_attr(sbi, arg); set_opt(sbi, FAULT_INJECTION); #else f2fs_msg(sb, KERN_INFO, "FAULT_INJECTION was not selected"); #endif break; case Opt_lazytime: sb->s_flags |= MS_LAZYTIME; break; case Opt_nolazytime: sb->s_flags &= ~MS_LAZYTIME; break; #ifdef CONFIG_QUOTA case Opt_quota: case Opt_usrquota: set_opt(sbi, USRQUOTA); break; case Opt_grpquota: set_opt(sbi, GRPQUOTA); break; case Opt_prjquota: set_opt(sbi, PRJQUOTA); break; case Opt_usrjquota: ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); if (ret) return ret; break; case Opt_grpjquota: ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); if (ret) return ret; break; case Opt_prjjquota: ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); if (ret) return ret; break; case Opt_offusrjquota: ret = f2fs_clear_qf_name(sb, USRQUOTA); if (ret) return ret; break; case Opt_offgrpjquota: ret = f2fs_clear_qf_name(sb, GRPQUOTA); if (ret) return ret; break; case Opt_offprjjquota: ret = f2fs_clear_qf_name(sb, PRJQUOTA); if (ret) return ret; break; case Opt_jqfmt_vfsold: sbi->s_jquota_fmt = QFMT_VFS_OLD; break; case Opt_jqfmt_vfsv0: sbi->s_jquota_fmt = QFMT_VFS_V0; break; case Opt_jqfmt_vfsv1: sbi->s_jquota_fmt = QFMT_VFS_V1; break; case Opt_noquota: clear_opt(sbi, QUOTA); clear_opt(sbi, USRQUOTA); clear_opt(sbi, GRPQUOTA); clear_opt(sbi, PRJQUOTA); break; #else case Opt_quota: case Opt_usrquota: case Opt_grpquota: case Opt_prjquota: case Opt_usrjquota: case Opt_grpjquota: case Opt_prjjquota: case Opt_offusrjquota: case Opt_offgrpjquota: case Opt_offprjjquota: case Opt_jqfmt_vfsold: case Opt_jqfmt_vfsv0: case Opt_jqfmt_vfsv1: case Opt_noquota: f2fs_msg(sb, KERN_INFO, "quota operations not supported"); break; #endif default: f2fs_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" or missing value", p); return -EINVAL; } } #ifdef CONFIG_QUOTA if (f2fs_check_quota_options(sbi)) return -EINVAL; #endif if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { f2fs_msg(sb, KERN_ERR, "Should set mode=lfs with %uKB-sized IO", F2FS_IO_SIZE_KB(sbi)); return -EINVAL; } return 0; } static struct inode *f2fs_alloc_inode(struct super_block *sb) { struct f2fs_inode_info *fi; fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); if (!fi) return NULL; init_once((void *) fi); /* Initialize f2fs-specific inode info */ fi->vfs_inode.i_version = 1; atomic_set(&fi->dirty_pages, 0); fi->i_current_depth = 1; fi->i_advise = 0; init_rwsem(&fi->i_sem); INIT_LIST_HEAD(&fi->dirty_list); INIT_LIST_HEAD(&fi->gdirty_list); INIT_LIST_HEAD(&fi->inmem_pages); mutex_init(&fi->inmem_lock); init_rwsem(&fi->dio_rwsem[READ]); init_rwsem(&fi->dio_rwsem[WRITE]); init_rwsem(&fi->i_mmap_sem); init_rwsem(&fi->i_xattr_sem); #ifdef CONFIG_QUOTA memset(&fi->i_dquot, 0, sizeof(fi->i_dquot)); fi->i_reserved_quota = 0; #endif /* Will be used by directory only */ fi->i_dir_level = F2FS_SB(sb)->dir_level; return &fi->vfs_inode; } static int f2fs_drop_inode(struct inode *inode) { int ret; /* * This is to avoid a deadlock condition like below. * writeback_single_inode(inode) * - f2fs_write_data_page * - f2fs_gc -> iput -> evict * - inode_wait_for_writeback(inode) */ if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { if (!inode->i_nlink && !is_bad_inode(inode)) { /* to avoid evict_inode call simultaneously */ atomic_inc(&inode->i_count); spin_unlock(&inode->i_lock); /* some remained atomic pages should discarded */ if (f2fs_is_atomic_file(inode)) drop_inmem_pages(inode); /* should remain fi->extent_tree for writepage */ f2fs_destroy_extent_node(inode); sb_start_intwrite(inode->i_sb); f2fs_i_size_write(inode, 0); if (F2FS_HAS_BLOCKS(inode)) f2fs_truncate(inode); sb_end_intwrite(inode->i_sb); fscrypt_put_encryption_info(inode, NULL); spin_lock(&inode->i_lock); atomic_dec(&inode->i_count); } trace_f2fs_drop_inode(inode, 0); return 0; } ret = generic_drop_inode(inode); trace_f2fs_drop_inode(inode, ret); return ret; } int f2fs_inode_dirtied(struct inode *inode, bool sync) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); int ret = 0; spin_lock(&sbi->inode_lock[DIRTY_META]); if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { ret = 1; } else { set_inode_flag(inode, FI_DIRTY_INODE); stat_inc_dirty_inode(sbi, DIRTY_META); } if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { list_add_tail(&F2FS_I(inode)->gdirty_list, &sbi->inode_list[DIRTY_META]); inc_page_count(sbi, F2FS_DIRTY_IMETA); } spin_unlock(&sbi->inode_lock[DIRTY_META]); return ret; } void f2fs_inode_synced(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); spin_lock(&sbi->inode_lock[DIRTY_META]); if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { spin_unlock(&sbi->inode_lock[DIRTY_META]); return; } if (!list_empty(&F2FS_I(inode)->gdirty_list)) { list_del_init(&F2FS_I(inode)->gdirty_list); dec_page_count(sbi, F2FS_DIRTY_IMETA); } clear_inode_flag(inode, FI_DIRTY_INODE); clear_inode_flag(inode, FI_AUTO_RECOVER); stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); spin_unlock(&sbi->inode_lock[DIRTY_META]); } /* * f2fs_dirty_inode() is called from __mark_inode_dirty() * * We should call set_dirty_inode to write the dirty inode through write_inode. */ static void f2fs_dirty_inode(struct inode *inode, int flags) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); if (inode->i_ino == F2FS_NODE_INO(sbi) || inode->i_ino == F2FS_META_INO(sbi)) return; if (flags == I_DIRTY_TIME) return; if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) clear_inode_flag(inode, FI_AUTO_RECOVER); f2fs_inode_dirtied(inode, false); } static void f2fs_i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); } static void f2fs_destroy_inode(struct inode *inode) { call_rcu(&inode->i_rcu, f2fs_i_callback); } static void destroy_percpu_info(struct f2fs_sb_info *sbi) { percpu_counter_destroy(&sbi->alloc_valid_block_count); percpu_counter_destroy(&sbi->total_valid_inode_count); } static void destroy_device_list(struct f2fs_sb_info *sbi) { int i; for (i = 0; i < sbi->s_ndevs; i++) { blkdev_put(FDEV(i).bdev, FMODE_EXCL); #ifdef CONFIG_BLK_DEV_ZONED kfree(FDEV(i).blkz_type); #endif } kfree(sbi->devs); } static void f2fs_put_super(struct super_block *sb) { struct f2fs_sb_info *sbi = F2FS_SB(sb); int i; /* unregister procfs/sysfs entries in advance to avoid race case */ f2fs_unregister_sysfs(sbi); f2fs_quota_off_umount(sb); /* prevent remaining shrinker jobs */ mutex_lock(&sbi->umount_mutex); /* * We don't need to do checkpoint when superblock is clean. * But, the previous checkpoint was not done by umount, it needs to do * clean checkpoint again. */ if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { struct cp_control cpc = { .reason = CP_UMOUNT, }; write_checkpoint(sbi, &cpc); } /* be sure to wait for any on-going discard commands */ f2fs_wait_discard_bios(sbi, true); if (f2fs_discard_en(sbi) && !sbi->discard_blks) { struct cp_control cpc = { .reason = CP_UMOUNT | CP_TRIMMED, }; write_checkpoint(sbi, &cpc); } /* write_checkpoint can update stat informaion */ f2fs_destroy_stats(sbi); /* * normally superblock is clean, so we need to release this. * In addition, EIO will skip do checkpoint, we need this as well. */ release_ino_entry(sbi, true); f2fs_leave_shrinker(sbi); mutex_unlock(&sbi->umount_mutex); /* our cp_error case, we can wait for any writeback page */ f2fs_flush_merged_writes(sbi); iput(sbi->node_inode); iput(sbi->meta_inode); /* destroy f2fs internal modules */ destroy_node_manager(sbi); destroy_segment_manager(sbi); kfree(sbi->ckpt); sb->s_fs_info = NULL; if (sbi->s_chksum_driver) crypto_free_shash(sbi->s_chksum_driver); kfree(sbi->raw_super); destroy_device_list(sbi); mempool_destroy(sbi->write_io_dummy); #ifdef CONFIG_QUOTA for (i = 0; i < MAXQUOTAS; i++) kfree(sbi->s_qf_names[i]); #endif destroy_percpu_info(sbi); for (i = 0; i < NR_PAGE_TYPE; i++) kfree(sbi->write_io[i]); kfree(sbi); } int f2fs_sync_fs(struct super_block *sb, int sync) { struct f2fs_sb_info *sbi = F2FS_SB(sb); int err = 0; trace_f2fs_sync_fs(sb, sync); if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) return -EAGAIN; if (sync) { struct cp_control cpc; cpc.reason = __get_cp_reason(sbi); mutex_lock(&sbi->gc_mutex); err = write_checkpoint(sbi, &cpc); mutex_unlock(&sbi->gc_mutex); } f2fs_trace_ios(NULL, 1); return err; } static int f2fs_freeze(struct super_block *sb) { if (f2fs_readonly(sb)) return 0; /* IO error happened before */ if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) return -EIO; /* must be clean, since sync_filesystem() was already called */ if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) return -EINVAL; return 0; } static int f2fs_unfreeze(struct super_block *sb) { return 0; } #ifdef CONFIG_QUOTA static int f2fs_statfs_project(struct super_block *sb, kprojid_t projid, struct kstatfs *buf) { struct kqid qid; struct dquot *dquot; u64 limit; u64 curblock; qid = make_kqid_projid(projid); dquot = dqget(sb, qid); if (IS_ERR(dquot)) return PTR_ERR(dquot); spin_lock(&dq_data_lock); limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, dquot->dq_dqb.dqb_bhardlimit); if (limit) limit >>= sb->s_blocksize_bits; if (limit && buf->f_blocks > limit) { curblock = (dquot->dq_dqb.dqb_curspace + dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; buf->f_blocks = limit; buf->f_bfree = buf->f_bavail = (buf->f_blocks > curblock) ? (buf->f_blocks - curblock) : 0; } limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, dquot->dq_dqb.dqb_ihardlimit); if (limit && buf->f_files > limit) { buf->f_files = limit; buf->f_ffree = (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; } spin_unlock(&dq_data_lock); dqput(dquot); return 0; } #endif static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct f2fs_sb_info *sbi = F2FS_SB(sb); u64 id = huge_encode_dev(sb->s_bdev->bd_dev); block_t total_count, user_block_count, start_count, ovp_count; u64 avail_node_count; total_count = le64_to_cpu(sbi->raw_super->block_count); user_block_count = sbi->user_block_count; start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; buf->f_type = F2FS_SUPER_MAGIC; buf->f_bsize = sbi->blocksize; buf->f_blocks = total_count - start_count; buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count; buf->f_bavail = user_block_count - valid_user_blocks(sbi) - sbi->reserved_blocks; avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; if (avail_node_count > user_block_count) { buf->f_files = user_block_count; buf->f_ffree = buf->f_bavail; } else { buf->f_files = avail_node_count; buf->f_ffree = min(avail_node_count - valid_node_count(sbi), buf->f_bavail); } buf->f_namelen = F2FS_NAME_LEN; buf->f_fsid.val[0] = (u32)id; buf->f_fsid.val[1] = (u32)(id >> 32); #ifdef CONFIG_QUOTA if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && sb_has_quota_limits_enabled(sb, PRJQUOTA)) { f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); } #endif return 0; } static inline void f2fs_show_quota_options(struct seq_file *seq, struct super_block *sb) { #ifdef CONFIG_QUOTA struct f2fs_sb_info *sbi = F2FS_SB(sb); if (sbi->s_jquota_fmt) { char *fmtname = ""; switch (sbi->s_jquota_fmt) { case QFMT_VFS_OLD: fmtname = "vfsold"; break; case QFMT_VFS_V0: fmtname = "vfsv0"; break; case QFMT_VFS_V1: fmtname = "vfsv1"; break; } seq_printf(seq, ",jqfmt=%s", fmtname); } if (sbi->s_qf_names[USRQUOTA]) seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); if (sbi->s_qf_names[GRPQUOTA]) seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); if (sbi->s_qf_names[PRJQUOTA]) seq_show_option(seq, "prjjquota", sbi->s_qf_names[PRJQUOTA]); #endif } static int f2fs_show_options(struct seq_file *seq, struct dentry *root) { struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { if (test_opt(sbi, FORCE_FG_GC)) seq_printf(seq, ",background_gc=%s", "sync"); else seq_printf(seq, ",background_gc=%s", "on"); } else { seq_printf(seq, ",background_gc=%s", "off"); } if (test_opt(sbi, DISABLE_ROLL_FORWARD)) seq_puts(seq, ",disable_roll_forward"); if (test_opt(sbi, DISCARD)) seq_puts(seq, ",discard"); if (test_opt(sbi, NOHEAP)) seq_puts(seq, ",no_heap"); else seq_puts(seq, ",heap"); #ifdef CONFIG_F2FS_FS_XATTR if (test_opt(sbi, XATTR_USER)) seq_puts(seq, ",user_xattr"); else seq_puts(seq, ",nouser_xattr"); if (test_opt(sbi, INLINE_XATTR)) seq_puts(seq, ",inline_xattr"); else seq_puts(seq, ",noinline_xattr"); #endif #ifdef CONFIG_F2FS_FS_POSIX_ACL if (test_opt(sbi, POSIX_ACL)) seq_puts(seq, ",acl"); else seq_puts(seq, ",noacl"); #endif if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) seq_puts(seq, ",disable_ext_identify"); if (test_opt(sbi, INLINE_DATA)) seq_puts(seq, ",inline_data"); else seq_puts(seq, ",noinline_data"); if (test_opt(sbi, INLINE_DENTRY)) seq_puts(seq, ",inline_dentry"); else seq_puts(seq, ",noinline_dentry"); if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) seq_puts(seq, ",flush_merge"); if (test_opt(sbi, NOBARRIER)) seq_puts(seq, ",nobarrier"); if (test_opt(sbi, FASTBOOT)) seq_puts(seq, ",fastboot"); if (test_opt(sbi, EXTENT_CACHE)) seq_puts(seq, ",extent_cache"); else seq_puts(seq, ",noextent_cache"); if (test_opt(sbi, DATA_FLUSH)) seq_puts(seq, ",data_flush"); seq_puts(seq, ",mode="); if (test_opt(sbi, ADAPTIVE)) seq_puts(seq, "adaptive"); else if (test_opt(sbi, LFS)) seq_puts(seq, "lfs"); seq_printf(seq, ",active_logs=%u", sbi->active_logs); if (F2FS_IO_SIZE_BITS(sbi)) seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi)); #ifdef CONFIG_F2FS_FAULT_INJECTION if (test_opt(sbi, FAULT_INJECTION)) seq_printf(seq, ",fault_injection=%u", sbi->fault_info.inject_rate); #endif #ifdef CONFIG_QUOTA if (test_opt(sbi, QUOTA)) seq_puts(seq, ",quota"); if (test_opt(sbi, USRQUOTA)) seq_puts(seq, ",usrquota"); if (test_opt(sbi, GRPQUOTA)) seq_puts(seq, ",grpquota"); if (test_opt(sbi, PRJQUOTA)) seq_puts(seq, ",prjquota"); #endif f2fs_show_quota_options(seq, sbi->sb); return 0; } static void default_options(struct f2fs_sb_info *sbi) { /* init some FS parameters */ sbi->active_logs = NR_CURSEG_TYPE; set_opt(sbi, BG_GC); set_opt(sbi, INLINE_XATTR); set_opt(sbi, INLINE_DATA); set_opt(sbi, INLINE_DENTRY); set_opt(sbi, EXTENT_CACHE); set_opt(sbi, NOHEAP); sbi->sb->s_flags |= MS_LAZYTIME; set_opt(sbi, FLUSH_MERGE); if (f2fs_sb_mounted_blkzoned(sbi->sb)) { set_opt_mode(sbi, F2FS_MOUNT_LFS); set_opt(sbi, DISCARD); } else { set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); } #ifdef CONFIG_F2FS_FS_XATTR set_opt(sbi, XATTR_USER); #endif #ifdef CONFIG_F2FS_FS_POSIX_ACL set_opt(sbi, POSIX_ACL); #endif #ifdef CONFIG_F2FS_FAULT_INJECTION f2fs_build_fault_attr(sbi, 0); #endif } static int f2fs_remount(struct super_block *sb, int *flags, char *data) { struct f2fs_sb_info *sbi = F2FS_SB(sb); struct f2fs_mount_info org_mount_opt; unsigned long old_sb_flags; int err, active_logs; bool need_restart_gc = false; bool need_stop_gc = false; bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); #ifdef CONFIG_F2FS_FAULT_INJECTION struct f2fs_fault_info ffi = sbi->fault_info; #endif #ifdef CONFIG_QUOTA int s_jquota_fmt; char *s_qf_names[MAXQUOTAS]; int i, j; #endif /* * Save the old mount options in case we * need to restore them. */ org_mount_opt = sbi->mount_opt; old_sb_flags = sb->s_flags; active_logs = sbi->active_logs; #ifdef CONFIG_QUOTA s_jquota_fmt = sbi->s_jquota_fmt; for (i = 0; i < MAXQUOTAS; i++) { if (sbi->s_qf_names[i]) { s_qf_names[i] = kstrdup(sbi->s_qf_names[i], GFP_KERNEL); if (!s_qf_names[i]) { for (j = 0; j < i; j++) kfree(s_qf_names[j]); return -ENOMEM; } } else { s_qf_names[i] = NULL; } } #endif /* recover superblocks we couldn't write due to previous RO mount */ if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { err = f2fs_commit_super(sbi, false); f2fs_msg(sb, KERN_INFO, "Try to recover all the superblocks, ret: %d", err); if (!err) clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); } default_options(sbi); /* parse mount options */ err = parse_options(sb, data); if (err) goto restore_opts; /* * Previous and new state of filesystem is RO, * so skip checking GC and FLUSH_MERGE conditions. */ if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) goto skip; if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) { err = dquot_suspend(sb, -1); if (err < 0) goto restore_opts; } else { /* dquot_resume needs RW */ sb->s_flags &= ~MS_RDONLY; dquot_resume(sb, -1); } /* disallow enable/disable extent_cache dynamically */ if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { err = -EINVAL; f2fs_msg(sbi->sb, KERN_WARNING, "switch extent_cache option is not allowed"); goto restore_opts; } /* * We stop the GC thread if FS is mounted as RO * or if background_gc = off is passed in mount * option. Also sync the filesystem. */ if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { if (sbi->gc_thread) { stop_gc_thread(sbi); need_restart_gc = true; } } else if (!sbi->gc_thread) { err = start_gc_thread(sbi); if (err) goto restore_opts; need_stop_gc = true; } if (*flags & MS_RDONLY) { writeback_inodes_sb(sb, WB_REASON_SYNC); sync_inodes_sb(sb); set_sbi_flag(sbi, SBI_IS_DIRTY); set_sbi_flag(sbi, SBI_IS_CLOSE); f2fs_sync_fs(sb, 1); clear_sbi_flag(sbi, SBI_IS_CLOSE); } /* * We stop issue flush thread if FS is mounted as RO * or if flush_merge is not passed in mount option. */ if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { clear_opt(sbi, FLUSH_MERGE); destroy_flush_cmd_control(sbi, false); } else { err = create_flush_cmd_control(sbi); if (err) goto restore_gc; } skip: #ifdef CONFIG_QUOTA /* Release old quota file names */ for (i = 0; i < MAXQUOTAS; i++) kfree(s_qf_names[i]); #endif /* Update the POSIXACL Flag */ sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); return 0; restore_gc: if (need_restart_gc) { if (start_gc_thread(sbi)) f2fs_msg(sbi->sb, KERN_WARNING, "background gc thread has stopped"); } else if (need_stop_gc) { stop_gc_thread(sbi); } restore_opts: #ifdef CONFIG_QUOTA sbi->s_jquota_fmt = s_jquota_fmt; for (i = 0; i < MAXQUOTAS; i++) { kfree(sbi->s_qf_names[i]); sbi->s_qf_names[i] = s_qf_names[i]; } #endif sbi->mount_opt = org_mount_opt; sbi->active_logs = active_logs; sb->s_flags = old_sb_flags; #ifdef CONFIG_F2FS_FAULT_INJECTION sbi->fault_info = ffi; #endif return err; } #ifdef CONFIG_QUOTA /* Read data from quotafile */ static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; struct address_space *mapping = inode->i_mapping; block_t blkidx = F2FS_BYTES_TO_BLK(off); int offset = off & (sb->s_blocksize - 1); int tocopy; size_t toread; loff_t i_size = i_size_read(inode); struct page *page; char *kaddr; if (off > i_size) return 0; if (off + len > i_size) len = i_size - off; toread = len; while (toread > 0) { tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); repeat: page = read_mapping_page(mapping, blkidx, NULL); if (IS_ERR(page)) return PTR_ERR(page); lock_page(page); if (unlikely(page->mapping != mapping)) { f2fs_put_page(page, 1); goto repeat; } if (unlikely(!PageUptodate(page))) { f2fs_put_page(page, 1); return -EIO; } kaddr = kmap_atomic(page); memcpy(data, kaddr + offset, tocopy); kunmap_atomic(kaddr); f2fs_put_page(page, 1); offset = 0; toread -= tocopy; data += tocopy; blkidx++; } return len; } /* Write to quotafile */ static ssize_t f2fs_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; struct address_space *mapping = inode->i_mapping; const struct address_space_operations *a_ops = mapping->a_ops; int offset = off & (sb->s_blocksize - 1); size_t towrite = len; struct page *page; char *kaddr; int err = 0; int tocopy; while (towrite > 0) { tocopy = min_t(unsigned long, sb->s_blocksize - offset, towrite); err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, &page, NULL); if (unlikely(err)) break; kaddr = kmap_atomic(page); memcpy(kaddr + offset, data, tocopy); kunmap_atomic(kaddr); flush_dcache_page(page); a_ops->write_end(NULL, mapping, off, tocopy, tocopy, page, NULL); offset = 0; towrite -= tocopy; off += tocopy; data += tocopy; cond_resched(); } if (len == towrite) return 0; inode->i_version++; inode->i_mtime = inode->i_ctime = current_time(inode); f2fs_mark_inode_dirty_sync(inode, false); return len - towrite; } static struct dquot **f2fs_get_dquots(struct inode *inode) { return F2FS_I(inode)->i_dquot; } static qsize_t *f2fs_get_reserved_space(struct inode *inode) { return &F2FS_I(inode)->i_reserved_quota; } static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) { return dquot_quota_on_mount(sbi->sb, sbi->s_qf_names[type], sbi->s_jquota_fmt, type); } void f2fs_enable_quota_files(struct f2fs_sb_info *sbi) { int i, ret; for (i = 0; i < MAXQUOTAS; i++) { if (sbi->s_qf_names[i]) { ret = f2fs_quota_on_mount(sbi, i); if (ret < 0) f2fs_msg(sbi->sb, KERN_ERR, "Cannot turn on journaled " "quota: error %d", ret); } } } static int f2fs_quota_sync(struct super_block *sb, int type) { struct quota_info *dqopt = sb_dqopt(sb); int cnt; int ret; ret = dquot_writeback_dquots(sb, type); if (ret) return ret; /* * Now when everything is written we can discard the pagecache so * that userspace sees the changes. */ for (cnt = 0; cnt < MAXQUOTAS; cnt++) { if (type != -1 && cnt != type) continue; if (!sb_has_quota_active(sb, cnt)) continue; ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping); if (ret) return ret; inode_lock(dqopt->files[cnt]); truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); inode_unlock(dqopt->files[cnt]); } return 0; } static int f2fs_quota_on(struct super_block *sb, int type, int format_id, const struct path *path) { struct inode *inode; int err; err = f2fs_quota_sync(sb, type); if (err) return err; err = dquot_quota_on(sb, type, format_id, path); if (err) return err; inode = d_inode(path->dentry); inode_lock(inode); F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL; inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, S_NOATIME | S_IMMUTABLE); inode_unlock(inode); f2fs_mark_inode_dirty_sync(inode, false); return 0; } static int f2fs_quota_off(struct super_block *sb, int type) { struct inode *inode = sb_dqopt(sb)->files[type]; int err; if (!inode || !igrab(inode)) return dquot_quota_off(sb, type); err = f2fs_quota_sync(sb, type); if (err) goto out_put; err = dquot_quota_off(sb, type); if (err) goto out_put; inode_lock(inode); F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL); inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); inode_unlock(inode); f2fs_mark_inode_dirty_sync(inode, false); out_put: iput(inode); return err; } void f2fs_quota_off_umount(struct super_block *sb) { int type; int err; for (type = 0; type < MAXQUOTAS; type++) { err = f2fs_quota_off(sb, type); if (err) { int ret = dquot_quota_off(sb, type); f2fs_msg(sb, KERN_ERR, "Fail to turn off disk quota " "(type: %d, err: %d, ret:%d), Please " "run fsck to fix it.", type, err, ret); set_sbi_flag(F2FS_SB(sb), SBI_NEED_FSCK); } } /* * In case of checkpoint=disable, we must flush quota blocks. * This can cause NULL exception for node_inode in end_io, since * put_super already dropped it. */ sync_filesystem(sb); } int f2fs_get_projid(struct inode *inode, kprojid_t *projid) { *projid = F2FS_I(inode)->i_projid; return 0; } static const struct dquot_operations f2fs_quota_operations = { .get_reserved_space = f2fs_get_reserved_space, .write_dquot = dquot_commit, .acquire_dquot = dquot_acquire, .release_dquot = dquot_release, .mark_dirty = dquot_mark_dquot_dirty, .write_info = dquot_commit_info, .alloc_dquot = dquot_alloc, .destroy_dquot = dquot_destroy, .get_projid = f2fs_get_projid, .get_next_id = dquot_get_next_id, }; static const struct quotactl_ops f2fs_quotactl_ops = { .quota_on = f2fs_quota_on, .quota_off = f2fs_quota_off, .quota_sync = f2fs_quota_sync, .get_state = dquot_get_state, .set_info = dquot_set_dqinfo, .get_dqblk = dquot_get_dqblk, .set_dqblk = dquot_set_dqblk, .get_nextdqblk = dquot_get_next_dqblk, }; #else void f2fs_quota_off_umount(struct super_block *sb) { } #endif static const struct super_operations f2fs_sops = { .alloc_inode = f2fs_alloc_inode, .drop_inode = f2fs_drop_inode, .destroy_inode = f2fs_destroy_inode, .write_inode = f2fs_write_inode, .dirty_inode = f2fs_dirty_inode, .show_options = f2fs_show_options, #ifdef CONFIG_QUOTA .quota_read = f2fs_quota_read, .quota_write = f2fs_quota_write, .get_dquots = f2fs_get_dquots, #endif .evict_inode = f2fs_evict_inode, .put_super = f2fs_put_super, .sync_fs = f2fs_sync_fs, .freeze_fs = f2fs_freeze, .unfreeze_fs = f2fs_unfreeze, .statfs = f2fs_statfs, .remount_fs = f2fs_remount, }; #ifdef CONFIG_F2FS_FS_ENCRYPTION static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) { return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len, NULL); } static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, void *fs_data) { return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len, fs_data, XATTR_CREATE); } static unsigned f2fs_max_namelen(struct inode *inode) { return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : F2FS_NAME_LEN; } static const struct fscrypt_operations f2fs_cryptops = { .key_prefix = "f2fs:", .get_context = f2fs_get_context, .set_context = f2fs_set_context, .is_encrypted = f2fs_encrypted_inode, .empty_dir = f2fs_empty_dir, .max_namelen = f2fs_max_namelen, }; #else static const struct fscrypt_operations f2fs_cryptops = { .is_encrypted = f2fs_encrypted_inode, }; #endif static struct inode *f2fs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct f2fs_sb_info *sbi = F2FS_SB(sb); struct inode *inode; if (check_nid_range(sbi, ino)) return ERR_PTR(-ESTALE); /* * f2fs_iget isn't quite right if the inode is currently unallocated! * However f2fs_iget currently does appropriate checks to handle stale * inodes so everything is OK. */ inode = f2fs_iget(sb, ino); if (IS_ERR(inode)) return ERR_CAST(inode); if (unlikely(generation && inode->i_generation != generation)) { /* we didn't find the right inode.. */ iput(inode); return ERR_PTR(-ESTALE); } return inode; } static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, f2fs_nfs_get_inode); } static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, f2fs_nfs_get_inode); } static const struct export_operations f2fs_export_ops = { .fh_to_dentry = f2fs_fh_to_dentry, .fh_to_parent = f2fs_fh_to_parent, .get_parent = f2fs_get_parent, }; static loff_t max_file_blocks(void) { loff_t result = 0; loff_t leaf_count = ADDRS_PER_BLOCK; /* * note: previously, result is equal to (DEF_ADDRS_PER_INODE - * F2FS_INLINE_XATTR_ADDRS), but now f2fs try to reserve more * space in inode.i_addr, it will be more safe to reassign * result as zero. */ /* two direct node blocks */ result += (leaf_count * 2); /* two indirect node blocks */ leaf_count *= NIDS_PER_BLOCK; result += (leaf_count * 2); /* one double indirect node block */ leaf_count *= NIDS_PER_BLOCK; result += leaf_count; return result; } static int __f2fs_commit_super(struct buffer_head *bh, struct f2fs_super_block *super) { lock_buffer(bh); if (super) memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); set_buffer_uptodate(bh); set_buffer_dirty(bh); unlock_buffer(bh); /* it's rare case, we can do fua all the time */ return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); } static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, struct buffer_head *bh) { struct f2fs_super_block *raw_super = (struct f2fs_super_block *) (bh->b_data + F2FS_SUPER_OFFSET); struct super_block *sb = sbi->sb; u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); u32 segment_count = le32_to_cpu(raw_super->segment_count); u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); u64 main_end_blkaddr = main_blkaddr + (segment_count_main << log_blocks_per_seg); u64 seg_end_blkaddr = segment0_blkaddr + (segment_count << log_blocks_per_seg); if (segment0_blkaddr != cp_blkaddr) { f2fs_msg(sb, KERN_INFO, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", segment0_blkaddr, cp_blkaddr); return true; } if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != sit_blkaddr) { f2fs_msg(sb, KERN_INFO, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", cp_blkaddr, sit_blkaddr, segment_count_ckpt << log_blocks_per_seg); return true; } if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != nat_blkaddr) { f2fs_msg(sb, KERN_INFO, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", sit_blkaddr, nat_blkaddr, segment_count_sit << log_blocks_per_seg); return true; } if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != ssa_blkaddr) { f2fs_msg(sb, KERN_INFO, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", nat_blkaddr, ssa_blkaddr, segment_count_nat << log_blocks_per_seg); return true; } if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != main_blkaddr) { f2fs_msg(sb, KERN_INFO, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", ssa_blkaddr, main_blkaddr, segment_count_ssa << log_blocks_per_seg); return true; } if (main_end_blkaddr > seg_end_blkaddr) { f2fs_msg(sb, KERN_INFO, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", main_blkaddr, segment0_blkaddr + (segment_count << log_blocks_per_seg), segment_count_main << log_blocks_per_seg); return true; } else if (main_end_blkaddr < seg_end_blkaddr) { int err = 0; char *res; /* fix in-memory information all the time */ raw_super->segment_count = cpu_to_le32((main_end_blkaddr - segment0_blkaddr) >> log_blocks_per_seg); if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { set_sbi_flag(sbi, SBI_NEED_SB_WRITE); res = "internally"; } else { err = __f2fs_commit_super(bh, NULL); res = err ? "failed" : "done"; } f2fs_msg(sb, KERN_INFO, "Fix alignment : %s, start(%u) end(%u) block(%u)", res, main_blkaddr, segment0_blkaddr + (segment_count << log_blocks_per_seg), segment_count_main << log_blocks_per_seg); if (err) return true; } return false; } static int sanity_check_raw_super(struct f2fs_sb_info *sbi, struct buffer_head *bh) { block_t segment_count, segs_per_sec, secs_per_zone; block_t total_sections, blocks_per_seg; struct f2fs_super_block *raw_super = (struct f2fs_super_block *) (bh->b_data + F2FS_SUPER_OFFSET); struct super_block *sb = sbi->sb; unsigned int blocksize; if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { f2fs_msg(sb, KERN_INFO, "Magic Mismatch, valid(0x%x) - read(0x%x)", F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); return -EINVAL; } /* Currently, support only 4KB page cache size */ if (F2FS_BLKSIZE != PAGE_SIZE) { f2fs_msg(sb, KERN_INFO, "Invalid page_cache_size (%lu), supports only 4KB\n", PAGE_SIZE); return -EFSCORRUPTED; } /* Currently, support only 4KB block size */ blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); if (blocksize != F2FS_BLKSIZE) { f2fs_msg(sb, KERN_INFO, "Invalid blocksize (%u), supports only 4KB\n", blocksize); return -EFSCORRUPTED; } /* check log blocks per segment */ if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { f2fs_msg(sb, KERN_INFO, "Invalid log blocks per segment (%u)\n", le32_to_cpu(raw_super->log_blocks_per_seg)); return -EFSCORRUPTED; } /* Currently, support 512/1024/2048/4096 bytes sector size */ if (le32_to_cpu(raw_super->log_sectorsize) > F2FS_MAX_LOG_SECTOR_SIZE || le32_to_cpu(raw_super->log_sectorsize) < F2FS_MIN_LOG_SECTOR_SIZE) { f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", le32_to_cpu(raw_super->log_sectorsize)); return -EFSCORRUPTED; } if (le32_to_cpu(raw_super->log_sectors_per_block) + le32_to_cpu(raw_super->log_sectorsize) != F2FS_MAX_LOG_SECTOR_SIZE) { f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block(%u) log sectorsize(%u)", le32_to_cpu(raw_super->log_sectors_per_block), le32_to_cpu(raw_super->log_sectorsize)); return -EFSCORRUPTED; } segment_count = le32_to_cpu(raw_super->segment_count); segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); total_sections = le32_to_cpu(raw_super->section_count); /* blocks_per_seg should be 512, given the above check */ blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); if (segment_count > F2FS_MAX_SEGMENT || segment_count < F2FS_MIN_SEGMENTS) { f2fs_msg(sb, KERN_INFO, "Invalid segment count (%u)", segment_count); return -EFSCORRUPTED; } if (total_sections > segment_count || total_sections < F2FS_MIN_SEGMENTS || segs_per_sec > segment_count || !segs_per_sec) { f2fs_msg(sb, KERN_INFO, "Invalid segment/section count (%u, %u x %u)", segment_count, total_sections, segs_per_sec); return -EFSCORRUPTED; } if ((segment_count / segs_per_sec) < total_sections) { f2fs_msg(sb, KERN_INFO, "Small segment_count (%u < %u * %u)", segment_count, segs_per_sec, total_sections); return -EFSCORRUPTED; } if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { f2fs_msg(sb, KERN_INFO, "Wrong segment_count / block_count (%u > %llu)", segment_count, le64_to_cpu(raw_super->block_count)); return -EFSCORRUPTED; } if (secs_per_zone > total_sections || !secs_per_zone) { f2fs_msg(sb, KERN_INFO, "Wrong secs_per_zone / total_sections (%u, %u)", secs_per_zone, total_sections); return -EFSCORRUPTED; } if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION) { f2fs_msg(sb, KERN_INFO, "Corrupted extension count (%u > %u)", le32_to_cpu(raw_super->extension_count), F2FS_MAX_EXTENSION); return -EFSCORRUPTED; } if (le32_to_cpu(raw_super->cp_payload) > (blocks_per_seg - F2FS_CP_PACKS)) { f2fs_msg(sb, KERN_INFO, "Insane cp_payload (%u > %u)", le32_to_cpu(raw_super->cp_payload), blocks_per_seg - F2FS_CP_PACKS); return -EFSCORRUPTED; } /* check reserved ino info */ if (le32_to_cpu(raw_super->node_ino) != 1 || le32_to_cpu(raw_super->meta_ino) != 2 || le32_to_cpu(raw_super->root_ino) != 3) { f2fs_msg(sb, KERN_INFO, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", le32_to_cpu(raw_super->node_ino), le32_to_cpu(raw_super->meta_ino), le32_to_cpu(raw_super->root_ino)); return -EFSCORRUPTED; } /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ if (sanity_check_area_boundary(sbi, bh)) return -EFSCORRUPTED; return 0; } int sanity_check_ckpt(struct f2fs_sb_info *sbi) { unsigned int total, fsmeta; struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); unsigned int ovp_segments, reserved_segments; unsigned int main_segs, blocks_per_seg; unsigned int sit_segs, nat_segs; unsigned int sit_bitmap_size, nat_bitmap_size; unsigned int log_blocks_per_seg; unsigned int segment_count_main; unsigned int cp_pack_start_sum, cp_payload; block_t user_block_count; int i, j; total = le32_to_cpu(raw_super->segment_count); fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); sit_segs = le32_to_cpu(raw_super->segment_count_sit); fsmeta += sit_segs; nat_segs = le32_to_cpu(raw_super->segment_count_nat); fsmeta += nat_segs; fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); fsmeta += le32_to_cpu(raw_super->segment_count_ssa); if (unlikely(fsmeta >= total)) return 1; ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || ovp_segments == 0 || reserved_segments == 0)) { f2fs_msg(sbi->sb, KERN_ERR, "Wrong layout: check mkfs.f2fs version"); return 1; } user_block_count = le64_to_cpu(ckpt->user_block_count); segment_count_main = le32_to_cpu(raw_super->segment_count_main); log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); if (!user_block_count || user_block_count >= segment_count_main << log_blocks_per_seg) { f2fs_msg(sbi->sb, KERN_ERR, "Wrong user_block_count: %u", user_block_count); return 1; } main_segs = le32_to_cpu(raw_super->segment_count_main); blocks_per_seg = sbi->blocks_per_seg; for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) return 1; for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { if (le32_to_cpu(ckpt->cur_node_segno[i]) == le32_to_cpu(ckpt->cur_node_segno[j])) { f2fs_msg(sbi->sb, KERN_ERR, "Node segment (%u, %u) has the same " "segno: %u", i, j, le32_to_cpu(ckpt->cur_node_segno[i])); return 1; } } } for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) return 1; for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { if (le32_to_cpu(ckpt->cur_data_segno[i]) == le32_to_cpu(ckpt->cur_data_segno[j])) { f2fs_msg(sbi->sb, KERN_ERR, "Data segment (%u, %u) has the same " "segno: %u", i, j, le32_to_cpu(ckpt->cur_data_segno[i])); return 1; } } } for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { if (le32_to_cpu(ckpt->cur_node_segno[i]) == le32_to_cpu(ckpt->cur_data_segno[j])) { f2fs_msg(sbi->sb, KERN_ERR, "Node segment (%u) and Data segment (%u)" " has the same segno: %u", i, j, le32_to_cpu(ckpt->cur_node_segno[i])); return 1; } } } sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { f2fs_msg(sbi->sb, KERN_ERR, "Wrong bitmap size: sit: %u, nat:%u", sit_bitmap_size, nat_bitmap_size); return 1; } cp_pack_start_sum = __start_sum_addr(sbi); cp_payload = __cp_payload(sbi); if (cp_pack_start_sum < cp_payload + 1 || cp_pack_start_sum > blocks_per_seg - 1 - NR_CURSEG_TYPE) { f2fs_msg(sbi->sb, KERN_ERR, "Wrong cp_pack_start_sum: %u", cp_pack_start_sum); return 1; } if (unlikely(f2fs_cp_error(sbi))) { f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); return 1; } return 0; } static void init_sb_info(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = sbi->raw_super; int i, j; sbi->log_sectors_per_block = le32_to_cpu(raw_super->log_sectors_per_block); sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); sbi->blocksize = 1 << sbi->log_blocksize; sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); sbi->total_sections = le32_to_cpu(raw_super->section_count); sbi->total_node_count = (le32_to_cpu(raw_super->segment_count_nat) / 2) * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); sbi->cur_victim_sec = NULL_SECNO; sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; sbi->dir_level = DEF_DIR_LEVEL; sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; clear_sbi_flag(sbi, SBI_NEED_FSCK); for (i = 0; i < NR_COUNT_TYPE; i++) atomic_set(&sbi->nr_pages[i], 0); atomic_set(&sbi->wb_sync_req, 0); INIT_LIST_HEAD(&sbi->s_list); mutex_init(&sbi->umount_mutex); for (i = 0; i < NR_PAGE_TYPE - 1; i++) for (j = HOT; j < NR_TEMP_TYPE; j++) mutex_init(&sbi->wio_mutex[i][j]); spin_lock_init(&sbi->cp_lock); } static int init_percpu_info(struct f2fs_sb_info *sbi) { int err; err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); if (err) return err; err = percpu_counter_init(&sbi->total_valid_inode_count, 0, GFP_KERNEL); if (err) percpu_counter_destroy(&sbi->alloc_valid_block_count); return err; } #ifdef CONFIG_BLK_DEV_ZONED static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) { struct block_device *bdev = FDEV(devi).bdev; sector_t nr_sectors = bdev->bd_part->nr_sects; sector_t sector = 0; struct blk_zone *zones; unsigned int i, nr_zones; unsigned int n = 0; int err = -EIO; if (!f2fs_sb_mounted_blkzoned(sbi->sb)) return 0; if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) return -EINVAL; sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != __ilog2_u32(sbi->blocks_per_blkz)) return -EINVAL; sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> sbi->log_blocks_per_blkz; if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) FDEV(devi).nr_blkz++; FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL); if (!FDEV(devi).blkz_type) return -ENOMEM; #define F2FS_REPORT_NR_ZONES 4096 zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); if (!zones) return -ENOMEM; /* Get block zones type */ while (zones && sector < nr_sectors) { nr_zones = F2FS_REPORT_NR_ZONES; err = blkdev_report_zones(bdev, sector, zones, &nr_zones, GFP_KERNEL); if (err) break; if (!nr_zones) { err = -EIO; break; } for (i = 0; i < nr_zones; i++) { FDEV(devi).blkz_type[n] = zones[i].type; sector += zones[i].len; n++; } } kfree(zones); return err; } #endif /* * Read f2fs raw super block. * Because we have two copies of super block, so read both of them * to get the first valid one. If any one of them is broken, we pass * them recovery flag back to the caller. */ static int read_raw_super_block(struct f2fs_sb_info *sbi, struct f2fs_super_block **raw_super, int *valid_super_block, int *recovery) { struct super_block *sb = sbi->sb; int block; struct buffer_head *bh; struct f2fs_super_block *super; int err = 0; super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); if (!super) return -ENOMEM; for (block = 0; block < 2; block++) { bh = sb_bread(sb, block); if (!bh) { f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", block + 1); err = -EIO; continue; } /* sanity checking of raw super */ err = sanity_check_raw_super(sbi, bh); if (err) { f2fs_msg(sb, KERN_ERR, "Can't find valid F2FS filesystem in %dth superblock", block + 1); brelse(bh); continue; } if (!*raw_super) { memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, sizeof(*super)); *valid_super_block = block; *raw_super = super; } brelse(bh); } /* Fail to read any one of the superblocks*/ if (err < 0) *recovery = 1; /* No valid superblock */ if (!*raw_super) kfree(super); else err = 0; return err; } int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) { struct buffer_head *bh; int err; if ((recover && f2fs_readonly(sbi->sb)) || bdev_read_only(sbi->sb->s_bdev)) { set_sbi_flag(sbi, SBI_NEED_SB_WRITE); return -EROFS; } /* write back-up superblock first */ bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1); if (!bh) return -EIO; err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); brelse(bh); /* if we are in recovery path, skip writing valid superblock */ if (recover || err) return err; /* write current valid superblock */ bh = sb_getblk(sbi->sb, sbi->valid_super_block); if (!bh) return -EIO; err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); brelse(bh); return err; } static int f2fs_scan_devices(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); unsigned int max_devices = MAX_DEVICES; int i; /* Initialize single device information */ if (!RDEV(0).path[0]) { if (!bdev_is_zoned(sbi->sb->s_bdev)) return 0; max_devices = 1; } /* * Initialize multiple devices information, or single * zoned block device information. */ sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info), GFP_KERNEL); if (!sbi->devs) return -ENOMEM; for (i = 0; i < max_devices; i++) { if (i > 0 && !RDEV(i).path[0]) break; if (max_devices == 1) { /* Single zoned block device mount */ FDEV(0).bdev = blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, sbi->sb->s_mode, sbi->sb->s_type); } else { /* Multi-device mount */ memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); FDEV(i).total_segments = le32_to_cpu(RDEV(i).total_segments); if (i == 0) { FDEV(i).start_blk = 0; FDEV(i).end_blk = FDEV(i).start_blk + (FDEV(i).total_segments << sbi->log_blocks_per_seg) - 1 + le32_to_cpu(raw_super->segment0_blkaddr); } else { FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; FDEV(i).end_blk = FDEV(i).start_blk + (FDEV(i).total_segments << sbi->log_blocks_per_seg) - 1; } FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, sbi->sb->s_mode, sbi->sb->s_type); } if (IS_ERR(FDEV(i).bdev)) return PTR_ERR(FDEV(i).bdev); /* to release errored devices */ sbi->s_ndevs = i + 1; #ifdef CONFIG_BLK_DEV_ZONED if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && !f2fs_sb_mounted_blkzoned(sbi->sb)) { f2fs_msg(sbi->sb, KERN_ERR, "Zoned block device feature not enabled\n"); return -EINVAL; } if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { if (init_blkz_info(sbi, i)) { f2fs_msg(sbi->sb, KERN_ERR, "Failed to initialize F2FS blkzone information"); return -EINVAL; } if (max_devices == 1) break; f2fs_msg(sbi->sb, KERN_INFO, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", i, FDEV(i).path, FDEV(i).total_segments, FDEV(i).start_blk, FDEV(i).end_blk, bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? "Host-aware" : "Host-managed"); continue; } #endif f2fs_msg(sbi->sb, KERN_INFO, "Mount Device [%2d]: %20s, %8u, %8x - %8x", i, FDEV(i).path, FDEV(i).total_segments, FDEV(i).start_blk, FDEV(i).end_blk); } f2fs_msg(sbi->sb, KERN_INFO, "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); return 0; } static int f2fs_fill_super(struct super_block *sb, void *data, int silent) { struct f2fs_sb_info *sbi; struct f2fs_super_block *raw_super; struct inode *root; int err; bool retry = true, need_fsck = false; char *options = NULL; int recovery, i, valid_super_block; struct curseg_info *seg_i; try_onemore: err = -EINVAL; raw_super = NULL; valid_super_block = -1; recovery = 0; /* allocate memory for f2fs-specific super block info */ sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); if (!sbi) return -ENOMEM; sbi->sb = sb; /* Load the checksum driver */ sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); if (IS_ERR(sbi->s_chksum_driver)) { f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); err = PTR_ERR(sbi->s_chksum_driver); sbi->s_chksum_driver = NULL; goto free_sbi; } /* set a block size */ if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); goto free_sbi; } err = read_raw_super_block(sbi, &raw_super, &valid_super_block, &recovery); if (err) goto free_sbi; sb->s_fs_info = sbi; sbi->raw_super = raw_super; /* precompute checksum seed for metadata */ if (f2fs_sb_has_inode_chksum(sb)) sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, sizeof(raw_super->uuid)); /* * The BLKZONED feature indicates that the drive was formatted with * zone alignment optimization. This is optional for host-aware * devices, but mandatory for host-managed zoned block devices. */ #ifndef CONFIG_BLK_DEV_ZONED if (f2fs_sb_mounted_blkzoned(sb)) { f2fs_msg(sb, KERN_ERR, "Zoned block device support is not enabled\n"); err = -EOPNOTSUPP; goto free_sb_buf; } #endif default_options(sbi); /* parse mount options */ options = kstrdup((const char *)data, GFP_KERNEL); if (data && !options) { err = -ENOMEM; goto free_sb_buf; } err = parse_options(sb, options); if (err) goto free_options; sbi->max_file_blocks = max_file_blocks(); sb->s_maxbytes = sbi->max_file_blocks << le32_to_cpu(raw_super->log_blocksize); sb->s_max_links = F2FS_LINK_MAX; get_random_bytes(&sbi->s_next_generation, sizeof(u32)); #ifdef CONFIG_QUOTA sb->dq_op = &f2fs_quota_operations; sb->s_qcop = &f2fs_quotactl_ops; sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; #endif sb->s_op = &f2fs_sops; sb->s_cop = &f2fs_cryptops; sb->s_xattr = f2fs_xattr_handlers; sb->s_export_op = &f2fs_export_ops; sb->s_magic = F2FS_SUPER_MAGIC; sb->s_time_gran = 1; sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); /* init f2fs-specific super block info */ sbi->valid_super_block = valid_super_block; mutex_init(&sbi->gc_mutex); mutex_init(&sbi->cp_mutex); init_rwsem(&sbi->node_write); init_rwsem(&sbi->node_change); /* disallow all the data/node/meta page writes */ set_sbi_flag(sbi, SBI_POR_DOING); spin_lock_init(&sbi->stat_lock); /* init iostat info */ spin_lock_init(&sbi->iostat_lock); sbi->iostat_enable = false; for (i = 0; i < NR_PAGE_TYPE; i++) { int n = (i == META) ? 1: NR_TEMP_TYPE; int j; sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info), GFP_KERNEL); if (!sbi->write_io[i]) { err = -ENOMEM; goto free_options; } for (j = HOT; j < n; j++) { init_rwsem(&sbi->write_io[i][j].io_rwsem); sbi->write_io[i][j].sbi = sbi; sbi->write_io[i][j].bio = NULL; spin_lock_init(&sbi->write_io[i][j].io_lock); INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); } } init_rwsem(&sbi->cp_rwsem); init_waitqueue_head(&sbi->cp_wait); init_sb_info(sbi); err = init_percpu_info(sbi); if (err) goto free_options; if (F2FS_IO_SIZE(sbi) > 1) { sbi->write_io_dummy = mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); if (!sbi->write_io_dummy) { err = -ENOMEM; goto free_options; } } /* get an inode for meta space */ sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); if (IS_ERR(sbi->meta_inode)) { f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); err = PTR_ERR(sbi->meta_inode); goto free_io_dummy; } err = get_valid_checkpoint(sbi); if (err) { f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); goto free_meta_inode; } /* Initialize device list */ err = f2fs_scan_devices(sbi); if (err) { f2fs_msg(sb, KERN_ERR, "Failed to find devices"); goto free_devices; } sbi->total_valid_node_count = le32_to_cpu(sbi->ckpt->valid_node_count); percpu_counter_set(&sbi->total_valid_inode_count, le32_to_cpu(sbi->ckpt->valid_inode_count)); sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); sbi->total_valid_block_count = le64_to_cpu(sbi->ckpt->valid_block_count); sbi->last_valid_block_count = sbi->total_valid_block_count; sbi->reserved_blocks = 0; for (i = 0; i < NR_INODE_TYPE; i++) { INIT_LIST_HEAD(&sbi->inode_list[i]); spin_lock_init(&sbi->inode_lock[i]); } init_extent_cache_info(sbi); init_ino_entry_info(sbi); /* setup f2fs internal modules */ err = build_segment_manager(sbi); if (err) { f2fs_msg(sb, KERN_ERR, "Failed to initialize F2FS segment manager"); goto free_sm; } err = build_node_manager(sbi); if (err) { f2fs_msg(sb, KERN_ERR, "Failed to initialize F2FS node manager"); goto free_nm; } /* For write statistics */ if (sb->s_bdev->bd_part) sbi->sectors_written_start = (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); /* Read accumulated write IO statistics if exists */ seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); if (__exist_node_summaries(sbi)) sbi->kbytes_written = le64_to_cpu(seg_i->journal->info.kbytes_written); build_gc_manager(sbi); /* get an inode for node space */ sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); if (IS_ERR(sbi->node_inode)) { f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); err = PTR_ERR(sbi->node_inode); goto free_nm; } f2fs_join_shrinker(sbi); err = f2fs_build_stats(sbi); if (err) goto free_nm; /* read root inode and dentry */ root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); if (IS_ERR(root)) { f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); err = PTR_ERR(root); goto free_node_inode; } if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { iput(root); err = -EINVAL; goto free_node_inode; } sb->s_root = d_make_root(root); /* allocate root dentry */ if (!sb->s_root) { err = -ENOMEM; goto free_root_inode; } err = f2fs_register_sysfs(sbi); if (err) goto free_root_inode; /* if there are nt orphan nodes free them */ err = recover_orphan_inodes(sbi); if (err) goto free_sysfs; /* recover fsynced data */ if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { /* * mount should be failed, when device has readonly mode, and * previous checkpoint was not done by clean system shutdown. */ if (bdev_read_only(sb->s_bdev) && !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { err = -EROFS; goto free_meta; } if (need_fsck) set_sbi_flag(sbi, SBI_NEED_FSCK); if (!retry) goto skip_recovery; err = recover_fsync_data(sbi, false); if (err < 0) { need_fsck = true; f2fs_msg(sb, KERN_ERR, "Cannot recover all fsync data errno=%d", err); goto free_meta; } } else { err = recover_fsync_data(sbi, true); if (!f2fs_readonly(sb) && err > 0) { err = -EINVAL; f2fs_msg(sb, KERN_ERR, "Need to recover fsync data"); goto free_sysfs; } } skip_recovery: /* recover_fsync_data() cleared this already */ clear_sbi_flag(sbi, SBI_POR_DOING); /* * If filesystem is not mounted as read-only then * do start the gc_thread. */ if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { /* After POR, we can run background GC thread.*/ err = start_gc_thread(sbi); if (err) goto free_meta; } kfree(options); /* recover broken superblock */ if (recovery) { err = f2fs_commit_super(sbi, true); f2fs_msg(sb, KERN_INFO, "Try to recover %dth superblock, ret: %d", sbi->valid_super_block ? 1 : 2, err); } f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx", cur_cp_version(F2FS_CKPT(sbi))); f2fs_update_time(sbi, CP_TIME); f2fs_update_time(sbi, REQ_TIME); return 0; free_meta: f2fs_sync_inode_meta(sbi); /* * Some dirty meta pages can be produced by recover_orphan_inodes() * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() * followed by write_checkpoint() through f2fs_write_node_pages(), which * falls into an infinite loop in sync_meta_pages(). */ truncate_inode_pages_final(META_MAPPING(sbi)); free_sysfs: f2fs_unregister_sysfs(sbi); free_root_inode: dput(sb->s_root); sb->s_root = NULL; free_node_inode: truncate_inode_pages_final(NODE_MAPPING(sbi)); mutex_lock(&sbi->umount_mutex); release_ino_entry(sbi, true); f2fs_leave_shrinker(sbi); iput(sbi->node_inode); mutex_unlock(&sbi->umount_mutex); f2fs_destroy_stats(sbi); free_nm: destroy_node_manager(sbi); free_sm: destroy_segment_manager(sbi); free_devices: destroy_device_list(sbi); kfree(sbi->ckpt); free_meta_inode: make_bad_inode(sbi->meta_inode); iput(sbi->meta_inode); free_io_dummy: mempool_destroy(sbi->write_io_dummy); free_options: for (i = 0; i < NR_PAGE_TYPE; i++) kfree(sbi->write_io[i]); destroy_percpu_info(sbi); #ifdef CONFIG_QUOTA for (i = 0; i < MAXQUOTAS; i++) kfree(sbi->s_qf_names[i]); #endif kfree(options); free_sb_buf: kfree(raw_super); free_sbi: if (sbi->s_chksum_driver) crypto_free_shash(sbi->s_chksum_driver); kfree(sbi); /* give only one another chance */ if (retry) { retry = false; shrink_dcache_sb(sb); goto try_onemore; } return err; } static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); } static void kill_f2fs_super(struct super_block *sb) { if (sb->s_root) { set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); stop_gc_thread(F2FS_SB(sb)); stop_discard_thread(F2FS_SB(sb)); } kill_block_super(sb); } static struct file_system_type f2fs_fs_type = { .owner = THIS_MODULE, .name = "f2fs", .mount = f2fs_mount, .kill_sb = kill_f2fs_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("f2fs"); static int __init init_inodecache(void) { f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", sizeof(struct f2fs_inode_info), 0, SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); if (!f2fs_inode_cachep) return -ENOMEM; return 0; } static void destroy_inodecache(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(f2fs_inode_cachep); } static int __init init_f2fs_fs(void) { int err; if (PAGE_SIZE != F2FS_BLKSIZE) { printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", PAGE_SIZE, F2FS_BLKSIZE); return -EINVAL; } f2fs_build_trace_ios(); err = init_inodecache(); if (err) goto fail; err = create_node_manager_caches(); if (err) goto free_inodecache; err = create_segment_manager_caches(); if (err) goto free_node_manager_caches; err = create_checkpoint_caches(); if (err) goto free_segment_manager_caches; err = create_extent_cache(); if (err) goto free_checkpoint_caches; err = f2fs_init_sysfs(); if (err) goto free_extent_cache; err = register_shrinker(&f2fs_shrinker_info); if (err) goto free_sysfs; err = register_filesystem(&f2fs_fs_type); if (err) goto free_shrinker; err = f2fs_create_root_stats(); if (err) goto free_filesystem; return 0; free_filesystem: unregister_filesystem(&f2fs_fs_type); free_shrinker: unregister_shrinker(&f2fs_shrinker_info); free_sysfs: f2fs_exit_sysfs(); free_extent_cache: destroy_extent_cache(); free_checkpoint_caches: destroy_checkpoint_caches(); free_segment_manager_caches: destroy_segment_manager_caches(); free_node_manager_caches: destroy_node_manager_caches(); free_inodecache: destroy_inodecache(); fail: return err; } static void __exit exit_f2fs_fs(void) { f2fs_destroy_root_stats(); unregister_filesystem(&f2fs_fs_type); unregister_shrinker(&f2fs_shrinker_info); f2fs_exit_sysfs(); destroy_extent_cache(); destroy_checkpoint_caches(); destroy_segment_manager_caches(); destroy_node_manager_caches(); destroy_inodecache(); f2fs_destroy_trace_ios(); } module_init(init_f2fs_fs) module_exit(exit_f2fs_fs) MODULE_AUTHOR("Samsung Electronics's Praesto Team"); MODULE_DESCRIPTION("Flash Friendly File System"); MODULE_LICENSE("GPL"); MODULE_SOFTDEP("pre: crc32");