// statements.cc -- Go frontend statements. // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go-system.h" #include "go-c.h" #include "go-diagnostics.h" #include "types.h" #include "expressions.h" #include "gogo.h" #include "runtime.h" #include "backend.h" #include "statements.h" #include "ast-dump.h" // Class Statement. Statement::Statement(Statement_classification classification, Location location) : classification_(classification), location_(location) { } Statement::~Statement() { } // Traverse the tree. The work of walking the components is handled // by the subclasses. int Statement::traverse(Block* block, size_t* pindex, Traverse* traverse) { if (this->classification_ == STATEMENT_ERROR) return TRAVERSE_CONTINUE; unsigned int traverse_mask = traverse->traverse_mask(); if ((traverse_mask & Traverse::traverse_statements) != 0) { int t = traverse->statement(block, pindex, this); if (t == TRAVERSE_EXIT) return TRAVERSE_EXIT; else if (t == TRAVERSE_SKIP_COMPONENTS) return TRAVERSE_CONTINUE; } // No point in checking traverse_mask here--a statement may contain // other blocks or statements, and if we got here we always want to // walk them. return this->do_traverse(traverse); } // Traverse the contents of a statement. int Statement::traverse_contents(Traverse* traverse) { return this->do_traverse(traverse); } // Traverse assignments. bool Statement::traverse_assignments(Traverse_assignments* tassign) { if (this->classification_ == STATEMENT_ERROR) return false; return this->do_traverse_assignments(tassign); } // Traverse an expression in a statement. This is a helper function // for child classes. int Statement::traverse_expression(Traverse* traverse, Expression** expr) { if ((traverse->traverse_mask() & (Traverse::traverse_types | Traverse::traverse_expressions)) == 0) return TRAVERSE_CONTINUE; return Expression::traverse(expr, traverse); } // Traverse an expression list in a statement. This is a helper // function for child classes. int Statement::traverse_expression_list(Traverse* traverse, Expression_list* expr_list) { if (expr_list == NULL) return TRAVERSE_CONTINUE; if ((traverse->traverse_mask() & (Traverse::traverse_types | Traverse::traverse_expressions)) == 0) return TRAVERSE_CONTINUE; return expr_list->traverse(traverse); } // Traverse a type in a statement. This is a helper function for // child classes. int Statement::traverse_type(Traverse* traverse, Type* type) { if ((traverse->traverse_mask() & (Traverse::traverse_types | Traverse::traverse_expressions)) == 0) return TRAVERSE_CONTINUE; return Type::traverse(type, traverse); } // Set type information for unnamed constants. This is really done by // the child class. void Statement::determine_types() { this->do_determine_types(); } // If this is a thunk statement, return it. Thunk_statement* Statement::thunk_statement() { Thunk_statement* ret = this->convert(); if (ret == NULL) ret = this->convert(); return ret; } // Convert a Statement to the backend representation. This is really // done by the child class. Bstatement* Statement::get_backend(Translate_context* context) { if (this->classification_ == STATEMENT_ERROR) return context->backend()->error_statement(); return this->do_get_backend(context); } // Dump AST representation for a statement to a dump context. void Statement::dump_statement(Ast_dump_context* ast_dump_context) const { this->do_dump_statement(ast_dump_context); } // Note that this statement is erroneous. This is called by children // when they discover an error. void Statement::set_is_error() { this->classification_ = STATEMENT_ERROR; } // For children to call to report an error conveniently. void Statement::report_error(const char* msg) { go_error_at(this->location_, "%s", msg); this->set_is_error(); } // An error statement, used to avoid crashing after we report an // error. class Error_statement : public Statement { public: Error_statement(Location location) : Statement(STATEMENT_ERROR, location) { } protected: int do_traverse(Traverse*) { return TRAVERSE_CONTINUE; } Bstatement* do_get_backend(Translate_context*) { go_unreachable(); } void do_dump_statement(Ast_dump_context*) const; }; // // Helper to tack on available source position information // at the end of a statement. // static std::string dsuffix(Location location) { std::string lstr = Linemap::location_to_string(location); if (lstr == "") return lstr; std::string rval(" // "); rval += lstr; return rval; } // Dump the AST representation for an error statement. void Error_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << "Error statement" << std::endl; } // Make an error statement. Statement* Statement::make_error_statement(Location location) { return new Error_statement(location); } // Class Variable_declaration_statement. Variable_declaration_statement::Variable_declaration_statement( Named_object* var) : Statement(STATEMENT_VARIABLE_DECLARATION, var->var_value()->location()), var_(var) { } // We don't actually traverse the variable here; it was traversed // while traversing the Block. int Variable_declaration_statement::do_traverse(Traverse*) { return TRAVERSE_CONTINUE; } // Traverse the assignments in a variable declaration. Note that this // traversal is different from the usual traversal. bool Variable_declaration_statement::do_traverse_assignments( Traverse_assignments* tassign) { tassign->initialize_variable(this->var_); return true; } // Lower the variable's initialization expression. Statement* Variable_declaration_statement::do_lower(Gogo* gogo, Named_object* function, Block*, Statement_inserter* inserter) { this->var_->var_value()->lower_init_expression(gogo, function, inserter); return this; } // Flatten the variable's initialization expression. Statement* Variable_declaration_statement::do_flatten(Gogo* gogo, Named_object* function, Block*, Statement_inserter* inserter) { Variable* var = this->var_->var_value(); if (var->type()->is_error_type() || (var->init() != NULL && var->init()->is_error_expression())) { go_assert(saw_errors()); return Statement::make_error_statement(this->location()); } this->var_->var_value()->flatten_init_expression(gogo, function, inserter); return this; } // Convert a variable declaration to the backend representation. Bstatement* Variable_declaration_statement::do_get_backend(Translate_context* context) { Bfunction* bfunction = context->function()->func_value()->get_decl(); Variable* var = this->var_->var_value(); Bvariable* bvar = this->var_->get_backend_variable(context->gogo(), context->function()); Bexpression* binit = var->get_init(context->gogo(), context->function()); if (!var->is_in_heap()) { go_assert(binit != NULL); return context->backend()->init_statement(bfunction, bvar, binit); } // Something takes the address of this variable, so the value is // stored in the heap. Initialize it to newly allocated memory // space, and assign the initial value to the new space. Location loc = this->location(); Named_object* newfn = context->gogo()->lookup_global("new"); go_assert(newfn != NULL && newfn->is_function_declaration()); Expression* func = Expression::make_func_reference(newfn, NULL, loc); Expression_list* params = new Expression_list(); params->push_back(Expression::make_type(var->type(), loc)); Expression* call = Expression::make_call(func, params, false, loc); context->gogo()->lower_expression(context->function(), NULL, &call); Temporary_statement* temp = Statement::make_temporary(NULL, call, loc); Bstatement* btemp = temp->get_backend(context); Bstatement* set = NULL; if (binit != NULL) { Expression* e = Expression::make_temporary_reference(temp, loc); e = Expression::make_unary(OPERATOR_MULT, e, loc); Bexpression* be = e->get_backend(context); set = context->backend()->assignment_statement(bfunction, be, binit, loc); } Expression* ref = Expression::make_temporary_reference(temp, loc); Bexpression* bref = ref->get_backend(context); Bstatement* sinit = context->backend()->init_statement(bfunction, bvar, bref); std::vector stats; stats.reserve(3); stats.push_back(btemp); if (set != NULL) stats.push_back(set); stats.push_back(sinit); return context->backend()->statement_list(stats); } // Dump the AST representation for a variable declaration. void Variable_declaration_statement::do_dump_statement( Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); go_assert(var_->is_variable()); ast_dump_context->ostream() << "var " << this->var_->name() << " "; Variable* var = this->var_->var_value(); if (var->has_type()) { ast_dump_context->dump_type(var->type()); ast_dump_context->ostream() << " "; } if (var->init() != NULL) { ast_dump_context->ostream() << "= "; ast_dump_context->dump_expression(var->init()); } ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make a variable declaration. Statement* Statement::make_variable_declaration(Named_object* var) { return new Variable_declaration_statement(var); } // Class Temporary_statement. // Return the type of the temporary variable. Type* Temporary_statement::type() const { Type* type = this->type_ != NULL ? this->type_ : this->init_->type(); // Temporary variables cannot have a void type. if (type->is_void_type()) { go_assert(saw_errors()); return Type::make_error_type(); } return type; } // Traversal. int Temporary_statement::do_traverse(Traverse* traverse) { if (this->type_ != NULL && this->traverse_type(traverse, this->type_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; if (this->init_ == NULL) return TRAVERSE_CONTINUE; else return this->traverse_expression(traverse, &this->init_); } // Traverse assignments. bool Temporary_statement::do_traverse_assignments(Traverse_assignments* tassign) { if (this->init_ == NULL) return false; tassign->value(&this->init_, true, true); return true; } // Determine types. void Temporary_statement::do_determine_types() { if (this->type_ != NULL && this->type_->is_abstract()) this->type_ = this->type_->make_non_abstract_type(); if (this->init_ != NULL) { if (this->type_ == NULL) this->init_->determine_type_no_context(); else { Type_context context(this->type_, false); this->init_->determine_type(&context); } } if (this->type_ == NULL) { this->type_ = this->init_->type(); go_assert(!this->type_->is_abstract()); } } // Check types. void Temporary_statement::do_check_types(Gogo*) { if (this->type_ != NULL && this->init_ != NULL) { std::string reason; if (!Type::are_assignable(this->type_, this->init_->type(), &reason)) { if (reason.empty()) go_error_at(this->location(), "incompatible types in assignment"); else go_error_at(this->location(), "incompatible types in assignment (%s)", reason.c_str()); this->set_is_error(); } } } // Flatten a temporary statement: add another temporary when it might // be needed for interface conversion. Statement* Temporary_statement::do_flatten(Gogo*, Named_object*, Block*, Statement_inserter* inserter) { if (this->type()->is_error_type() || (this->init_ != NULL && this->init_->is_error_expression())) { go_assert(saw_errors()); return Statement::make_error_statement(this->location()); } if (this->type_ != NULL && this->init_ != NULL && !Type::are_identical(this->type_, this->init_->type(), false, NULL) && this->init_->type()->interface_type() != NULL && !this->init_->is_variable()) { Temporary_statement *temp = Statement::make_temporary(NULL, this->init_, this->location()); inserter->insert(temp); this->init_ = Expression::make_temporary_reference(temp, this->location()); } return this; } // Convert to backend representation. Bstatement* Temporary_statement::do_get_backend(Translate_context* context) { go_assert(this->bvariable_ == NULL); Named_object* function = context->function(); go_assert(function != NULL); Bfunction* bfunction = function->func_value()->get_decl(); Btype* btype = this->type()->get_backend(context->gogo()); Bexpression* binit; if (this->init_ == NULL) binit = NULL; else if (this->type_ == NULL) binit = this->init_->get_backend(context); else { Expression* init = Expression::convert_for_assignment(context->gogo(), this->type_, this->init_, this->location()); binit = init->get_backend(context); } Bstatement* statement; this->bvariable_ = context->backend()->temporary_variable(bfunction, context->bblock(), btype, binit, this->is_address_taken_, this->location(), &statement); return statement; } // Return the backend variable. Bvariable* Temporary_statement::get_backend_variable(Translate_context* context) const { if (this->bvariable_ == NULL) { go_assert(saw_errors()); return context->backend()->error_variable(); } return this->bvariable_; } // Dump the AST represemtation for a temporary statement void Temporary_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->dump_temp_variable_name(this); if (this->type_ != NULL) { ast_dump_context->ostream() << " "; ast_dump_context->dump_type(this->type_); } if (this->init_ != NULL) { ast_dump_context->ostream() << " = "; ast_dump_context->dump_expression(this->init_); } ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make and initialize a temporary variable in BLOCK. Temporary_statement* Statement::make_temporary(Type* type, Expression* init, Location location) { return new Temporary_statement(type, init, location); } // The Move_subexpressions class is used to move all top-level // subexpressions of an expression. This is used for things like // index expressions in which we must evaluate the index value before // it can be changed by a multiple assignment. class Move_subexpressions : public Traverse { public: Move_subexpressions(int skip, Block* block) : Traverse(traverse_expressions), skip_(skip), block_(block) { } protected: int expression(Expression**); private: // The number of subexpressions to skip moving. This is used to // avoid moving the array itself, as we only need to move the index. int skip_; // The block where new temporary variables should be added. Block* block_; }; int Move_subexpressions::expression(Expression** pexpr) { if (this->skip_ > 0) --this->skip_; else if ((*pexpr)->temporary_reference_expression() == NULL && !(*pexpr)->is_nil_expression() && !(*pexpr)->is_constant()) { Location loc = (*pexpr)->location(); Temporary_statement* temp = Statement::make_temporary(NULL, *pexpr, loc); this->block_->add_statement(temp); *pexpr = Expression::make_temporary_reference(temp, loc); } // We only need to move top-level subexpressions. return TRAVERSE_SKIP_COMPONENTS; } // The Move_ordered_evals class is used to find any subexpressions of // an expression that have an evaluation order dependency. It creates // temporary variables to hold them. class Move_ordered_evals : public Traverse { public: Move_ordered_evals(Block* block) : Traverse(traverse_expressions), block_(block) { } protected: int expression(Expression**); private: // The block where new temporary variables should be added. Block* block_; }; int Move_ordered_evals::expression(Expression** pexpr) { // We have to look at subexpressions first. if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT) return TRAVERSE_EXIT; int i; if ((*pexpr)->must_eval_subexpressions_in_order(&i)) { Move_subexpressions ms(i, this->block_); if ((*pexpr)->traverse_subexpressions(&ms) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } if ((*pexpr)->must_eval_in_order()) { Call_expression* call = (*pexpr)->call_expression(); if (call != NULL && call->is_multi_value_arg()) { // A call expression which returns multiple results as an argument // to another call must be handled specially. We can't create a // temporary because there is no type to give it. Instead, group // the caller and this multi-valued call argument and use a temporary // variable to hold them. return TRAVERSE_SKIP_COMPONENTS; } Location loc = (*pexpr)->location(); Temporary_statement* temp = Statement::make_temporary(NULL, *pexpr, loc); this->block_->add_statement(temp); *pexpr = Expression::make_temporary_reference(temp, loc); } return TRAVERSE_SKIP_COMPONENTS; } // Class Assignment_statement. // Traversal. int Assignment_statement::do_traverse(Traverse* traverse) { if (this->traverse_expression(traverse, &this->lhs_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return this->traverse_expression(traverse, &this->rhs_); } bool Assignment_statement::do_traverse_assignments(Traverse_assignments* tassign) { tassign->assignment(&this->lhs_, &this->rhs_); return true; } // Lower an assignment to a map index expression to a runtime function // call. Statement* Assignment_statement::do_lower(Gogo*, Named_object*, Block* enclosing, Statement_inserter*) { Map_index_expression* mie = this->lhs_->map_index_expression(); if (mie != NULL) { Location loc = this->location(); Expression* map = mie->map(); Map_type* mt = map->type()->map_type(); if (mt == NULL) { go_assert(saw_errors()); return Statement::make_error_statement(loc); } Block* b = new Block(enclosing, loc); // Move out any subexpressions on the left hand side to make // sure that functions are called in the required order. Move_ordered_evals moe(b); mie->traverse_subexpressions(&moe); // Copy the key into a temporary so that we can take its address // without pushing the value onto the heap. // var key_temp KEY_TYPE = MAP_INDEX Temporary_statement* key_temp = Statement::make_temporary(mt->key_type(), mie->index(), loc); b->add_statement(key_temp); // Copy the value into a temporary to ensure that it is // evaluated before we add the key to the map. This may matter // if the value is itself a reference to the map. // var val_temp VAL_TYPE = RHS Temporary_statement* val_temp = Statement::make_temporary(mt->val_type(), this->rhs_, loc); b->add_statement(val_temp); // *mapassign(TYPE, MAP, &key_temp) = RHS Expression* a1 = Expression::make_type_descriptor(mt, loc); Expression* a2 = mie->map(); Temporary_reference_expression* ref = Expression::make_temporary_reference(key_temp, loc); Expression* a3 = Expression::make_unary(OPERATOR_AND, ref, loc); Expression* call = Runtime::make_call(Runtime::MAPASSIGN, loc, 3, a1, a2, a3); Type* ptrval_type = Type::make_pointer_type(mt->val_type()); call = Expression::make_cast(ptrval_type, call, loc); Expression* indir = Expression::make_unary(OPERATOR_MULT, call, loc); ref = Expression::make_temporary_reference(val_temp, loc); b->add_statement(Statement::make_assignment(indir, ref, loc)); return Statement::make_block_statement(b, loc); } return this; } // Set types for the assignment. void Assignment_statement::do_determine_types() { this->lhs_->determine_type_no_context(); Type* rhs_context_type = this->lhs_->type(); if (rhs_context_type->is_sink_type()) rhs_context_type = NULL; Type_context context(rhs_context_type, false); this->rhs_->determine_type(&context); } // Check types for an assignment. void Assignment_statement::do_check_types(Gogo*) { // The left hand side must be either addressable, a map index // expression, or the blank identifier. if (!this->lhs_->is_addressable() && this->lhs_->map_index_expression() == NULL && !this->lhs_->is_sink_expression()) { if (!this->lhs_->type()->is_error()) this->report_error(_("invalid left hand side of assignment")); return; } Type* lhs_type = this->lhs_->type(); Type* rhs_type = this->rhs_->type(); // Invalid assignment of nil to the blank identifier. if (lhs_type->is_sink_type() && rhs_type->is_nil_type()) { this->report_error(_("use of untyped nil")); return; } std::string reason; if (!Type::are_assignable(lhs_type, rhs_type, &reason)) { if (reason.empty()) go_error_at(this->location(), "incompatible types in assignment"); else go_error_at(this->location(), "incompatible types in assignment (%s)", reason.c_str()); this->set_is_error(); } if (lhs_type->is_error() || rhs_type->is_error()) this->set_is_error(); } // Flatten an assignment statement. We may need a temporary for // interface conversion. Statement* Assignment_statement::do_flatten(Gogo*, Named_object*, Block*, Statement_inserter* inserter) { if (this->lhs_->is_error_expression() || this->lhs_->type()->is_error_type() || this->rhs_->is_error_expression() || this->rhs_->type()->is_error_type()) { go_assert(saw_errors()); return Statement::make_error_statement(this->location()); } if (!this->lhs_->is_sink_expression() && !Type::are_identical(this->lhs_->type(), this->rhs_->type(), false, NULL) && this->rhs_->type()->interface_type() != NULL && !this->rhs_->is_variable()) { Temporary_statement* temp = Statement::make_temporary(NULL, this->rhs_, this->location()); inserter->insert(temp); this->rhs_ = Expression::make_temporary_reference(temp, this->location()); } return this; } // Helper class to locate a root Var_expression within an expression // tree and mark it as being in an "lvalue" or assignment // context. Examples: // // x, y = 40, foo(w) // x[2] = bar(v) // x.z.w[blah(v + u)], y.another = 2, 3 // // In the code above, vars "x" and "y" appear in lvalue / assignment // context, whereas the other vars "v", "u", etc are in rvalue context. // // Note: at the moment the Var_expression version of "do_copy()" // defaults to returning the original object, not a new object, // meaning that a given Var_expression can be referenced from more // than one place in the tree. This means that when we want to mark a // Var_expression as having lvalue semantics, we need to make a copy // of it. Example: // // mystruct.myfield += 42 // // When this is lowered to eliminate the += operator, we get a tree // // mystruct.myfield = mystruct.field + 42 // // in which the "mystruct" same Var_expression is referenced on both // LHS and RHS subtrees. This in turn means that if we try to mark the // LHS Var_expression the RHS Var_expression will also be marked. To // address this issue, the code below clones any var_expression before // applying an lvalue marking. // class Mark_lvalue_varexprs : public Traverse { public: Mark_lvalue_varexprs() : Traverse(traverse_expressions) { } protected: int expression(Expression**); private: }; int Mark_lvalue_varexprs::expression(Expression** ppexpr) { Expression* e = *ppexpr; Var_expression* ve = e->var_expression(); if (ve) { ve = new Var_expression(ve->named_object(), ve->location()); ve->set_in_lvalue_pos(); *ppexpr = ve; return TRAVERSE_EXIT; } Field_reference_expression* fre = e->field_reference_expression(); if (fre != NULL) return TRAVERSE_CONTINUE; Array_index_expression* aie = e->array_index_expression(); if (aie != NULL) { Mark_lvalue_varexprs mlve; aie->array()->traverse_subexpressions(&mlve); return TRAVERSE_EXIT; } Unary_expression* ue = e->unary_expression(); if (ue && ue->op() == OPERATOR_MULT) return TRAVERSE_CONTINUE; return TRAVERSE_EXIT; } // Convert an assignment statement to the backend representation. Bstatement* Assignment_statement::do_get_backend(Translate_context* context) { if (this->lhs_->is_sink_expression()) { Bexpression* rhs = this->rhs_->get_backend(context); Bfunction* bfunction = context->function()->func_value()->get_decl(); return context->backend()->expression_statement(bfunction, rhs); } Mark_lvalue_varexprs mlve; Expression::traverse(&this->lhs_, &mlve); Bexpression* lhs = this->lhs_->get_backend(context); Expression* conv = Expression::convert_for_assignment(context->gogo(), this->lhs_->type(), this->rhs_, this->location()); Bexpression* rhs = conv->get_backend(context); Bfunction* bfunction = context->function()->func_value()->get_decl(); return context->backend()->assignment_statement(bfunction, lhs, rhs, this->location()); } // Dump the AST representation for an assignment statement. void Assignment_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->dump_expression(this->lhs_); ast_dump_context->ostream() << " = " ; ast_dump_context->dump_expression(this->rhs_); ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make an assignment statement. Statement* Statement::make_assignment(Expression* lhs, Expression* rhs, Location location) { return new Assignment_statement(lhs, rhs, location); } // An assignment operation statement. class Assignment_operation_statement : public Statement { public: Assignment_operation_statement(Operator op, Expression* lhs, Expression* rhs, Location location) : Statement(STATEMENT_ASSIGNMENT_OPERATION, location), op_(op), lhs_(lhs), rhs_(rhs) { } protected: int do_traverse(Traverse*); bool do_traverse_assignments(Traverse_assignments*) { go_unreachable(); } Statement* do_lower(Gogo*, Named_object*, Block*, Statement_inserter*); Bstatement* do_get_backend(Translate_context*) { go_unreachable(); } void do_dump_statement(Ast_dump_context*) const; private: // The operator (OPERATOR_PLUSEQ, etc.). Operator op_; // Left hand side. Expression* lhs_; // Right hand side. Expression* rhs_; }; // Traversal. int Assignment_operation_statement::do_traverse(Traverse* traverse) { if (this->traverse_expression(traverse, &this->lhs_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return this->traverse_expression(traverse, &this->rhs_); } // Lower an assignment operation statement to a regular assignment // statement. Statement* Assignment_operation_statement::do_lower(Gogo*, Named_object*, Block* enclosing, Statement_inserter*) { Location loc = this->location(); // We have to evaluate the left hand side expression only once. We // do this by moving out any expression with side effects. Block* b = new Block(enclosing, loc); Move_ordered_evals moe(b); this->lhs_->traverse_subexpressions(&moe); Expression* lval = this->lhs_->copy(); Operator op; switch (this->op_) { case OPERATOR_PLUSEQ: op = OPERATOR_PLUS; break; case OPERATOR_MINUSEQ: op = OPERATOR_MINUS; break; case OPERATOR_OREQ: op = OPERATOR_OR; break; case OPERATOR_XOREQ: op = OPERATOR_XOR; break; case OPERATOR_MULTEQ: op = OPERATOR_MULT; break; case OPERATOR_DIVEQ: op = OPERATOR_DIV; break; case OPERATOR_MODEQ: op = OPERATOR_MOD; break; case OPERATOR_LSHIFTEQ: op = OPERATOR_LSHIFT; break; case OPERATOR_RSHIFTEQ: op = OPERATOR_RSHIFT; break; case OPERATOR_ANDEQ: op = OPERATOR_AND; break; case OPERATOR_BITCLEAREQ: op = OPERATOR_BITCLEAR; break; default: go_unreachable(); } Expression* binop = Expression::make_binary(op, lval, this->rhs_, loc); Statement* s = Statement::make_assignment(this->lhs_, binop, loc); if (b->statements()->empty()) { delete b; return s; } else { b->add_statement(s); return Statement::make_block_statement(b, loc); } } // Dump the AST representation for an assignment operation statement void Assignment_operation_statement::do_dump_statement( Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->dump_expression(this->lhs_); ast_dump_context->dump_operator(this->op_); ast_dump_context->dump_expression(this->rhs_); ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make an assignment operation statement. Statement* Statement::make_assignment_operation(Operator op, Expression* lhs, Expression* rhs, Location location) { return new Assignment_operation_statement(op, lhs, rhs, location); } // A tuple assignment statement. This differs from an assignment // statement in that the right-hand-side expressions are evaluated in // parallel. class Tuple_assignment_statement : public Statement { public: Tuple_assignment_statement(Expression_list* lhs, Expression_list* rhs, Location location) : Statement(STATEMENT_TUPLE_ASSIGNMENT, location), lhs_(lhs), rhs_(rhs) { } protected: int do_traverse(Traverse* traverse); bool do_traverse_assignments(Traverse_assignments*) { go_unreachable(); } Statement* do_lower(Gogo*, Named_object*, Block*, Statement_inserter*); Bstatement* do_get_backend(Translate_context*) { go_unreachable(); } void do_dump_statement(Ast_dump_context*) const; private: // Left hand side--a list of lvalues. Expression_list* lhs_; // Right hand side--a list of rvalues. Expression_list* rhs_; }; // Traversal. int Tuple_assignment_statement::do_traverse(Traverse* traverse) { if (this->traverse_expression_list(traverse, this->lhs_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return this->traverse_expression_list(traverse, this->rhs_); } // Lower a tuple assignment. We use temporary variables to split it // up into a set of single assignments. Statement* Tuple_assignment_statement::do_lower(Gogo*, Named_object*, Block* enclosing, Statement_inserter*) { Location loc = this->location(); Block* b = new Block(enclosing, loc); // First move out any subexpressions on the left hand side. The // right hand side will be evaluated in the required order anyhow. Move_ordered_evals moe(b); for (Expression_list::iterator plhs = this->lhs_->begin(); plhs != this->lhs_->end(); ++plhs) Expression::traverse(&*plhs, &moe); std::vector temps; temps.reserve(this->lhs_->size()); Expression_list::const_iterator prhs = this->rhs_->begin(); for (Expression_list::const_iterator plhs = this->lhs_->begin(); plhs != this->lhs_->end(); ++plhs, ++prhs) { go_assert(prhs != this->rhs_->end()); if ((*plhs)->is_error_expression() || (*plhs)->type()->is_error() || (*prhs)->is_error_expression() || (*prhs)->type()->is_error()) continue; if ((*plhs)->is_sink_expression()) { if ((*prhs)->type()->is_nil_type()) this->report_error(_("use of untyped nil")); else b->add_statement(Statement::make_statement(*prhs, true)); continue; } Temporary_statement* temp = Statement::make_temporary((*plhs)->type(), *prhs, loc); b->add_statement(temp); temps.push_back(temp); } go_assert(prhs == this->rhs_->end()); prhs = this->rhs_->begin(); std::vector::const_iterator ptemp = temps.begin(); for (Expression_list::const_iterator plhs = this->lhs_->begin(); plhs != this->lhs_->end(); ++plhs, ++prhs) { if ((*plhs)->is_error_expression() || (*plhs)->type()->is_error() || (*prhs)->is_error_expression() || (*prhs)->type()->is_error()) continue; if ((*plhs)->is_sink_expression()) continue; Expression* ref = Expression::make_temporary_reference(*ptemp, loc); b->add_statement(Statement::make_assignment(*plhs, ref, loc)); ++ptemp; } go_assert(ptemp == temps.end() || saw_errors()); return Statement::make_block_statement(b, loc); } // Dump the AST representation for a tuple assignment statement. void Tuple_assignment_statement::do_dump_statement( Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->dump_expression_list(this->lhs_); ast_dump_context->ostream() << " = "; ast_dump_context->dump_expression_list(this->rhs_); ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make a tuple assignment statement. Statement* Statement::make_tuple_assignment(Expression_list* lhs, Expression_list* rhs, Location location) { return new Tuple_assignment_statement(lhs, rhs, location); } // A tuple assignment from a map index expression. // v, ok = m[k] class Tuple_map_assignment_statement : public Statement { public: Tuple_map_assignment_statement(Expression* val, Expression* present, Expression* map_index, Location location) : Statement(STATEMENT_TUPLE_MAP_ASSIGNMENT, location), val_(val), present_(present), map_index_(map_index) { } protected: int do_traverse(Traverse* traverse); bool do_traverse_assignments(Traverse_assignments*) { go_unreachable(); } Statement* do_lower(Gogo*, Named_object*, Block*, Statement_inserter*); Bstatement* do_get_backend(Translate_context*) { go_unreachable(); } void do_dump_statement(Ast_dump_context*) const; private: // Lvalue which receives the value from the map. Expression* val_; // Lvalue which receives whether the key value was present. Expression* present_; // The map index expression. Expression* map_index_; }; // Traversal. int Tuple_map_assignment_statement::do_traverse(Traverse* traverse) { if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT || this->traverse_expression(traverse, &this->present_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return this->traverse_expression(traverse, &this->map_index_); } // Lower a tuple map assignment. Statement* Tuple_map_assignment_statement::do_lower(Gogo* gogo, Named_object*, Block* enclosing, Statement_inserter*) { Location loc = this->location(); Map_index_expression* map_index = this->map_index_->map_index_expression(); if (map_index == NULL) { this->report_error(_("expected map index on right hand side")); return Statement::make_error_statement(loc); } Map_type* map_type = map_index->get_map_type(); if (map_type == NULL) return Statement::make_error_statement(loc); Block* b = new Block(enclosing, loc); // Move out any subexpressions to make sure that functions are // called in the required order. Move_ordered_evals moe(b); this->val_->traverse_subexpressions(&moe); this->present_->traverse_subexpressions(&moe); // Copy the key value into a temporary so that we can take its // address without pushing the value onto the heap. // var key_temp KEY_TYPE = MAP_INDEX Temporary_statement* key_temp = Statement::make_temporary(map_type->key_type(), map_index->index(), loc); b->add_statement(key_temp); // var val_ptr_temp *VAL_TYPE Type* val_ptr_type = Type::make_pointer_type(map_type->val_type()); Temporary_statement* val_ptr_temp = Statement::make_temporary(val_ptr_type, NULL, loc); b->add_statement(val_ptr_temp); // var present_temp bool Temporary_statement* present_temp = Statement::make_temporary((this->present_->type()->is_sink_type()) ? Type::make_boolean_type() : this->present_->type(), NULL, loc); b->add_statement(present_temp); // val_ptr_temp, present_temp = mapaccess2(DESCRIPTOR, MAP, &key_temp) Expression* a1 = Expression::make_type_descriptor(map_type, loc); Expression* a2 = map_index->map(); Temporary_reference_expression* ref = Expression::make_temporary_reference(key_temp, loc); Expression* a3 = Expression::make_unary(OPERATOR_AND, ref, loc); Expression* a4 = map_type->fat_zero_value(gogo); Call_expression* call; if (a4 == NULL) call = Runtime::make_call(Runtime::MAPACCESS2, loc, 3, a1, a2, a3); else call = Runtime::make_call(Runtime::MAPACCESS2_FAT, loc, 4, a1, a2, a3, a4); ref = Expression::make_temporary_reference(val_ptr_temp, loc); ref->set_is_lvalue(); Expression* res = Expression::make_call_result(call, 0); res = Expression::make_unsafe_cast(val_ptr_type, res, loc); Statement* s = Statement::make_assignment(ref, res, loc); b->add_statement(s); ref = Expression::make_temporary_reference(present_temp, loc); ref->set_is_lvalue(); res = Expression::make_call_result(call, 1); s = Statement::make_assignment(ref, res, loc); b->add_statement(s); // val = *val__ptr_temp ref = Expression::make_temporary_reference(val_ptr_temp, loc); Expression* ind = Expression::make_unary(OPERATOR_MULT, ref, loc); s = Statement::make_assignment(this->val_, ind, loc); b->add_statement(s); // present = present_temp ref = Expression::make_temporary_reference(present_temp, loc); s = Statement::make_assignment(this->present_, ref, loc); b->add_statement(s); return Statement::make_block_statement(b, loc); } // Dump the AST representation for a tuple map assignment statement. void Tuple_map_assignment_statement::do_dump_statement( Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->dump_expression(this->val_); ast_dump_context->ostream() << ", "; ast_dump_context->dump_expression(this->present_); ast_dump_context->ostream() << " = "; ast_dump_context->dump_expression(this->map_index_); ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make a map assignment statement which returns a pair of values. Statement* Statement::make_tuple_map_assignment(Expression* val, Expression* present, Expression* map_index, Location location) { return new Tuple_map_assignment_statement(val, present, map_index, location); } // A tuple assignment from a receive statement. class Tuple_receive_assignment_statement : public Statement { public: Tuple_receive_assignment_statement(Expression* val, Expression* closed, Expression* channel, Location location) : Statement(STATEMENT_TUPLE_RECEIVE_ASSIGNMENT, location), val_(val), closed_(closed), channel_(channel) { } protected: int do_traverse(Traverse* traverse); bool do_traverse_assignments(Traverse_assignments*) { go_unreachable(); } Statement* do_lower(Gogo*, Named_object*, Block*, Statement_inserter*); Bstatement* do_get_backend(Translate_context*) { go_unreachable(); } void do_dump_statement(Ast_dump_context*) const; private: // Lvalue which receives the value from the channel. Expression* val_; // Lvalue which receives whether the channel is closed. Expression* closed_; // The channel on which we receive the value. Expression* channel_; }; // Traversal. int Tuple_receive_assignment_statement::do_traverse(Traverse* traverse) { if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT || this->traverse_expression(traverse, &this->closed_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return this->traverse_expression(traverse, &this->channel_); } // Lower to a function call. Statement* Tuple_receive_assignment_statement::do_lower(Gogo*, Named_object*, Block* enclosing, Statement_inserter*) { Location loc = this->location(); Channel_type* channel_type = this->channel_->type()->channel_type(); if (channel_type == NULL) { this->report_error(_("expected channel")); return Statement::make_error_statement(loc); } if (!channel_type->may_receive()) { this->report_error(_("invalid receive on send-only channel")); return Statement::make_error_statement(loc); } Block* b = new Block(enclosing, loc); // Make sure that any subexpressions on the left hand side are // evaluated in the right order. Move_ordered_evals moe(b); this->val_->traverse_subexpressions(&moe); this->closed_->traverse_subexpressions(&moe); // var val_temp ELEMENT_TYPE Temporary_statement* val_temp = Statement::make_temporary(channel_type->element_type(), NULL, loc); b->add_statement(val_temp); // var closed_temp bool Temporary_statement* closed_temp = Statement::make_temporary((this->closed_->type()->is_sink_type()) ? Type::make_boolean_type() : this->closed_->type(), NULL, loc); b->add_statement(closed_temp); // closed_temp = chanrecv2(type, channel, &val_temp) Expression* td = Expression::make_type_descriptor(this->channel_->type(), loc); Temporary_reference_expression* ref = Expression::make_temporary_reference(val_temp, loc); Expression* p2 = Expression::make_unary(OPERATOR_AND, ref, loc); Expression* call = Runtime::make_call(Runtime::CHANRECV2, loc, 3, td, this->channel_, p2); ref = Expression::make_temporary_reference(closed_temp, loc); ref->set_is_lvalue(); Statement* s = Statement::make_assignment(ref, call, loc); b->add_statement(s); // val = val_temp ref = Expression::make_temporary_reference(val_temp, loc); s = Statement::make_assignment(this->val_, ref, loc); b->add_statement(s); // closed = closed_temp ref = Expression::make_temporary_reference(closed_temp, loc); s = Statement::make_assignment(this->closed_, ref, loc); b->add_statement(s); return Statement::make_block_statement(b, loc); } // Dump the AST representation for a tuple receive statement. void Tuple_receive_assignment_statement::do_dump_statement( Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->dump_expression(this->val_); ast_dump_context->ostream() << ", "; ast_dump_context->dump_expression(this->closed_); ast_dump_context->ostream() << " <- "; ast_dump_context->dump_expression(this->channel_); ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make a nonblocking receive statement. Statement* Statement::make_tuple_receive_assignment(Expression* val, Expression* closed, Expression* channel, Location location) { return new Tuple_receive_assignment_statement(val, closed, channel, location); } // An assignment to a pair of values from a type guard. This is a // conditional type guard. v, ok = i.(type). class Tuple_type_guard_assignment_statement : public Statement { public: Tuple_type_guard_assignment_statement(Expression* val, Expression* ok, Expression* expr, Type* type, Location location) : Statement(STATEMENT_TUPLE_TYPE_GUARD_ASSIGNMENT, location), val_(val), ok_(ok), expr_(expr), type_(type) { } protected: int do_traverse(Traverse*); bool do_traverse_assignments(Traverse_assignments*) { go_unreachable(); } Statement* do_lower(Gogo*, Named_object*, Block*, Statement_inserter*); Bstatement* do_get_backend(Translate_context*) { go_unreachable(); } void do_dump_statement(Ast_dump_context*) const; private: Call_expression* lower_to_type(Runtime::Function); void lower_to_object_type(Block*, Runtime::Function); // The variable which recieves the converted value. Expression* val_; // The variable which receives the indication of success. Expression* ok_; // The expression being converted. Expression* expr_; // The type to which the expression is being converted. Type* type_; }; // Traverse a type guard tuple assignment. int Tuple_type_guard_assignment_statement::do_traverse(Traverse* traverse) { if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT || this->traverse_expression(traverse, &this->ok_) == TRAVERSE_EXIT || this->traverse_type(traverse, this->type_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return this->traverse_expression(traverse, &this->expr_); } // Lower to a function call. Statement* Tuple_type_guard_assignment_statement::do_lower(Gogo*, Named_object*, Block* enclosing, Statement_inserter*) { Location loc = this->location(); Type* expr_type = this->expr_->type(); if (expr_type->interface_type() == NULL) { if (!expr_type->is_error() && !this->type_->is_error()) this->report_error(_("type assertion only valid for interface types")); return Statement::make_error_statement(loc); } Block* b = new Block(enclosing, loc); // Make sure that any subexpressions on the left hand side are // evaluated in the right order. Move_ordered_evals moe(b); this->val_->traverse_subexpressions(&moe); this->ok_->traverse_subexpressions(&moe); bool expr_is_empty = expr_type->interface_type()->is_empty(); Call_expression* call; if (this->type_->interface_type() != NULL) { if (this->type_->interface_type()->is_empty()) call = Runtime::make_call((expr_is_empty ? Runtime::IFACEE2E2 : Runtime::IFACEI2E2), loc, 1, this->expr_); else call = this->lower_to_type(expr_is_empty ? Runtime::IFACEE2I2 : Runtime::IFACEI2I2); } else if (this->type_->points_to() != NULL) call = this->lower_to_type(expr_is_empty ? Runtime::IFACEE2T2P : Runtime::IFACEI2T2P); else { this->lower_to_object_type(b, (expr_is_empty ? Runtime::IFACEE2T2 : Runtime::IFACEI2T2)); call = NULL; } if (call != NULL) { Expression* res = Expression::make_call_result(call, 0); res = Expression::make_unsafe_cast(this->type_, res, loc); Statement* s = Statement::make_assignment(this->val_, res, loc); b->add_statement(s); res = Expression::make_call_result(call, 1); s = Statement::make_assignment(this->ok_, res, loc); b->add_statement(s); } return Statement::make_block_statement(b, loc); } // Lower a conversion to a non-empty interface type or a pointer type. Call_expression* Tuple_type_guard_assignment_statement::lower_to_type(Runtime::Function code) { Location loc = this->location(); return Runtime::make_call(code, loc, 2, Expression::make_type_descriptor(this->type_, loc), this->expr_); } // Lower a conversion to a non-interface non-pointer type. void Tuple_type_guard_assignment_statement::lower_to_object_type( Block* b, Runtime::Function code) { Location loc = this->location(); // var val_temp TYPE Temporary_statement* val_temp = Statement::make_temporary(this->type_, NULL, loc); b->add_statement(val_temp); // ok = CODE(type_descriptor, expr, &val_temp) Expression* p1 = Expression::make_type_descriptor(this->type_, loc); Expression* ref = Expression::make_temporary_reference(val_temp, loc); Expression* p3 = Expression::make_unary(OPERATOR_AND, ref, loc); Expression* call = Runtime::make_call(code, loc, 3, p1, this->expr_, p3); Statement* s = Statement::make_assignment(this->ok_, call, loc); b->add_statement(s); // val = val_temp ref = Expression::make_temporary_reference(val_temp, loc); s = Statement::make_assignment(this->val_, ref, loc); b->add_statement(s); } // Dump the AST representation for a tuple type guard statement. void Tuple_type_guard_assignment_statement::do_dump_statement( Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->dump_expression(this->val_); ast_dump_context->ostream() << ", "; ast_dump_context->dump_expression(this->ok_); ast_dump_context->ostream() << " = "; ast_dump_context->dump_expression(this->expr_); ast_dump_context->ostream() << " . "; ast_dump_context->dump_type(this->type_); ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make an assignment from a type guard to a pair of variables. Statement* Statement::make_tuple_type_guard_assignment(Expression* val, Expression* ok, Expression* expr, Type* type, Location location) { return new Tuple_type_guard_assignment_statement(val, ok, expr, type, location); } // Class Expression_statement. // Constructor. Expression_statement::Expression_statement(Expression* expr, bool is_ignored) : Statement(STATEMENT_EXPRESSION, expr->location()), expr_(expr), is_ignored_(is_ignored) { } // Determine types. void Expression_statement::do_determine_types() { this->expr_->determine_type_no_context(); } // Check the types of an expression statement. The only check we do // is to possibly give an error about discarding the value of the // expression. void Expression_statement::do_check_types(Gogo*) { if (!this->is_ignored_) this->expr_->discarding_value(); } // An expression statement is only a terminating statement if it is // a call to panic. bool Expression_statement::do_may_fall_through() const { const Call_expression* call = this->expr_->call_expression(); if (call != NULL) { const Expression* fn = call->fn(); // panic is still an unknown named object. const Unknown_expression* ue = fn->unknown_expression(); if (ue != NULL) { Named_object* no = ue->named_object(); if (no->is_unknown()) no = no->unknown_value()->real_named_object(); if (no != NULL) { Function_type* fntype; if (no->is_function()) fntype = no->func_value()->type(); else if (no->is_function_declaration()) fntype = no->func_declaration_value()->type(); else fntype = NULL; // The builtin function panic does not return. if (fntype != NULL && fntype->is_builtin() && no->name() == "panic") return false; } } } return true; } // Convert to backend representation. Bstatement* Expression_statement::do_get_backend(Translate_context* context) { Bexpression* bexpr = this->expr_->get_backend(context); Bfunction* bfunction = context->function()->func_value()->get_decl(); return context->backend()->expression_statement(bfunction, bexpr); } // Dump the AST representation for an expression statement void Expression_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->dump_expression(expr_); ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make an expression statement from an Expression. Statement* Statement::make_statement(Expression* expr, bool is_ignored) { return new Expression_statement(expr, is_ignored); } // Convert a block to the backend representation of a statement. Bstatement* Block_statement::do_get_backend(Translate_context* context) { Bblock* bblock = this->block_->get_backend(context); return context->backend()->block_statement(bblock); } // Dump the AST for a block statement void Block_statement::do_dump_statement(Ast_dump_context*) const { // block statement braces are dumped when traversing. } // Make a block statement. Statement* Statement::make_block_statement(Block* block, Location location) { return new Block_statement(block, location); } // An increment or decrement statement. class Inc_dec_statement : public Statement { public: Inc_dec_statement(bool is_inc, Expression* expr) : Statement(STATEMENT_INCDEC, expr->location()), expr_(expr), is_inc_(is_inc) { } protected: int do_traverse(Traverse* traverse) { return this->traverse_expression(traverse, &this->expr_); } bool do_traverse_assignments(Traverse_assignments*) { go_unreachable(); } Statement* do_lower(Gogo*, Named_object*, Block*, Statement_inserter*); Bstatement* do_get_backend(Translate_context*) { go_unreachable(); } void do_dump_statement(Ast_dump_context*) const; private: // The l-value to increment or decrement. Expression* expr_; // Whether to increment or decrement. bool is_inc_; }; // Lower to += or -=. Statement* Inc_dec_statement::do_lower(Gogo*, Named_object*, Block*, Statement_inserter*) { Location loc = this->location(); Expression* oexpr = Expression::make_integer_ul(1, this->expr_->type(), loc); Operator op = this->is_inc_ ? OPERATOR_PLUSEQ : OPERATOR_MINUSEQ; return Statement::make_assignment_operation(op, this->expr_, oexpr, loc); } // Dump the AST representation for a inc/dec statement. void Inc_dec_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->dump_expression(expr_); ast_dump_context->ostream() << (is_inc_? "++": "--") << dsuffix(location()) << std::endl; } // Make an increment statement. Statement* Statement::make_inc_statement(Expression* expr) { return new Inc_dec_statement(true, expr); } // Make a decrement statement. Statement* Statement::make_dec_statement(Expression* expr) { return new Inc_dec_statement(false, expr); } // Class Thunk_statement. This is the base class for go and defer // statements. // Constructor. Thunk_statement::Thunk_statement(Statement_classification classification, Call_expression* call, Location location) : Statement(classification, location), call_(call), struct_type_(NULL) { } // Return whether this is a simple statement which does not require a // thunk. bool Thunk_statement::is_simple(Function_type* fntype) const { // We need a thunk to call a method, or to pass a variable number of // arguments. if (fntype->is_method() || fntype->is_varargs()) return false; // A defer statement requires a thunk to set up for whether the // function can call recover. if (this->classification() == STATEMENT_DEFER) return false; // We can only permit a single parameter of pointer type. const Typed_identifier_list* parameters = fntype->parameters(); if (parameters != NULL && (parameters->size() > 1 || (parameters->size() == 1 && parameters->begin()->type()->points_to() == NULL))) return false; // If the function returns multiple values, or returns a type other // than integer, floating point, or pointer, then it may get a // hidden first parameter, in which case we need the more // complicated approach. This is true even though we are going to // ignore the return value. const Typed_identifier_list* results = fntype->results(); if (results != NULL && (results->size() > 1 || (results->size() == 1 && !results->begin()->type()->is_basic_type() && results->begin()->type()->points_to() == NULL))) return false; // If this calls something that is not a simple function, then we // need a thunk. Expression* fn = this->call_->call_expression()->fn(); if (fn->func_expression() == NULL) return false; // If the function uses a closure, then we need a thunk. FIXME: We // could accept a zero argument function with a closure. if (fn->func_expression()->closure() != NULL) return false; return true; } // Traverse a thunk statement. int Thunk_statement::do_traverse(Traverse* traverse) { return this->traverse_expression(traverse, &this->call_); } // We implement traverse_assignment for a thunk statement because it // effectively copies the function call. bool Thunk_statement::do_traverse_assignments(Traverse_assignments* tassign) { Expression* fn = this->call_->call_expression()->fn(); Expression* fn2 = fn; tassign->value(&fn2, true, false); return true; } // Determine types in a thunk statement. void Thunk_statement::do_determine_types() { this->call_->determine_type_no_context(); // Now that we know the types of the call, build the struct used to // pass parameters. Call_expression* ce = this->call_->call_expression(); if (ce == NULL) return; Function_type* fntype = ce->get_function_type(); if (fntype != NULL && !this->is_simple(fntype)) this->struct_type_ = this->build_struct(fntype); } // Check types in a thunk statement. void Thunk_statement::do_check_types(Gogo*) { if (!this->call_->discarding_value()) return; Call_expression* ce = this->call_->call_expression(); if (ce == NULL) { if (!this->call_->is_error_expression()) this->report_error("expected call expression"); return; } } // The Traverse class used to find and simplify thunk statements. class Simplify_thunk_traverse : public Traverse { public: Simplify_thunk_traverse(Gogo* gogo) : Traverse(traverse_functions | traverse_blocks), gogo_(gogo), function_(NULL) { } int function(Named_object*); int block(Block*); private: // General IR. Gogo* gogo_; // The function we are traversing. Named_object* function_; }; // Keep track of the current function while looking for thunks. int Simplify_thunk_traverse::function(Named_object* no) { go_assert(this->function_ == NULL); this->function_ = no; int t = no->func_value()->traverse(this); this->function_ = NULL; if (t == TRAVERSE_EXIT) return t; return TRAVERSE_SKIP_COMPONENTS; } // Look for thunks in a block. int Simplify_thunk_traverse::block(Block* b) { // The parser ensures that thunk statements always appear at the end // of a block. if (b->statements()->size() < 1) return TRAVERSE_CONTINUE; Thunk_statement* stat = b->statements()->back()->thunk_statement(); if (stat == NULL) return TRAVERSE_CONTINUE; if (stat->simplify_statement(this->gogo_, this->function_, b)) return TRAVERSE_SKIP_COMPONENTS; return TRAVERSE_CONTINUE; } // Simplify all thunk statements. void Gogo::simplify_thunk_statements() { Simplify_thunk_traverse thunk_traverse(this); this->traverse(&thunk_traverse); } // Return true if the thunk function is a constant, which means that // it does not need to be passed to the thunk routine. bool Thunk_statement::is_constant_function() const { Call_expression* ce = this->call_->call_expression(); Function_type* fntype = ce->get_function_type(); if (fntype == NULL) { go_assert(saw_errors()); return false; } if (fntype->is_builtin()) return true; Expression* fn = ce->fn(); if (fn->func_expression() != NULL) return fn->func_expression()->closure() == NULL; if (fn->interface_field_reference_expression() != NULL) return true; return false; } // Simplify complex thunk statements into simple ones. A complicated // thunk statement is one which takes anything other than zero // parameters or a single pointer parameter. We rewrite it into code // which allocates a struct, stores the parameter values into the // struct, and does a simple go or defer statement which passes the // struct to a thunk. The thunk does the real call. bool Thunk_statement::simplify_statement(Gogo* gogo, Named_object* function, Block* block) { if (this->classification() == STATEMENT_ERROR) return false; if (this->call_->is_error_expression()) return false; if (this->classification() == STATEMENT_DEFER) { // Make sure that the defer stack exists for the function. We // will use when converting this statement to the backend // representation, but we want it to exist when we start // converting the function. function->func_value()->defer_stack(this->location()); } Call_expression* ce = this->call_->call_expression(); Function_type* fntype = ce->get_function_type(); if (fntype == NULL) { go_assert(saw_errors()); this->set_is_error(); return false; } if (this->is_simple(fntype)) return false; Expression* fn = ce->fn(); Interface_field_reference_expression* interface_method = fn->interface_field_reference_expression(); Location location = this->location(); std::string thunk_name = Gogo::thunk_name(); // Build the thunk. this->build_thunk(gogo, thunk_name); // Generate code to call the thunk. // Get the values to store into the struct which is the single // argument to the thunk. Expression_list* vals = new Expression_list(); if (!this->is_constant_function()) vals->push_back(fn); if (interface_method != NULL) vals->push_back(interface_method->expr()); if (ce->args() != NULL) { for (Expression_list::const_iterator p = ce->args()->begin(); p != ce->args()->end(); ++p) { if ((*p)->is_constant()) continue; vals->push_back(*p); } } // Build the struct. Expression* constructor = Expression::make_struct_composite_literal(this->struct_type_, vals, location); // Allocate the initialized struct on the heap. constructor = Expression::make_heap_expression(constructor, location); // Look up the thunk. Named_object* named_thunk = gogo->lookup(thunk_name, NULL); go_assert(named_thunk != NULL && named_thunk->is_function()); // Build the call. Expression* func = Expression::make_func_reference(named_thunk, NULL, location); Expression_list* params = new Expression_list(); params->push_back(constructor); Call_expression* call = Expression::make_call(func, params, false, location); // Build the simple go or defer statement. Statement* s; if (this->classification() == STATEMENT_GO) s = Statement::make_go_statement(call, location); else if (this->classification() == STATEMENT_DEFER) s = Statement::make_defer_statement(call, location); else go_unreachable(); // The current block should end with the go statement. go_assert(block->statements()->size() >= 1); go_assert(block->statements()->back() == this); block->replace_statement(block->statements()->size() - 1, s); // We already ran the determine_types pass, so we need to run it now // for the new statement. s->determine_types(); // Sanity check. gogo->check_types_in_block(block); // Return true to tell the block not to keep looking at statements. return true; } // Set the name to use for thunk parameter N. void Thunk_statement::thunk_field_param(int n, char* buf, size_t buflen) { snprintf(buf, buflen, "a%d", n); } // Build a new struct type to hold the parameters for a complicated // thunk statement. FNTYPE is the type of the function call. Struct_type* Thunk_statement::build_struct(Function_type* fntype) { Location location = this->location(); Struct_field_list* fields = new Struct_field_list(); Call_expression* ce = this->call_->call_expression(); Expression* fn = ce->fn(); if (!this->is_constant_function()) { // The function to call. fields->push_back(Struct_field(Typed_identifier("fn", fntype, location))); } // If this thunk statement calls a method on an interface, we pass // the interface object to the thunk. Interface_field_reference_expression* interface_method = fn->interface_field_reference_expression(); if (interface_method != NULL) { Typed_identifier tid("object", interface_method->expr()->type(), location); fields->push_back(Struct_field(tid)); } // The predeclared recover function has no argument. However, we // add an argument when building recover thunks. Handle that here. if (ce->is_recover_call()) { fields->push_back(Struct_field(Typed_identifier("can_recover", Type::lookup_bool_type(), location))); } const Expression_list* args = ce->args(); if (args != NULL) { int i = 0; for (Expression_list::const_iterator p = args->begin(); p != args->end(); ++p, ++i) { if ((*p)->is_constant()) continue; char buf[50]; this->thunk_field_param(i, buf, sizeof buf); fields->push_back(Struct_field(Typed_identifier(buf, (*p)->type(), location))); } } Struct_type *st = Type::make_struct_type(fields, location); st->set_is_struct_incomparable(); return st; } // Build the thunk we are going to call. This is a brand new, albeit // artificial, function. void Thunk_statement::build_thunk(Gogo* gogo, const std::string& thunk_name) { Location location = this->location(); Call_expression* ce = this->call_->call_expression(); bool may_call_recover = false; if (this->classification() == STATEMENT_DEFER) { Func_expression* fn = ce->fn()->func_expression(); if (fn == NULL) may_call_recover = true; else { const Named_object* no = fn->named_object(); if (!no->is_function()) may_call_recover = true; else may_call_recover = no->func_value()->calls_recover(); } } // Build the type of the thunk. The thunk takes a single parameter, // which is a pointer to the special structure we build. const char* const parameter_name = "__go_thunk_parameter"; Typed_identifier_list* thunk_parameters = new Typed_identifier_list(); Type* pointer_to_struct_type = Type::make_pointer_type(this->struct_type_); thunk_parameters->push_back(Typed_identifier(parameter_name, pointer_to_struct_type, location)); Typed_identifier_list* thunk_results = NULL; if (may_call_recover) { // When deferring a function which may call recover, add a // return value, to disable tail call optimizations which will // break the way we check whether recover is permitted. thunk_results = new Typed_identifier_list(); thunk_results->push_back(Typed_identifier("", Type::lookup_bool_type(), location)); } Function_type* thunk_type = Type::make_function_type(NULL, thunk_parameters, thunk_results, location); // Start building the thunk. Named_object* function = gogo->start_function(thunk_name, thunk_type, true, location); gogo->start_block(location); // For a defer statement, start with a call to // __go_set_defer_retaddr. */ Label* retaddr_label = NULL; if (may_call_recover) { retaddr_label = gogo->add_label_reference("retaddr", location, false); Expression* arg = Expression::make_label_addr(retaddr_label, location); Expression* call = Runtime::make_call(Runtime::SETDEFERRETADDR, location, 1, arg); // This is a hack to prevent the middle-end from deleting the // label. gogo->start_block(location); gogo->add_statement(Statement::make_goto_statement(retaddr_label, location)); Block* then_block = gogo->finish_block(location); then_block->determine_types(); Statement* s = Statement::make_if_statement(call, then_block, NULL, location); s->determine_types(); gogo->add_statement(s); function->func_value()->set_calls_defer_retaddr(); } // Get a reference to the parameter. Named_object* named_parameter = gogo->lookup(parameter_name, NULL); go_assert(named_parameter != NULL && named_parameter->is_variable()); // Build the call. Note that the field names are the same as the // ones used in build_struct. Expression* thunk_parameter = Expression::make_var_reference(named_parameter, location); thunk_parameter = Expression::make_unary(OPERATOR_MULT, thunk_parameter, location); Interface_field_reference_expression* interface_method = ce->fn()->interface_field_reference_expression(); Expression* func_to_call; unsigned int next_index; if (this->is_constant_function()) { func_to_call = ce->fn(); next_index = 0; } else { func_to_call = Expression::make_field_reference(thunk_parameter, 0, location); next_index = 1; } if (interface_method != NULL) { // The main program passes the interface object. go_assert(next_index == 0); Expression* r = Expression::make_field_reference(thunk_parameter, 0, location); const std::string& name(interface_method->name()); func_to_call = Expression::make_interface_field_reference(r, name, location); next_index = 1; } Expression_list* call_params = new Expression_list(); const Struct_field_list* fields = this->struct_type_->fields(); Struct_field_list::const_iterator p = fields->begin(); for (unsigned int i = 0; i < next_index; ++i) ++p; bool is_recover_call = ce->is_recover_call(); Expression* recover_arg = NULL; const Expression_list* args = ce->args(); if (args != NULL) { for (Expression_list::const_iterator arg = args->begin(); arg != args->end(); ++arg) { Expression* param; if ((*arg)->is_constant()) param = *arg; else { Expression* thunk_param = Expression::make_var_reference(named_parameter, location); thunk_param = Expression::make_unary(OPERATOR_MULT, thunk_param, location); param = Expression::make_field_reference(thunk_param, next_index, location); ++next_index; } if (!is_recover_call) call_params->push_back(param); else { go_assert(call_params->empty()); recover_arg = param; } } } if (call_params->empty()) { delete call_params; call_params = NULL; } Call_expression* call = Expression::make_call(func_to_call, call_params, false, location); // This call expression was already lowered before entering the // thunk statement. Don't try to lower varargs again, as that will // cause confusion for, e.g., method calls which already have a // receiver parameter. call->set_varargs_are_lowered(); Statement* call_statement = Statement::make_statement(call, true); gogo->add_statement(call_statement); // If this is a defer statement, the label comes immediately after // the call. if (may_call_recover) { gogo->add_label_definition("retaddr", location); Expression_list* vals = new Expression_list(); vals->push_back(Expression::make_boolean(false, location)); gogo->add_statement(Statement::make_return_statement(vals, location)); } Block* b = gogo->finish_block(location); gogo->add_block(b, location); gogo->lower_block(function, b); // We already ran the determine_types pass, so we need to run it // just for the call statement now. The other types are known. call_statement->determine_types(); gogo->flatten_block(function, b); if (may_call_recover || recover_arg != NULL || this->classification() == STATEMENT_GO) { // Dig up the call expression, which may have been changed // during lowering. go_assert(call_statement->classification() == STATEMENT_EXPRESSION); Expression_statement* es = static_cast(call_statement); Call_expression* ce = es->expr()->call_expression(); if (ce == NULL) go_assert(saw_errors()); else { if (may_call_recover) ce->set_is_deferred(); if (this->classification() == STATEMENT_GO) ce->set_is_concurrent(); if (recover_arg != NULL) ce->set_recover_arg(recover_arg); } } // That is all the thunk has to do. gogo->finish_function(location); } // Get the function and argument expressions. bool Thunk_statement::get_fn_and_arg(Expression** pfn, Expression** parg) { if (this->call_->is_error_expression()) return false; Call_expression* ce = this->call_->call_expression(); Expression* fn = ce->fn(); Func_expression* fe = fn->func_expression(); go_assert(fe != NULL); *pfn = Expression::make_func_code_reference(fe->named_object(), fe->location()); const Expression_list* args = ce->args(); if (args == NULL || args->empty()) *parg = Expression::make_nil(this->location()); else { go_assert(args->size() == 1); *parg = args->front(); } return true; } // Class Go_statement. Bstatement* Go_statement::do_get_backend(Translate_context* context) { Expression* fn; Expression* arg; if (!this->get_fn_and_arg(&fn, &arg)) return context->backend()->error_statement(); Expression* call = Runtime::make_call(Runtime::GO, this->location(), 2, fn, arg); Bexpression* bcall = call->get_backend(context); Bfunction* bfunction = context->function()->func_value()->get_decl(); return context->backend()->expression_statement(bfunction, bcall); } // Dump the AST representation for go statement. void Go_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << "go "; ast_dump_context->dump_expression(this->call()); ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make a go statement. Statement* Statement::make_go_statement(Call_expression* call, Location location) { return new Go_statement(call, location); } // Class Defer_statement. Bstatement* Defer_statement::do_get_backend(Translate_context* context) { Expression* fn; Expression* arg; if (!this->get_fn_and_arg(&fn, &arg)) return context->backend()->error_statement(); Location loc = this->location(); Expression* ds = context->function()->func_value()->defer_stack(loc); Expression* call = Runtime::make_call(Runtime::DEFERPROC, loc, 3, ds, fn, arg); Bexpression* bcall = call->get_backend(context); Bfunction* bfunction = context->function()->func_value()->get_decl(); return context->backend()->expression_statement(bfunction, bcall); } // Dump the AST representation for defer statement. void Defer_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << "defer "; ast_dump_context->dump_expression(this->call()); ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make a defer statement. Statement* Statement::make_defer_statement(Call_expression* call, Location location) { return new Defer_statement(call, location); } // Class Return_statement. // Traverse assignments. We treat each return value as a top level // RHS in an expression. bool Return_statement::do_traverse_assignments(Traverse_assignments* tassign) { Expression_list* vals = this->vals_; if (vals != NULL) { for (Expression_list::iterator p = vals->begin(); p != vals->end(); ++p) tassign->value(&*p, true, true); } return true; } // Lower a return statement. If we are returning a function call // which returns multiple values which match the current function, // split up the call's results. If the return statement lists // explicit values, implement this statement by assigning the values // to the result variables and change this statement to a naked // return. This lets panic/recover work correctly. Statement* Return_statement::do_lower(Gogo*, Named_object* function, Block* enclosing, Statement_inserter*) { if (this->is_lowered_) return this; Expression_list* vals = this->vals_; this->vals_ = NULL; this->is_lowered_ = true; Location loc = this->location(); size_t vals_count = vals == NULL ? 0 : vals->size(); Function::Results* results = function->func_value()->result_variables(); size_t results_count = results == NULL ? 0 : results->size(); if (vals_count == 0) { if (results_count > 0 && !function->func_value()->results_are_named()) { this->report_error(_("not enough arguments to return")); return this; } return this; } if (results_count == 0) { this->report_error(_("return with value in function " "with no return type")); return this; } // If the current function has multiple return values, and we are // returning a single call expression, split up the call expression. if (results_count > 1 && vals->size() == 1 && vals->front()->call_expression() != NULL) { Call_expression* call = vals->front()->call_expression(); call->set_expected_result_count(results_count); delete vals; vals = new Expression_list; for (size_t i = 0; i < results_count; ++i) vals->push_back(Expression::make_call_result(call, i)); vals_count = results_count; } if (vals_count < results_count) { this->report_error(_("not enough arguments to return")); return this; } if (vals_count > results_count) { this->report_error(_("too many values in return statement")); return this; } Block* b = new Block(enclosing, loc); Expression_list* lhs = new Expression_list(); Expression_list* rhs = new Expression_list(); Expression_list::const_iterator pe = vals->begin(); int i = 1; for (Function::Results::const_iterator pr = results->begin(); pr != results->end(); ++pr, ++pe, ++i) { Named_object* rv = *pr; Expression* e = *pe; // Check types now so that we give a good error message. The // result type is known. We determine the expression type // early. Type *rvtype = rv->result_var_value()->type(); Type_context type_context(rvtype, false); e->determine_type(&type_context); std::string reason; if (Type::are_assignable(rvtype, e->type(), &reason)) { Expression* ve = Expression::make_var_reference(rv, e->location()); lhs->push_back(ve); rhs->push_back(e); } else { if (reason.empty()) go_error_at(e->location(), "incompatible type for return value %d", i); else go_error_at(e->location(), "incompatible type for return value %d (%s)", i, reason.c_str()); } } go_assert(lhs->size() == rhs->size()); if (lhs->empty()) ; else if (lhs->size() == 1) { b->add_statement(Statement::make_assignment(lhs->front(), rhs->front(), loc)); delete lhs; delete rhs; } else b->add_statement(Statement::make_tuple_assignment(lhs, rhs, loc)); b->add_statement(this); delete vals; return Statement::make_block_statement(b, loc); } // Convert a return statement to the backend representation. Bstatement* Return_statement::do_get_backend(Translate_context* context) { Location loc = this->location(); Function* function = context->function()->func_value(); Function::Results* results = function->result_variables(); std::vector retvals; if (results != NULL && !results->empty()) { retvals.reserve(results->size()); for (Function::Results::const_iterator p = results->begin(); p != results->end(); p++) { Expression* vr = Expression::make_var_reference(*p, loc); retvals.push_back(vr->get_backend(context)); } } return context->backend()->return_statement(function->get_decl(), retvals, loc); } // Dump the AST representation for a return statement. void Return_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << "return " ; ast_dump_context->dump_expression_list(this->vals_); ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make a return statement. Return_statement* Statement::make_return_statement(Expression_list* vals, Location location) { return new Return_statement(vals, location); } // Make a statement that returns the result of a call expression. Statement* Statement::make_return_from_call(Call_expression* call, Location location) { size_t rc = call->result_count(); if (rc == 0) return Statement::make_statement(call, true); else { Expression_list* vals = new Expression_list(); if (rc == 1) vals->push_back(call); else { for (size_t i = 0; i < rc; ++i) vals->push_back(Expression::make_call_result(call, i)); } return Statement::make_return_statement(vals, location); } } // A break or continue statement. class Bc_statement : public Statement { public: Bc_statement(bool is_break, Unnamed_label* label, Location location) : Statement(STATEMENT_BREAK_OR_CONTINUE, location), label_(label), is_break_(is_break) { } bool is_break() const { return this->is_break_; } protected: int do_traverse(Traverse*) { return TRAVERSE_CONTINUE; } bool do_may_fall_through() const { return false; } Bstatement* do_get_backend(Translate_context* context) { return this->label_->get_goto(context, this->location()); } void do_dump_statement(Ast_dump_context*) const; private: // The label that this branches to. Unnamed_label* label_; // True if this is "break", false if it is "continue". bool is_break_; }; // Dump the AST representation for a break/continue statement void Bc_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << (this->is_break_ ? "break" : "continue"); if (this->label_ != NULL) { ast_dump_context->ostream() << " "; ast_dump_context->dump_label_name(this->label_); } ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make a break statement. Statement* Statement::make_break_statement(Unnamed_label* label, Location location) { return new Bc_statement(true, label, location); } // Make a continue statement. Statement* Statement::make_continue_statement(Unnamed_label* label, Location location) { return new Bc_statement(false, label, location); } // Class Goto_statement. int Goto_statement::do_traverse(Traverse*) { return TRAVERSE_CONTINUE; } // Check types for a label. There aren't any types per se, but we use // this to give an error if the label was never defined. void Goto_statement::do_check_types(Gogo*) { if (!this->label_->is_defined()) { go_error_at(this->location(), "reference to undefined label %qs", Gogo::message_name(this->label_->name()).c_str()); this->set_is_error(); } } // Convert the goto statement to the backend representation. Bstatement* Goto_statement::do_get_backend(Translate_context* context) { Blabel* blabel = this->label_->get_backend_label(context); return context->backend()->goto_statement(blabel, this->location()); } // Dump the AST representation for a goto statement. void Goto_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << "goto " << this->label_->name() << dsuffix(location()) << std::endl; } // Make a goto statement. Statement* Statement::make_goto_statement(Label* label, Location location) { return new Goto_statement(label, location); } // Class Goto_unnamed_statement. int Goto_unnamed_statement::do_traverse(Traverse*) { return TRAVERSE_CONTINUE; } // Convert the goto unnamed statement to the backend representation. Bstatement* Goto_unnamed_statement::do_get_backend(Translate_context* context) { return this->label_->get_goto(context, this->location()); } // Dump the AST representation for an unnamed goto statement void Goto_unnamed_statement::do_dump_statement( Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << "goto "; ast_dump_context->dump_label_name(this->label_); ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make a goto statement to an unnamed label. Statement* Statement::make_goto_unnamed_statement(Unnamed_label* label, Location location) { return new Goto_unnamed_statement(label, location); } // Class Label_statement. // Traversal. int Label_statement::do_traverse(Traverse*) { return TRAVERSE_CONTINUE; } // Return the backend representation of the statement defining this // label. Bstatement* Label_statement::do_get_backend(Translate_context* context) { if (this->label_->is_dummy_label()) { Bexpression* bce = context->backend()->boolean_constant_expression(false); Bfunction* bfunction = context->function()->func_value()->get_decl(); return context->backend()->expression_statement(bfunction, bce); } Blabel* blabel = this->label_->get_backend_label(context); return context->backend()->label_definition_statement(blabel); } // Dump the AST for a label definition statement. void Label_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << this->label_->name() << ":" << dsuffix(location()) << std::endl; } // Make a label statement. Statement* Statement::make_label_statement(Label* label, Location location) { return new Label_statement(label, location); } // Class Unnamed_label_statement. Unnamed_label_statement::Unnamed_label_statement(Unnamed_label* label) : Statement(STATEMENT_UNNAMED_LABEL, label->location()), label_(label) { } int Unnamed_label_statement::do_traverse(Traverse*) { return TRAVERSE_CONTINUE; } // Get the backend definition for this unnamed label statement. Bstatement* Unnamed_label_statement::do_get_backend(Translate_context* context) { return this->label_->get_definition(context); } // Dump the AST representation for an unnamed label definition statement. void Unnamed_label_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->dump_label_name(this->label_); ast_dump_context->ostream() << ":" << dsuffix(location()) << std::endl; } // Make an unnamed label statement. Statement* Statement::make_unnamed_label_statement(Unnamed_label* label) { return new Unnamed_label_statement(label); } // Class If_statement. // Traversal. int If_statement::do_traverse(Traverse* traverse) { if (this->traverse_expression(traverse, &this->cond_) == TRAVERSE_EXIT || this->then_block_->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; if (this->else_block_ != NULL) { if (this->else_block_->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } return TRAVERSE_CONTINUE; } void If_statement::do_determine_types() { Type_context context(Type::lookup_bool_type(), false); this->cond_->determine_type(&context); this->then_block_->determine_types(); if (this->else_block_ != NULL) this->else_block_->determine_types(); } // Check types. void If_statement::do_check_types(Gogo*) { Type* type = this->cond_->type(); if (type->is_error()) this->set_is_error(); else if (!type->is_boolean_type()) this->report_error(_("expected boolean expression")); } // Whether the overall statement may fall through. bool If_statement::do_may_fall_through() const { return (this->else_block_ == NULL || this->then_block_->may_fall_through() || this->else_block_->may_fall_through()); } // Get the backend representation. Bstatement* If_statement::do_get_backend(Translate_context* context) { go_assert(this->cond_->type()->is_boolean_type() || this->cond_->type()->is_error()); Bexpression* cond = this->cond_->get_backend(context); Bblock* then_block = this->then_block_->get_backend(context); Bblock* else_block = (this->else_block_ == NULL ? NULL : this->else_block_->get_backend(context)); Bfunction* bfunction = context->function()->func_value()->get_decl(); return context->backend()->if_statement(bfunction, cond, then_block, else_block, this->location()); } // Dump the AST representation for an if statement void If_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << "if "; ast_dump_context->dump_expression(this->cond_); ast_dump_context->ostream() << dsuffix(location()) << std::endl; if (ast_dump_context->dump_subblocks()) { ast_dump_context->dump_block(this->then_block_); if (this->else_block_ != NULL) { ast_dump_context->print_indent(); ast_dump_context->ostream() << "else" << std::endl; ast_dump_context->dump_block(this->else_block_); } } } // Make an if statement. Statement* Statement::make_if_statement(Expression* cond, Block* then_block, Block* else_block, Location location) { return new If_statement(cond, then_block, else_block, location); } // Class Case_clauses::Hash_integer_value. class Case_clauses::Hash_integer_value { public: size_t operator()(Expression*) const; }; size_t Case_clauses::Hash_integer_value::operator()(Expression* pe) const { Numeric_constant nc; mpz_t ival; if (!pe->numeric_constant_value(&nc) || !nc.to_int(&ival)) go_unreachable(); size_t ret = mpz_get_ui(ival); mpz_clear(ival); return ret; } // Class Case_clauses::Eq_integer_value. class Case_clauses::Eq_integer_value { public: bool operator()(Expression*, Expression*) const; }; bool Case_clauses::Eq_integer_value::operator()(Expression* a, Expression* b) const { Numeric_constant anc; mpz_t aval; Numeric_constant bnc; mpz_t bval; if (!a->numeric_constant_value(&anc) || !anc.to_int(&aval) || !b->numeric_constant_value(&bnc) || !bnc.to_int(&bval)) go_unreachable(); bool ret = mpz_cmp(aval, bval) == 0; mpz_clear(aval); mpz_clear(bval); return ret; } // Class Case_clauses::Case_clause. // Traversal. int Case_clauses::Case_clause::traverse(Traverse* traverse) { if (this->cases_ != NULL && (traverse->traverse_mask() & (Traverse::traverse_types | Traverse::traverse_expressions)) != 0) { if (this->cases_->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } if (this->statements_ != NULL) { if (this->statements_->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } return TRAVERSE_CONTINUE; } // Check whether all the case expressions are integer constants. bool Case_clauses::Case_clause::is_constant() const { if (this->cases_ != NULL) { for (Expression_list::const_iterator p = this->cases_->begin(); p != this->cases_->end(); ++p) if (!(*p)->is_constant() || (*p)->type()->integer_type() == NULL) return false; } return true; } // Lower a case clause for a nonconstant switch. VAL_TEMP is the // value we are switching on; it may be NULL. If START_LABEL is not // NULL, it goes at the start of the statements, after the condition // test. We branch to FINISH_LABEL at the end of the statements. void Case_clauses::Case_clause::lower(Block* b, Temporary_statement* val_temp, Unnamed_label* start_label, Unnamed_label* finish_label) const { Location loc = this->location_; Unnamed_label* next_case_label; if (this->cases_ == NULL || this->cases_->empty()) { go_assert(this->is_default_); next_case_label = NULL; } else { Expression* cond = NULL; for (Expression_list::const_iterator p = this->cases_->begin(); p != this->cases_->end(); ++p) { Expression* ref = Expression::make_temporary_reference(val_temp, loc); Expression* this_cond = Expression::make_binary(OPERATOR_EQEQ, ref, *p, loc); if (cond == NULL) cond = this_cond; else cond = Expression::make_binary(OPERATOR_OROR, cond, this_cond, loc); } Block* then_block = new Block(b, loc); next_case_label = new Unnamed_label(Linemap::unknown_location()); Statement* s = Statement::make_goto_unnamed_statement(next_case_label, loc); then_block->add_statement(s); // if !COND { goto NEXT_CASE_LABEL } cond = Expression::make_unary(OPERATOR_NOT, cond, loc); s = Statement::make_if_statement(cond, then_block, NULL, loc); b->add_statement(s); } if (start_label != NULL) b->add_statement(Statement::make_unnamed_label_statement(start_label)); if (this->statements_ != NULL) b->add_statement(Statement::make_block_statement(this->statements_, loc)); Statement* s = Statement::make_goto_unnamed_statement(finish_label, loc); b->add_statement(s); if (next_case_label != NULL) b->add_statement(Statement::make_unnamed_label_statement(next_case_label)); } // Determine types. void Case_clauses::Case_clause::determine_types(Type* type) { if (this->cases_ != NULL) { Type_context case_context(type, false); for (Expression_list::iterator p = this->cases_->begin(); p != this->cases_->end(); ++p) (*p)->determine_type(&case_context); } if (this->statements_ != NULL) this->statements_->determine_types(); } // Check types. Returns false if there was an error. bool Case_clauses::Case_clause::check_types(Type* type) { if (this->cases_ != NULL) { for (Expression_list::iterator p = this->cases_->begin(); p != this->cases_->end(); ++p) { if (!Type::are_assignable(type, (*p)->type(), NULL) && !Type::are_assignable((*p)->type(), type, NULL)) { go_error_at((*p)->location(), "type mismatch between switch value and case clause"); return false; } } } return true; } // Return true if this clause may fall through to the following // statements. Note that this is not the same as whether the case // uses the "fallthrough" keyword. bool Case_clauses::Case_clause::may_fall_through() const { if (this->statements_ == NULL) return true; return this->statements_->may_fall_through(); } // Convert the case values and statements to the backend // representation. BREAK_LABEL is the label which break statements // should branch to. CASE_CONSTANTS is used to detect duplicate // constants. *CASES should be passed as an empty vector; the values // for this case will be added to it. If this is the default case, // *CASES will remain empty. This returns the statement to execute if // one of these cases is selected. Bstatement* Case_clauses::Case_clause::get_backend(Translate_context* context, Unnamed_label* break_label, Case_constants* case_constants, std::vector* cases) const { if (this->cases_ != NULL) { go_assert(!this->is_default_); for (Expression_list::const_iterator p = this->cases_->begin(); p != this->cases_->end(); ++p) { Expression* e = *p; if (e->classification() != Expression::EXPRESSION_INTEGER) { Numeric_constant nc; mpz_t ival; if (!(*p)->numeric_constant_value(&nc) || !nc.to_int(&ival)) { // Something went wrong. This can happen with a // negative constant and an unsigned switch value. go_assert(saw_errors()); continue; } go_assert(nc.type() != NULL); e = Expression::make_integer_z(&ival, nc.type(), e->location()); mpz_clear(ival); } std::pair ins = case_constants->insert(e); if (!ins.second) { // Value was already present. go_error_at(this->location_, "duplicate case in switch"); e = Expression::make_error(this->location_); } cases->push_back(e->get_backend(context)); } } Bstatement* statements; if (this->statements_ == NULL) statements = NULL; else { Bblock* bblock = this->statements_->get_backend(context); statements = context->backend()->block_statement(bblock); } Bstatement* break_stat; if (this->is_fallthrough_) break_stat = NULL; else break_stat = break_label->get_goto(context, this->location_); if (statements == NULL) return break_stat; else if (break_stat == NULL) return statements; else return context->backend()->compound_statement(statements, break_stat); } // Dump the AST representation for a case clause void Case_clauses::Case_clause::dump_clause(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); if (this->is_default_) { ast_dump_context->ostream() << "default:"; } else { ast_dump_context->ostream() << "case "; ast_dump_context->dump_expression_list(this->cases_); ast_dump_context->ostream() << ":" ; } ast_dump_context->dump_block(this->statements_); if (this->is_fallthrough_) { ast_dump_context->print_indent(); ast_dump_context->ostream() << " (fallthrough)" << dsuffix(location()) << std::endl; } } // Class Case_clauses. // Traversal. int Case_clauses::traverse(Traverse* traverse) { for (Clauses::iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) { if (p->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } return TRAVERSE_CONTINUE; } // Check whether all the case expressions are constant. bool Case_clauses::is_constant() const { for (Clauses::const_iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) if (!p->is_constant()) return false; return true; } // Lower case clauses for a nonconstant switch. void Case_clauses::lower(Block* b, Temporary_statement* val_temp, Unnamed_label* break_label) const { // The default case. const Case_clause* default_case = NULL; // The label for the fallthrough of the previous case. Unnamed_label* last_fallthrough_label = NULL; // The label for the start of the default case. This is used if the // case before the default case falls through. Unnamed_label* default_start_label = NULL; // The label for the end of the default case. This normally winds // up as BREAK_LABEL, but it will be different if the default case // falls through. Unnamed_label* default_finish_label = NULL; for (Clauses::const_iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) { // The label to use for the start of the statements for this // case. This is NULL unless the previous case falls through. Unnamed_label* start_label = last_fallthrough_label; // The label to jump to after the end of the statements for this // case. Unnamed_label* finish_label = break_label; last_fallthrough_label = NULL; if (p->is_fallthrough() && p + 1 != this->clauses_.end()) { finish_label = new Unnamed_label(p->location()); last_fallthrough_label = finish_label; } if (!p->is_default()) p->lower(b, val_temp, start_label, finish_label); else { // We have to move the default case to the end, so that we // only use it if all the other tests fail. default_case = &*p; default_start_label = start_label; default_finish_label = finish_label; } } if (default_case != NULL) default_case->lower(b, val_temp, default_start_label, default_finish_label); } // Determine types. void Case_clauses::determine_types(Type* type) { for (Clauses::iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) p->determine_types(type); } // Check types. Returns false if there was an error. bool Case_clauses::check_types(Type* type) { bool ret = true; for (Clauses::iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) { if (!p->check_types(type)) ret = false; } return ret; } // Return true if these clauses may fall through to the statements // following the switch statement. bool Case_clauses::may_fall_through() const { bool found_default = false; for (Clauses::const_iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) { if (p->may_fall_through() && !p->is_fallthrough()) return true; if (p->is_default()) found_default = true; } return !found_default; } // Convert the cases to the backend representation. This sets // *ALL_CASES and *ALL_STATEMENTS. void Case_clauses::get_backend(Translate_context* context, Unnamed_label* break_label, std::vector >* all_cases, std::vector* all_statements) const { Case_constants case_constants; size_t c = this->clauses_.size(); all_cases->resize(c); all_statements->resize(c); size_t i = 0; for (Clauses::const_iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p, ++i) { std::vector cases; Bstatement* stat = p->get_backend(context, break_label, &case_constants, &cases); (*all_cases)[i].swap(cases); (*all_statements)[i] = stat; } } // Dump the AST representation for case clauses (from a switch statement) void Case_clauses::dump_clauses(Ast_dump_context* ast_dump_context) const { for (Clauses::const_iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) p->dump_clause(ast_dump_context); } // A constant switch statement. A Switch_statement is lowered to this // when all the cases are constants. class Constant_switch_statement : public Statement { public: Constant_switch_statement(Expression* val, Case_clauses* clauses, Unnamed_label* break_label, Location location) : Statement(STATEMENT_CONSTANT_SWITCH, location), val_(val), clauses_(clauses), break_label_(break_label) { } protected: int do_traverse(Traverse*); void do_determine_types(); void do_check_types(Gogo*); Bstatement* do_get_backend(Translate_context*); void do_dump_statement(Ast_dump_context*) const; private: // The value to switch on. Expression* val_; // The case clauses. Case_clauses* clauses_; // The break label, if needed. Unnamed_label* break_label_; }; // Traversal. int Constant_switch_statement::do_traverse(Traverse* traverse) { if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return this->clauses_->traverse(traverse); } // Determine types. void Constant_switch_statement::do_determine_types() { this->val_->determine_type_no_context(); this->clauses_->determine_types(this->val_->type()); } // Check types. void Constant_switch_statement::do_check_types(Gogo*) { if (!this->clauses_->check_types(this->val_->type())) this->set_is_error(); } // Convert to GENERIC. Bstatement* Constant_switch_statement::do_get_backend(Translate_context* context) { Bexpression* switch_val_expr = this->val_->get_backend(context); Unnamed_label* break_label = this->break_label_; if (break_label == NULL) break_label = new Unnamed_label(this->location()); std::vector > all_cases; std::vector all_statements; this->clauses_->get_backend(context, break_label, &all_cases, &all_statements); Bfunction* bfunction = context->function()->func_value()->get_decl(); Bstatement* switch_statement; switch_statement = context->backend()->switch_statement(bfunction, switch_val_expr, all_cases, all_statements, this->location()); Bstatement* ldef = break_label->get_definition(context); return context->backend()->compound_statement(switch_statement, ldef); } // Dump the AST representation for a constant switch statement. void Constant_switch_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << "switch "; ast_dump_context->dump_expression(this->val_); if (ast_dump_context->dump_subblocks()) { ast_dump_context->ostream() << " {" << std::endl; this->clauses_->dump_clauses(ast_dump_context); ast_dump_context->ostream() << "}"; } ast_dump_context->ostream() << std::endl; } // Class Switch_statement. // Traversal. int Switch_statement::do_traverse(Traverse* traverse) { if (this->val_ != NULL) { if (this->traverse_expression(traverse, &this->val_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } return this->clauses_->traverse(traverse); } // Lower a Switch_statement to a Constant_switch_statement or a series // of if statements. Statement* Switch_statement::do_lower(Gogo*, Named_object*, Block* enclosing, Statement_inserter*) { Location loc = this->location(); if (this->val_ != NULL && (this->val_->is_error_expression() || this->val_->type()->is_error())) { go_assert(saw_errors()); return Statement::make_error_statement(loc); } if (this->val_ != NULL && this->val_->type()->integer_type() != NULL && !this->clauses_->empty() && this->clauses_->is_constant()) return new Constant_switch_statement(this->val_, this->clauses_, this->break_label_, loc); if (this->val_ != NULL && !this->val_->type()->is_comparable() && !Type::are_compatible_for_comparison(true, this->val_->type(), Type::make_nil_type(), NULL)) { go_error_at(this->val_->location(), "cannot switch on value whose type that may not be compared"); return Statement::make_error_statement(loc); } Block* b = new Block(enclosing, loc); if (this->clauses_->empty()) { Expression* val = this->val_; if (val == NULL) val = Expression::make_boolean(true, loc); return Statement::make_statement(val, true); } // var val_temp VAL_TYPE = VAL Expression* val = this->val_; if (val == NULL) val = Expression::make_boolean(true, loc); Type* type = val->type(); if (type->is_abstract()) type = type->make_non_abstract_type(); Temporary_statement* val_temp = Statement::make_temporary(type, val, loc); b->add_statement(val_temp); this->clauses_->lower(b, val_temp, this->break_label()); Statement* s = Statement::make_unnamed_label_statement(this->break_label_); b->add_statement(s); return Statement::make_block_statement(b, loc); } // Return the break label for this switch statement, creating it if // necessary. Unnamed_label* Switch_statement::break_label() { if (this->break_label_ == NULL) this->break_label_ = new Unnamed_label(this->location()); return this->break_label_; } // Dump the AST representation for a switch statement. void Switch_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << "switch "; if (this->val_ != NULL) { ast_dump_context->dump_expression(this->val_); } if (ast_dump_context->dump_subblocks()) { ast_dump_context->ostream() << " {" << dsuffix(location()) << std::endl; this->clauses_->dump_clauses(ast_dump_context); ast_dump_context->print_indent(); ast_dump_context->ostream() << "}"; } ast_dump_context->ostream() << std::endl; } // Return whether this switch may fall through. bool Switch_statement::do_may_fall_through() const { if (this->clauses_ == NULL) return true; // If we have a break label, then some case needed it. That implies // that the switch statement as a whole can fall through. if (this->break_label_ != NULL) return true; return this->clauses_->may_fall_through(); } // Make a switch statement. Switch_statement* Statement::make_switch_statement(Expression* val, Location location) { return new Switch_statement(val, location); } // Class Type_case_clauses::Type_case_clause. // Traversal. int Type_case_clauses::Type_case_clause::traverse(Traverse* traverse) { if (!this->is_default_ && ((traverse->traverse_mask() & (Traverse::traverse_types | Traverse::traverse_expressions)) != 0) && Type::traverse(this->type_, traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; if (this->statements_ != NULL) return this->statements_->traverse(traverse); return TRAVERSE_CONTINUE; } // Lower one clause in a type switch. Add statements to the block B. // The type descriptor we are switching on is in DESCRIPTOR_TEMP. // BREAK_LABEL is the label at the end of the type switch. // *STMTS_LABEL, if not NULL, is a label to put at the start of the // statements. void Type_case_clauses::Type_case_clause::lower(Type* switch_val_type, Block* b, Temporary_statement* descriptor_temp, Unnamed_label* break_label, Unnamed_label** stmts_label) const { Location loc = this->location_; Unnamed_label* next_case_label = NULL; if (!this->is_default_) { Type* type = this->type_; std::string reason; if (switch_val_type->interface_type() != NULL && !type->is_nil_constant_as_type() && type->interface_type() == NULL && !switch_val_type->interface_type()->implements_interface(type, &reason)) { if (reason.empty()) go_error_at(this->location_, "impossible type switch case"); else go_error_at(this->location_, "impossible type switch case (%s)", reason.c_str()); } Expression* ref = Expression::make_temporary_reference(descriptor_temp, loc); Expression* cond; // The language permits case nil, which is of course a constant // rather than a type. It will appear here as an invalid // forwarding type. if (type->is_nil_constant_as_type()) cond = Expression::make_binary(OPERATOR_EQEQ, ref, Expression::make_nil(loc), loc); else cond = Runtime::make_call((type->interface_type() == NULL ? Runtime::IFACETYPEEQ : Runtime::IFACET2IP), loc, 2, Expression::make_type_descriptor(type, loc), ref); Unnamed_label* dest; if (!this->is_fallthrough_) { // if !COND { goto NEXT_CASE_LABEL } next_case_label = new Unnamed_label(Linemap::unknown_location()); dest = next_case_label; cond = Expression::make_unary(OPERATOR_NOT, cond, loc); } else { // if COND { goto STMTS_LABEL } go_assert(stmts_label != NULL); if (*stmts_label == NULL) *stmts_label = new Unnamed_label(Linemap::unknown_location()); dest = *stmts_label; } Block* then_block = new Block(b, loc); Statement* s = Statement::make_goto_unnamed_statement(dest, loc); then_block->add_statement(s); s = Statement::make_if_statement(cond, then_block, NULL, loc); b->add_statement(s); } if (this->statements_ != NULL || (!this->is_fallthrough_ && stmts_label != NULL && *stmts_label != NULL)) { go_assert(!this->is_fallthrough_); if (stmts_label != NULL && *stmts_label != NULL) { go_assert(!this->is_default_); if (this->statements_ != NULL) (*stmts_label)->set_location(this->statements_->start_location()); Statement* s = Statement::make_unnamed_label_statement(*stmts_label); b->add_statement(s); *stmts_label = NULL; } if (this->statements_ != NULL) b->add_statement(Statement::make_block_statement(this->statements_, loc)); } if (this->is_fallthrough_) go_assert(next_case_label == NULL); else { Location gloc = (this->statements_ == NULL ? loc : this->statements_->end_location()); b->add_statement(Statement::make_goto_unnamed_statement(break_label, gloc)); if (next_case_label != NULL) { Statement* s = Statement::make_unnamed_label_statement(next_case_label); b->add_statement(s); } } } // Return true if this type clause may fall through to the statements // following the switch. bool Type_case_clauses::Type_case_clause::may_fall_through() const { if (this->is_fallthrough_) { // This case means that we automatically fall through to the // next case (it's used for T1 in case T1, T2:). It does not // mean that we fall through to the end of the type switch as a // whole. There is sure to be a next case and that next case // will determine whether we fall through to the statements // after the type switch. return false; } if (this->statements_ == NULL) return true; return this->statements_->may_fall_through(); } // Dump the AST representation for a type case clause void Type_case_clauses::Type_case_clause::dump_clause( Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); if (this->is_default_) { ast_dump_context->ostream() << "default:"; } else { ast_dump_context->ostream() << "case "; ast_dump_context->dump_type(this->type_); ast_dump_context->ostream() << ":" ; } ast_dump_context->dump_block(this->statements_); if (this->is_fallthrough_) { ast_dump_context->print_indent(); ast_dump_context->ostream() << " (fallthrough)" << std::endl; } } // Class Type_case_clauses. // Traversal. int Type_case_clauses::traverse(Traverse* traverse) { for (Type_clauses::iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) { if (p->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } return TRAVERSE_CONTINUE; } // Check for duplicate types. void Type_case_clauses::check_duplicates() const { typedef Unordered_set_hash(const Type*, Type_hash_identical, Type_identical) Types_seen; Types_seen types_seen; for (Type_clauses::const_iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) { Type* t = p->type(); if (t == NULL) continue; if (t->is_nil_constant_as_type()) t = Type::make_nil_type(); std::pair ins = types_seen.insert(t); if (!ins.second) go_error_at(p->location(), "duplicate type in switch"); } } // Lower the clauses in a type switch. Add statements to the block B. // The type descriptor we are switching on is in DESCRIPTOR_TEMP. // BREAK_LABEL is the label at the end of the type switch. void Type_case_clauses::lower(Type* switch_val_type, Block* b, Temporary_statement* descriptor_temp, Unnamed_label* break_label) const { const Type_case_clause* default_case = NULL; Unnamed_label* stmts_label = NULL; for (Type_clauses::const_iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) { if (!p->is_default()) p->lower(switch_val_type, b, descriptor_temp, break_label, &stmts_label); else { // We are generating a series of tests, which means that we // need to move the default case to the end. default_case = &*p; } } go_assert(stmts_label == NULL); if (default_case != NULL) default_case->lower(switch_val_type, b, descriptor_temp, break_label, NULL); } // Return true if these clauses may fall through to the statements // following the switch statement. bool Type_case_clauses::may_fall_through() const { bool found_default = false; for (Type_clauses::const_iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) { if (p->may_fall_through()) return true; if (p->is_default()) found_default = true; } return !found_default; } // Dump the AST representation for case clauses (from a switch statement) void Type_case_clauses::dump_clauses(Ast_dump_context* ast_dump_context) const { for (Type_clauses::const_iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) p->dump_clause(ast_dump_context); } // Class Type_switch_statement. // Traversal. int Type_switch_statement::do_traverse(Traverse* traverse) { if (this->traverse_expression(traverse, &this->expr_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; if (this->clauses_ != NULL) return this->clauses_->traverse(traverse); return TRAVERSE_CONTINUE; } // Lower a type switch statement to a series of if statements. The gc // compiler is able to generate a table in some cases. However, that // does not work for us because we may have type descriptors in // different shared libraries, so we can't compare them with simple // equality testing. Statement* Type_switch_statement::do_lower(Gogo*, Named_object*, Block* enclosing, Statement_inserter*) { const Location loc = this->location(); if (this->clauses_ != NULL) this->clauses_->check_duplicates(); Block* b = new Block(enclosing, loc); Type* val_type = this->expr_->type(); if (val_type->interface_type() == NULL) { if (!val_type->is_error()) this->report_error(_("cannot type switch on non-interface value")); return Statement::make_error_statement(loc); } // var descriptor_temp DESCRIPTOR_TYPE Type* descriptor_type = Type::make_type_descriptor_ptr_type(); Temporary_statement* descriptor_temp = Statement::make_temporary(descriptor_type, NULL, loc); b->add_statement(descriptor_temp); // descriptor_temp = ifacetype(val_temp) FIXME: This should be // inlined. bool is_empty = val_type->interface_type()->is_empty(); Expression* call = Runtime::make_call((is_empty ? Runtime::EFACETYPE : Runtime::IFACETYPE), loc, 1, this->expr_); Temporary_reference_expression* lhs = Expression::make_temporary_reference(descriptor_temp, loc); lhs->set_is_lvalue(); Statement* s = Statement::make_assignment(lhs, call, loc); b->add_statement(s); if (this->clauses_ != NULL) this->clauses_->lower(val_type, b, descriptor_temp, this->break_label()); s = Statement::make_unnamed_label_statement(this->break_label_); b->add_statement(s); return Statement::make_block_statement(b, loc); } // Return whether this switch may fall through. bool Type_switch_statement::do_may_fall_through() const { if (this->clauses_ == NULL) return true; // If we have a break label, then some case needed it. That implies // that the switch statement as a whole can fall through. if (this->break_label_ != NULL) return true; return this->clauses_->may_fall_through(); } // Return the break label for this type switch statement, creating it // if necessary. Unnamed_label* Type_switch_statement::break_label() { if (this->break_label_ == NULL) this->break_label_ = new Unnamed_label(this->location()); return this->break_label_; } // Dump the AST representation for a type switch statement void Type_switch_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << "switch "; if (!this->name_.empty()) ast_dump_context->ostream() << this->name_ << " = "; ast_dump_context->dump_expression(this->expr_); ast_dump_context->ostream() << " .(type)"; if (ast_dump_context->dump_subblocks()) { ast_dump_context->ostream() << " {" << dsuffix(location()) << std::endl; this->clauses_->dump_clauses(ast_dump_context); ast_dump_context->ostream() << "}"; } ast_dump_context->ostream() << std::endl; } // Make a type switch statement. Type_switch_statement* Statement::make_type_switch_statement(const std::string& name, Expression* expr, Location location) { return new Type_switch_statement(name, expr, location); } // Class Send_statement. // Traversal. int Send_statement::do_traverse(Traverse* traverse) { if (this->traverse_expression(traverse, &this->channel_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return this->traverse_expression(traverse, &this->val_); } // Determine types. void Send_statement::do_determine_types() { this->channel_->determine_type_no_context(); Type* type = this->channel_->type(); Type_context context; if (type->channel_type() != NULL) context.type = type->channel_type()->element_type(); this->val_->determine_type(&context); } // Check types. void Send_statement::do_check_types(Gogo*) { Type* type = this->channel_->type(); if (type->is_error()) { this->set_is_error(); return; } Channel_type* channel_type = type->channel_type(); if (channel_type == NULL) { go_error_at(this->location(), "left operand of %<<-%> must be channel"); this->set_is_error(); return; } Type* element_type = channel_type->element_type(); if (!Type::are_assignable(element_type, this->val_->type(), NULL)) { this->report_error(_("incompatible types in send")); return; } if (!channel_type->may_send()) { this->report_error(_("invalid send on receive-only channel")); return; } } // Flatten a send statement. We may need a temporary for interface // conversion. Statement* Send_statement::do_flatten(Gogo*, Named_object*, Block*, Statement_inserter* inserter) { if (this->channel_->is_error_expression() || this->channel_->type()->is_error_type()) { go_assert(saw_errors()); return Statement::make_error_statement(this->location()); } Type* element_type = this->channel_->type()->channel_type()->element_type(); if (!Type::are_identical(element_type, this->val_->type(), false, NULL) && this->val_->type()->interface_type() != NULL && !this->val_->is_variable()) { Temporary_statement* temp = Statement::make_temporary(NULL, this->val_, this->location()); inserter->insert(temp); this->val_ = Expression::make_temporary_reference(temp, this->location()); } return this; } // Convert a send statement to the backend representation. Bstatement* Send_statement::do_get_backend(Translate_context* context) { Location loc = this->location(); Channel_type* channel_type = this->channel_->type()->channel_type(); Type* element_type = channel_type->element_type(); Expression* val = Expression::convert_for_assignment(context->gogo(), element_type, this->val_, loc); bool can_take_address; switch (element_type->base()->classification()) { case Type::TYPE_BOOLEAN: case Type::TYPE_INTEGER: case Type::TYPE_FUNCTION: case Type::TYPE_POINTER: case Type::TYPE_MAP: case Type::TYPE_CHANNEL: case Type::TYPE_FLOAT: case Type::TYPE_COMPLEX: case Type::TYPE_STRING: case Type::TYPE_INTERFACE: can_take_address = false; break; case Type::TYPE_STRUCT: can_take_address = true; break; case Type::TYPE_ARRAY: can_take_address = !element_type->is_slice_type(); break; default: case Type::TYPE_ERROR: case Type::TYPE_VOID: case Type::TYPE_SINK: case Type::TYPE_NIL: case Type::TYPE_NAMED: case Type::TYPE_FORWARD: go_assert(saw_errors()); return context->backend()->error_statement(); } // Only try to take the address of a variable. We have already // moved variables to the heap, so this should not cause that to // happen unnecessarily. if (can_take_address && val->var_expression() == NULL && val->temporary_reference_expression() == NULL) can_take_address = false; Expression* td = Expression::make_type_descriptor(this->channel_->type(), loc); Bstatement* btemp = NULL; if (can_take_address) { // The function doesn't change the value, so just take its // address directly. val = Expression::make_unary(OPERATOR_AND, val, loc); } else { // The value is not in a variable, or is small enough that it // might be in a register, and taking the address would push it // on the stack. Copy it into a temporary variable to take the // address. Temporary_statement* temp = Statement::make_temporary(element_type, val, loc); Expression* ref = Expression::make_temporary_reference(temp, loc); val = Expression::make_unary(OPERATOR_AND, ref, loc); btemp = temp->get_backend(context); } Expression* call = Runtime::make_call(Runtime::CHANSEND, loc, 3, td, this->channel_, val); context->gogo()->lower_expression(context->function(), NULL, &call); Bexpression* bcall = call->get_backend(context); Bfunction* bfunction = context->function()->func_value()->get_decl(); Bstatement* s = context->backend()->expression_statement(bfunction, bcall); if (btemp == NULL) return s; else return context->backend()->compound_statement(btemp, s); } // Dump the AST representation for a send statement void Send_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->dump_expression(this->channel_); ast_dump_context->ostream() << " <- "; ast_dump_context->dump_expression(this->val_); ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make a send statement. Send_statement* Statement::make_send_statement(Expression* channel, Expression* val, Location location) { return new Send_statement(channel, val, location); } // Class Select_clauses::Select_clause. // Traversal. int Select_clauses::Select_clause::traverse(Traverse* traverse) { if (!this->is_lowered_ && (traverse->traverse_mask() & (Traverse::traverse_types | Traverse::traverse_expressions)) != 0) { if (this->channel_ != NULL) { if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } if (this->val_ != NULL) { if (Expression::traverse(&this->val_, traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } if (this->closed_ != NULL) { if (Expression::traverse(&this->closed_, traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } } if (this->statements_ != NULL) { if (this->statements_->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } return TRAVERSE_CONTINUE; } // Lowering. We call a function to register this clause, and arrange // to set any variables in any receive clause. void Select_clauses::Select_clause::lower(Gogo* gogo, Named_object* function, Block* b, Temporary_statement* sel) { Location loc = this->location_; Expression* selref = Expression::make_temporary_reference(sel, loc); selref = Expression::make_unary(OPERATOR_AND, selref, loc); Expression* index_expr = Expression::make_integer_ul(this->index_, NULL, loc); if (this->is_default_) { go_assert(this->channel_ == NULL && this->val_ == NULL); this->lower_default(b, selref, index_expr); this->is_lowered_ = true; return; } // Evaluate the channel before the select statement. Temporary_statement* channel_temp = Statement::make_temporary(NULL, this->channel_, loc); b->add_statement(channel_temp); Expression* chanref = Expression::make_temporary_reference(channel_temp, loc); if (this->is_send_) this->lower_send(b, selref, chanref, index_expr); else this->lower_recv(gogo, function, b, selref, chanref, index_expr); // Now all references should be handled through the statements, not // through here. this->is_lowered_ = true; this->val_ = NULL; } // Lower a default clause in a select statement. void Select_clauses::Select_clause::lower_default(Block* b, Expression* selref, Expression* index_expr) { Location loc = this->location_; Expression* call = Runtime::make_call(Runtime::SELECTDEFAULT, loc, 2, selref, index_expr); b->add_statement(Statement::make_statement(call, true)); } // Lower a send clause in a select statement. void Select_clauses::Select_clause::lower_send(Block* b, Expression* selref, Expression* chanref, Expression* index_expr) { Location loc = this->location_; Channel_type* ct = this->channel_->type()->channel_type(); if (ct == NULL) return; Type* valtype = ct->element_type(); // Note that copying the value to a temporary here means that we // evaluate the send values in the required order. Temporary_statement* val = Statement::make_temporary(valtype, this->val_, loc); b->add_statement(val); Expression* valref = Expression::make_temporary_reference(val, loc); Expression* valaddr = Expression::make_unary(OPERATOR_AND, valref, loc); Expression* call = Runtime::make_call(Runtime::SELECTSEND, loc, 4, selref, chanref, valaddr, index_expr); b->add_statement(Statement::make_statement(call, true)); } // Lower a receive clause in a select statement. void Select_clauses::Select_clause::lower_recv(Gogo* gogo, Named_object* function, Block* b, Expression* selref, Expression* chanref, Expression* index_expr) { Location loc = this->location_; Channel_type* ct = this->channel_->type()->channel_type(); if (ct == NULL) return; Type* valtype = ct->element_type(); Temporary_statement* val = Statement::make_temporary(valtype, NULL, loc); b->add_statement(val); Expression* valref = Expression::make_temporary_reference(val, loc); Expression* valaddr = Expression::make_unary(OPERATOR_AND, valref, loc); Temporary_statement* closed_temp = NULL; Expression* call; if (this->closed_ == NULL && this->closedvar_ == NULL) call = Runtime::make_call(Runtime::SELECTRECV, loc, 4, selref, chanref, valaddr, index_expr); else { closed_temp = Statement::make_temporary(Type::lookup_bool_type(), NULL, loc); b->add_statement(closed_temp); Expression* cref = Expression::make_temporary_reference(closed_temp, loc); Expression* caddr = Expression::make_unary(OPERATOR_AND, cref, loc); call = Runtime::make_call(Runtime::SELECTRECV2, loc, 5, selref, chanref, valaddr, caddr, index_expr); } b->add_statement(Statement::make_statement(call, true)); // If the block of statements is executed, arrange for the received // value to move from VAL to the place where the statements expect // it. Block* init = NULL; if (this->var_ != NULL) { go_assert(this->val_ == NULL); valref = Expression::make_temporary_reference(val, loc); this->var_->var_value()->set_init(valref); this->var_->var_value()->clear_type_from_chan_element(); } else if (this->val_ != NULL && !this->val_->is_sink_expression()) { init = new Block(b, loc); valref = Expression::make_temporary_reference(val, loc); init->add_statement(Statement::make_assignment(this->val_, valref, loc)); } if (this->closedvar_ != NULL) { go_assert(this->closed_ == NULL); Expression* cref = Expression::make_temporary_reference(closed_temp, loc); this->closedvar_->var_value()->set_init(cref); } else if (this->closed_ != NULL && !this->closed_->is_sink_expression()) { if (init == NULL) init = new Block(b, loc); Expression* cref = Expression::make_temporary_reference(closed_temp, loc); init->add_statement(Statement::make_assignment(this->closed_, cref, loc)); } if (init != NULL) { gogo->lower_block(function, init); if (this->statements_ != NULL) init->add_statement(Statement::make_block_statement(this->statements_, loc)); this->statements_ = init; } } // Determine types. void Select_clauses::Select_clause::determine_types() { go_assert(this->is_lowered_); if (this->statements_ != NULL) this->statements_->determine_types(); } // Check types. void Select_clauses::Select_clause::check_types() { if (this->is_default_) return; Channel_type* ct = this->channel_->type()->channel_type(); if (ct == NULL) { go_error_at(this->channel_->location(), "expected channel"); return; } if (this->is_send_ && !ct->may_send()) go_error_at(this->location(), "invalid send on receive-only channel"); else if (!this->is_send_ && !ct->may_receive()) go_error_at(this->location(), "invalid receive on send-only channel"); } // Whether this clause may fall through to the statement which follows // the overall select statement. bool Select_clauses::Select_clause::may_fall_through() const { if (this->statements_ == NULL) return true; return this->statements_->may_fall_through(); } // Return the backend representation for the statements to execute. Bstatement* Select_clauses::Select_clause::get_statements_backend( Translate_context* context) { if (this->statements_ == NULL) return NULL; Bblock* bblock = this->statements_->get_backend(context); return context->backend()->block_statement(bblock); } // Dump the AST representation for a select case clause void Select_clauses::Select_clause::dump_clause( Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); if (this->is_default_) { ast_dump_context->ostream() << "default:"; } else { ast_dump_context->ostream() << "case " ; if (this->is_send_) { ast_dump_context->dump_expression(this->channel_); ast_dump_context->ostream() << " <- " ; if (this->val_ != NULL) ast_dump_context->dump_expression(this->val_); } else { if (this->val_ != NULL) ast_dump_context->dump_expression(this->val_); if (this->closed_ != NULL) { // FIXME: can val_ == NULL and closed_ ! = NULL? ast_dump_context->ostream() << " , " ; ast_dump_context->dump_expression(this->closed_); } if (this->closedvar_ != NULL || this->var_ != NULL) ast_dump_context->ostream() << " := " ; ast_dump_context->ostream() << " <- " ; ast_dump_context->dump_expression(this->channel_); } ast_dump_context->ostream() << ":" ; } ast_dump_context->dump_block(this->statements_); } // Class Select_clauses. // Traversal. int Select_clauses::traverse(Traverse* traverse) { for (Clauses::iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) { if (p->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } return TRAVERSE_CONTINUE; } // Lowering. Here we pull out the channel and the send values, to // enforce the order of evaluation. We also add explicit send and // receive statements to the clauses. void Select_clauses::lower(Gogo* gogo, Named_object* function, Block* b, Temporary_statement* sel) { for (Clauses::iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) p->lower(gogo, function, b, sel); } // Determine types. void Select_clauses::determine_types() { for (Clauses::iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) p->determine_types(); } // Check types. void Select_clauses::check_types() { for (Clauses::iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) p->check_types(); } // Return whether these select clauses fall through to the statement // following the overall select statement. bool Select_clauses::may_fall_through() const { for (Clauses::const_iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) if (p->may_fall_through()) return true; return false; } // Convert to the backend representation. We have already accumulated // all the select information. Now we call selectgo, which will // return the index of the clause to execute. Bstatement* Select_clauses::get_backend(Translate_context* context, Temporary_statement* sel, Unnamed_label *break_label, Location location) { size_t count = this->clauses_.size(); std::vector > cases(count); std::vector clauses(count); Type* int32_type = Type::lookup_integer_type("int32"); int i = 0; for (Clauses::iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p, ++i) { int index = p->index(); Expression* index_expr = Expression::make_integer_ul(index, int32_type, location); cases[i].push_back(index_expr->get_backend(context)); Bstatement* s = p->get_statements_backend(context); Location gloc = (p->statements() == NULL ? p->location() : p->statements()->end_location()); Bstatement* g = break_label->get_goto(context, gloc); if (s == NULL) clauses[i] = g; else clauses[i] = context->backend()->compound_statement(s, g); } Expression* selref = Expression::make_temporary_reference(sel, location); selref = Expression::make_unary(OPERATOR_AND, selref, location); Expression* call = Runtime::make_call(Runtime::SELECTGO, location, 1, selref); context->gogo()->lower_expression(context->function(), NULL, &call); Bexpression* bcall = call->get_backend(context); if (count == 0) { Bfunction* bfunction = context->function()->func_value()->get_decl(); return context->backend()->expression_statement(bfunction, bcall); } std::vector statements; statements.reserve(2); Bfunction* bfunction = context->function()->func_value()->get_decl(); Bstatement* switch_stmt = context->backend()->switch_statement(bfunction, bcall, cases, clauses, location); statements.push_back(switch_stmt); Bstatement* ldef = break_label->get_definition(context); statements.push_back(ldef); return context->backend()->statement_list(statements); } // Dump the AST representation for select clauses. void Select_clauses::dump_clauses(Ast_dump_context* ast_dump_context) const { for (Clauses::const_iterator p = this->clauses_.begin(); p != this->clauses_.end(); ++p) p->dump_clause(ast_dump_context); } // Class Select_statement. // Return the break label for this switch statement, creating it if // necessary. Unnamed_label* Select_statement::break_label() { if (this->break_label_ == NULL) this->break_label_ = new Unnamed_label(this->location()); return this->break_label_; } // Lower a select statement. This will still return a select // statement, but it will be modified to implement the order of // evaluation rules, and to include the send and receive statements as // explicit statements in the clauses. Statement* Select_statement::do_lower(Gogo* gogo, Named_object* function, Block* enclosing, Statement_inserter*) { if (this->is_lowered_) return this; Location loc = this->location(); Block* b = new Block(enclosing, loc); go_assert(this->sel_ == NULL); int ncases = this->clauses_->size(); Type* selstruct_type = Channel_type::select_type(ncases); this->sel_ = Statement::make_temporary(selstruct_type, NULL, loc); b->add_statement(this->sel_); int64_t selstruct_size; if (!selstruct_type->backend_type_size(gogo, &selstruct_size)) { go_assert(saw_errors()); return Statement::make_error_statement(loc); } Expression* ref = Expression::make_temporary_reference(this->sel_, loc); ref = Expression::make_unary(OPERATOR_AND, ref, loc); Expression* selstruct_size_expr = Expression::make_integer_int64(selstruct_size, NULL, loc); Expression* size_expr = Expression::make_integer_ul(ncases, NULL, loc); Expression* call = Runtime::make_call(Runtime::NEWSELECT, loc, 3, ref, selstruct_size_expr, size_expr); b->add_statement(Statement::make_statement(call, true)); this->clauses_->lower(gogo, function, b, this->sel_); this->is_lowered_ = true; b->add_statement(this); return Statement::make_block_statement(b, loc); } // Whether the select statement itself may fall through to the following // statement. bool Select_statement::do_may_fall_through() const { // A select statement is terminating if no break statement // refers to it and all of its clauses are terminating. if (this->break_label_ != NULL) return true; return this->clauses_->may_fall_through(); } // Return the backend representation for a select statement. Bstatement* Select_statement::do_get_backend(Translate_context* context) { return this->clauses_->get_backend(context, this->sel_, this->break_label(), this->location()); } // Dump the AST representation for a select statement. void Select_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << "select"; if (ast_dump_context->dump_subblocks()) { ast_dump_context->ostream() << " {" << dsuffix(location()) << std::endl; this->clauses_->dump_clauses(ast_dump_context); ast_dump_context->ostream() << "}"; } ast_dump_context->ostream() << std::endl; } // Make a select statement. Select_statement* Statement::make_select_statement(Location location) { return new Select_statement(location); } // Class For_statement. // Traversal. int For_statement::do_traverse(Traverse* traverse) { if (this->init_ != NULL) { if (this->init_->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } if (this->cond_ != NULL) { if (this->traverse_expression(traverse, &this->cond_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } if (this->post_ != NULL) { if (this->post_->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } return this->statements_->traverse(traverse); } // Lower a For_statement into if statements and gotos. Getting rid of // complex statements make it easier to handle garbage collection. Statement* For_statement::do_lower(Gogo*, Named_object*, Block* enclosing, Statement_inserter*) { Statement* s; Location loc = this->location(); Block* b = new Block(enclosing, this->location()); if (this->init_ != NULL) { s = Statement::make_block_statement(this->init_, this->init_->start_location()); b->add_statement(s); } Unnamed_label* entry = NULL; if (this->cond_ != NULL) { entry = new Unnamed_label(this->location()); b->add_statement(Statement::make_goto_unnamed_statement(entry, loc)); } Unnamed_label* top = new Unnamed_label(this->location()); top->set_derived_from(this); b->add_statement(Statement::make_unnamed_label_statement(top)); s = Statement::make_block_statement(this->statements_, this->statements_->start_location()); b->add_statement(s); Location end_loc = this->statements_->end_location(); Unnamed_label* cont = this->continue_label_; if (cont != NULL) b->add_statement(Statement::make_unnamed_label_statement(cont)); if (this->post_ != NULL) { s = Statement::make_block_statement(this->post_, this->post_->start_location()); b->add_statement(s); end_loc = this->post_->end_location(); } if (this->cond_ == NULL) b->add_statement(Statement::make_goto_unnamed_statement(top, end_loc)); else { b->add_statement(Statement::make_unnamed_label_statement(entry)); Location cond_loc = this->cond_->location(); Block* then_block = new Block(b, cond_loc); s = Statement::make_goto_unnamed_statement(top, cond_loc); then_block->add_statement(s); s = Statement::make_if_statement(this->cond_, then_block, NULL, cond_loc); b->add_statement(s); } Unnamed_label* brk = this->break_label_; if (brk != NULL) b->add_statement(Statement::make_unnamed_label_statement(brk)); b->set_end_location(end_loc); Statement* bs = Statement::make_block_statement(b, loc); bs->block_statement()->set_is_lowered_for_statement(); return bs; } // Return the break label, creating it if necessary. Unnamed_label* For_statement::break_label() { if (this->break_label_ == NULL) this->break_label_ = new Unnamed_label(this->location()); return this->break_label_; } // Return the continue LABEL_EXPR. Unnamed_label* For_statement::continue_label() { if (this->continue_label_ == NULL) this->continue_label_ = new Unnamed_label(this->location()); return this->continue_label_; } // Set the break and continue labels a for statement. This is used // when lowering a for range statement. void For_statement::set_break_continue_labels(Unnamed_label* break_label, Unnamed_label* continue_label) { go_assert(this->break_label_ == NULL && this->continue_label_ == NULL); this->break_label_ = break_label; this->continue_label_ = continue_label; } // Whether the overall statement may fall through. bool For_statement::do_may_fall_through() const { // A for loop is terminating if it has no condition and // no break statement. if(this->cond_ != NULL) return true; if(this->break_label_ != NULL) return true; return false; } // Dump the AST representation for a for statement. void For_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { if (this->init_ != NULL && ast_dump_context->dump_subblocks()) { ast_dump_context->print_indent(); ast_dump_context->indent(); ast_dump_context->ostream() << "// INIT " << std::endl; ast_dump_context->dump_block(this->init_); ast_dump_context->unindent(); } ast_dump_context->print_indent(); ast_dump_context->ostream() << "for "; if (this->cond_ != NULL) ast_dump_context->dump_expression(this->cond_); if (ast_dump_context->dump_subblocks()) { ast_dump_context->ostream() << " {" << std::endl; ast_dump_context->dump_block(this->statements_); if (this->init_ != NULL) { ast_dump_context->print_indent(); ast_dump_context->ostream() << "// POST " << std::endl; ast_dump_context->dump_block(this->post_); } ast_dump_context->unindent(); ast_dump_context->print_indent(); ast_dump_context->ostream() << "}"; } ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make a for statement. For_statement* Statement::make_for_statement(Block* init, Expression* cond, Block* post, Location location) { return new For_statement(init, cond, post, location); } // Class For_range_statement. // Traversal. int For_range_statement::do_traverse(Traverse* traverse) { if (this->index_var_ != NULL) { if (this->traverse_expression(traverse, &this->index_var_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } if (this->value_var_ != NULL) { if (this->traverse_expression(traverse, &this->value_var_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } if (this->traverse_expression(traverse, &this->range_) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return this->statements_->traverse(traverse); } // Lower a for range statement. For simplicity we lower this into a // for statement, which will then be lowered in turn to goto // statements. Statement* For_range_statement::do_lower(Gogo* gogo, Named_object*, Block* enclosing, Statement_inserter*) { Type* range_type = this->range_->type(); if (range_type->points_to() != NULL && range_type->points_to()->array_type() != NULL && !range_type->points_to()->is_slice_type()) range_type = range_type->points_to(); Type* index_type; Type* value_type = NULL; if (range_type->array_type() != NULL) { index_type = Type::lookup_integer_type("int"); value_type = range_type->array_type()->element_type(); } else if (range_type->is_string_type()) { index_type = Type::lookup_integer_type("int"); value_type = gogo->lookup_global("rune")->type_value(); } else if (range_type->map_type() != NULL) { index_type = range_type->map_type()->key_type(); value_type = range_type->map_type()->val_type(); } else if (range_type->channel_type() != NULL) { index_type = range_type->channel_type()->element_type(); if (this->value_var_ != NULL) { if (!this->value_var_->type()->is_error()) this->report_error(_("too many variables for range clause " "with channel")); return Statement::make_error_statement(this->location()); } } else { this->report_error(_("range clause must have " "array, slice, string, map, or channel type")); return Statement::make_error_statement(this->location()); } Location loc = this->location(); Block* temp_block = new Block(enclosing, loc); Named_object* range_object = NULL; Temporary_statement* range_temp = NULL; Var_expression* ve = this->range_->var_expression(); if (ve != NULL) range_object = ve->named_object(); else { range_temp = Statement::make_temporary(NULL, this->range_, loc); temp_block->add_statement(range_temp); this->range_ = NULL; } Temporary_statement* index_temp = Statement::make_temporary(index_type, NULL, loc); temp_block->add_statement(index_temp); Temporary_statement* value_temp = NULL; if (this->value_var_ != NULL) { value_temp = Statement::make_temporary(value_type, NULL, loc); temp_block->add_statement(value_temp); } Block* body = new Block(temp_block, loc); Block* init; Expression* cond; Block* iter_init; Block* post; // Arrange to do a loop appropriate for the type. We will produce // for INIT ; COND ; POST { // ITER_INIT // INDEX = INDEX_TEMP // VALUE = VALUE_TEMP // If there is a value // original statements // } if (range_type->is_slice_type()) this->lower_range_slice(gogo, temp_block, body, range_object, range_temp, index_temp, value_temp, &init, &cond, &iter_init, &post); else if (range_type->array_type() != NULL) this->lower_range_array(gogo, temp_block, body, range_object, range_temp, index_temp, value_temp, &init, &cond, &iter_init, &post); else if (range_type->is_string_type()) this->lower_range_string(gogo, temp_block, body, range_object, range_temp, index_temp, value_temp, &init, &cond, &iter_init, &post); else if (range_type->map_type() != NULL) this->lower_range_map(gogo, range_type->map_type(), temp_block, body, range_object, range_temp, index_temp, value_temp, &init, &cond, &iter_init, &post); else if (range_type->channel_type() != NULL) this->lower_range_channel(gogo, temp_block, body, range_object, range_temp, index_temp, value_temp, &init, &cond, &iter_init, &post); else go_unreachable(); if (iter_init != NULL) body->add_statement(Statement::make_block_statement(iter_init, loc)); if (this->index_var_ != NULL) { Statement* assign; Expression* index_ref = Expression::make_temporary_reference(index_temp, loc); if (this->value_var_ == NULL) assign = Statement::make_assignment(this->index_var_, index_ref, loc); else { Expression_list* lhs = new Expression_list(); lhs->push_back(this->index_var_); lhs->push_back(this->value_var_); Expression_list* rhs = new Expression_list(); rhs->push_back(index_ref); rhs->push_back(Expression::make_temporary_reference(value_temp, loc)); assign = Statement::make_tuple_assignment(lhs, rhs, loc); } body->add_statement(assign); } body->add_statement(Statement::make_block_statement(this->statements_, loc)); body->set_end_location(this->statements_->end_location()); For_statement* loop = Statement::make_for_statement(init, cond, post, this->location()); loop->add_statements(body); loop->set_break_continue_labels(this->break_label_, this->continue_label_); temp_block->add_statement(loop); return Statement::make_block_statement(temp_block, loc); } // Return a reference to the range, which may be in RANGE_OBJECT or in // RANGE_TEMP. Expression* For_range_statement::make_range_ref(Named_object* range_object, Temporary_statement* range_temp, Location loc) { if (range_object != NULL) return Expression::make_var_reference(range_object, loc); else return Expression::make_temporary_reference(range_temp, loc); } // Return a call to the predeclared function FUNCNAME passing a // reference to the temporary variable ARG. Call_expression* For_range_statement::call_builtin(Gogo* gogo, const char* funcname, Expression* arg, Location loc) { Named_object* no = gogo->lookup_global(funcname); go_assert(no != NULL && no->is_function_declaration()); Expression* func = Expression::make_func_reference(no, NULL, loc); Expression_list* params = new Expression_list(); params->push_back(arg); return Expression::make_call(func, params, false, loc); } // Lower a for range over an array. void For_range_statement::lower_range_array(Gogo* gogo, Block* enclosing, Block* body_block, Named_object* range_object, Temporary_statement* range_temp, Temporary_statement* index_temp, Temporary_statement* value_temp, Block** pinit, Expression** pcond, Block** piter_init, Block** ppost) { Location loc = this->location(); // The loop we generate: // len_temp := len(range) // range_temp := range // for index_temp = 0; index_temp < len_temp; index_temp++ { // value_temp = range_temp[index_temp] // index = index_temp // value = value_temp // original body // } // Set *PINIT to // var len_temp int // len_temp = len(range) // index_temp = 0 Block* init = new Block(enclosing, loc); Expression* ref = this->make_range_ref(range_object, range_temp, loc); range_temp = Statement::make_temporary(NULL, ref, loc); Expression* len_call = this->call_builtin(gogo, "len", ref, loc); Temporary_statement* len_temp = Statement::make_temporary(index_temp->type(), len_call, loc); init->add_statement(range_temp); init->add_statement(len_temp); Expression* zexpr = Expression::make_integer_ul(0, NULL, loc); Temporary_reference_expression* tref = Expression::make_temporary_reference(index_temp, loc); tref->set_is_lvalue(); Statement* s = Statement::make_assignment(tref, zexpr, loc); init->add_statement(s); *pinit = init; // Set *PCOND to // index_temp < len_temp ref = Expression::make_temporary_reference(index_temp, loc); Expression* ref2 = Expression::make_temporary_reference(len_temp, loc); Expression* lt = Expression::make_binary(OPERATOR_LT, ref, ref2, loc); *pcond = lt; // Set *PITER_INIT to // value_temp = range[index_temp] Block* iter_init = NULL; if (value_temp != NULL) { iter_init = new Block(body_block, loc); ref = Expression::make_temporary_reference(range_temp, loc); Expression* ref2 = Expression::make_temporary_reference(index_temp, loc); Expression* index = Expression::make_index(ref, ref2, NULL, NULL, loc); tref = Expression::make_temporary_reference(value_temp, loc); tref->set_is_lvalue(); s = Statement::make_assignment(tref, index, loc); iter_init->add_statement(s); } *piter_init = iter_init; // Set *PPOST to // index_temp++ Block* post = new Block(enclosing, loc); tref = Expression::make_temporary_reference(index_temp, loc); tref->set_is_lvalue(); s = Statement::make_inc_statement(tref); post->add_statement(s); *ppost = post; } // Lower a for range over a slice. void For_range_statement::lower_range_slice(Gogo* gogo, Block* enclosing, Block* body_block, Named_object* range_object, Temporary_statement* range_temp, Temporary_statement* index_temp, Temporary_statement* value_temp, Block** pinit, Expression** pcond, Block** piter_init, Block** ppost) { Location loc = this->location(); // The loop we generate: // for_temp := range // len_temp := len(for_temp) // for index_temp = 0; index_temp < len_temp; index_temp++ { // value_temp = for_temp[index_temp] // index = index_temp // value = value_temp // original body // } // // Using for_temp means that we don't need to check bounds when // fetching range_temp[index_temp]. // Set *PINIT to // range_temp := range // var len_temp int // len_temp = len(range_temp) // index_temp = 0 Block* init = new Block(enclosing, loc); Expression* ref = this->make_range_ref(range_object, range_temp, loc); Temporary_statement* for_temp = Statement::make_temporary(NULL, ref, loc); init->add_statement(for_temp); ref = Expression::make_temporary_reference(for_temp, loc); Expression* len_call = this->call_builtin(gogo, "len", ref, loc); Temporary_statement* len_temp = Statement::make_temporary(index_temp->type(), len_call, loc); init->add_statement(len_temp); Expression* zexpr = Expression::make_integer_ul(0, NULL, loc); Temporary_reference_expression* tref = Expression::make_temporary_reference(index_temp, loc); tref->set_is_lvalue(); Statement* s = Statement::make_assignment(tref, zexpr, loc); init->add_statement(s); *pinit = init; // Set *PCOND to // index_temp < len_temp ref = Expression::make_temporary_reference(index_temp, loc); Expression* ref2 = Expression::make_temporary_reference(len_temp, loc); Expression* lt = Expression::make_binary(OPERATOR_LT, ref, ref2, loc); *pcond = lt; // Set *PITER_INIT to // value_temp = range[index_temp] Block* iter_init = NULL; if (value_temp != NULL) { iter_init = new Block(body_block, loc); ref = Expression::make_temporary_reference(for_temp, loc); Expression* ref2 = Expression::make_temporary_reference(index_temp, loc); Expression* index = Expression::make_index(ref, ref2, NULL, NULL, loc); tref = Expression::make_temporary_reference(value_temp, loc); tref->set_is_lvalue(); s = Statement::make_assignment(tref, index, loc); iter_init->add_statement(s); } *piter_init = iter_init; // Set *PPOST to // index_temp++ Block* post = new Block(enclosing, loc); tref = Expression::make_temporary_reference(index_temp, loc); tref->set_is_lvalue(); s = Statement::make_inc_statement(tref); post->add_statement(s); *ppost = post; } // Lower a for range over a string. void For_range_statement::lower_range_string(Gogo* gogo, Block* enclosing, Block* body_block, Named_object* range_object, Temporary_statement* range_temp, Temporary_statement* index_temp, Temporary_statement* value_temp, Block** pinit, Expression** pcond, Block** piter_init, Block** ppost) { Location loc = this->location(); // The loop we generate: // len_temp := len(range) // var next_index_temp int // for index_temp = 0; index_temp < len_temp; index_temp = next_index_temp { // value_temp = rune(range[index_temp]) // if value_temp < utf8.RuneSelf { // next_index_temp = index_temp + 1 // } else { // value_temp, next_index_temp = decoderune(range, index_temp) // } // index = index_temp // value = value_temp // // original body // } // Set *PINIT to // len_temp := len(range) // var next_index_temp int // index_temp = 0 // var value_temp rune // if value_temp not passed in Block* init = new Block(enclosing, loc); Expression* ref = this->make_range_ref(range_object, range_temp, loc); Call_expression* call = this->call_builtin(gogo, "len", ref, loc); Temporary_statement* len_temp = Statement::make_temporary(index_temp->type(), call, loc); init->add_statement(len_temp); Temporary_statement* next_index_temp = Statement::make_temporary(index_temp->type(), NULL, loc); init->add_statement(next_index_temp); Temporary_reference_expression* index_ref = Expression::make_temporary_reference(index_temp, loc); index_ref->set_is_lvalue(); Expression* zexpr = Expression::make_integer_ul(0, index_temp->type(), loc); Statement* s = Statement::make_assignment(index_ref, zexpr, loc); init->add_statement(s); Type* rune_type; if (value_temp != NULL) rune_type = value_temp->type(); else { rune_type = gogo->lookup_global("rune")->type_value(); value_temp = Statement::make_temporary(rune_type, NULL, loc); init->add_statement(value_temp); } *pinit = init; // Set *PCOND to // index_temp < len_temp index_ref = Expression::make_temporary_reference(index_temp, loc); Expression* len_ref = Expression::make_temporary_reference(len_temp, loc); *pcond = Expression::make_binary(OPERATOR_LT, index_ref, len_ref, loc); // Set *PITER_INIT to // value_temp = rune(range[index_temp]) // if value_temp < utf8.RuneSelf { // next_index_temp = index_temp + 1 // } else { // value_temp, next_index_temp = decoderune(range, index_temp) // } Block* iter_init = new Block(body_block, loc); ref = this->make_range_ref(range_object, range_temp, loc); index_ref = Expression::make_temporary_reference(index_temp, loc); ref = Expression::make_string_index(ref, index_ref, NULL, loc); ref = Expression::make_cast(rune_type, ref, loc); Temporary_reference_expression* value_ref = Expression::make_temporary_reference(value_temp, loc); value_ref->set_is_lvalue(); s = Statement::make_assignment(value_ref, ref, loc); iter_init->add_statement(s); value_ref = Expression::make_temporary_reference(value_temp, loc); Expression* rune_self = Expression::make_integer_ul(0x80, rune_type, loc); Expression* cond = Expression::make_binary(OPERATOR_LT, value_ref, rune_self, loc); Block* then_block = new Block(iter_init, loc); Temporary_reference_expression* lhs = Expression::make_temporary_reference(next_index_temp, loc); lhs->set_is_lvalue(); index_ref = Expression::make_temporary_reference(index_temp, loc); Expression* one = Expression::make_integer_ul(1, index_temp->type(), loc); Expression* sum = Expression::make_binary(OPERATOR_PLUS, index_ref, one, loc); s = Statement::make_assignment(lhs, sum, loc); then_block->add_statement(s); Block* else_block = new Block(iter_init, loc); ref = this->make_range_ref(range_object, range_temp, loc); index_ref = Expression::make_temporary_reference(index_temp, loc); call = Runtime::make_call(Runtime::DECODERUNE, loc, 2, ref, index_ref); value_ref = Expression::make_temporary_reference(value_temp, loc); value_ref->set_is_lvalue(); Expression* res = Expression::make_call_result(call, 0); s = Statement::make_assignment(value_ref, res, loc); else_block->add_statement(s); lhs = Expression::make_temporary_reference(next_index_temp, loc); lhs->set_is_lvalue(); res = Expression::make_call_result(call, 1); s = Statement::make_assignment(lhs, res, loc); else_block->add_statement(s); s = Statement::make_if_statement(cond, then_block, else_block, loc); iter_init->add_statement(s); *piter_init = iter_init; // Set *PPOST to // index_temp = next_index_temp Block* post = new Block(enclosing, loc); index_ref = Expression::make_temporary_reference(index_temp, loc); index_ref->set_is_lvalue(); ref = Expression::make_temporary_reference(next_index_temp, loc); s = Statement::make_assignment(index_ref, ref, loc); post->add_statement(s); *ppost = post; } // Lower a for range over a map. void For_range_statement::lower_range_map(Gogo* gogo, Map_type* map_type, Block* enclosing, Block* body_block, Named_object* range_object, Temporary_statement* range_temp, Temporary_statement* index_temp, Temporary_statement* value_temp, Block** pinit, Expression** pcond, Block** piter_init, Block** ppost) { Location loc = this->location(); // The runtime uses a struct to handle ranges over a map. The // struct is built by Map_type::hiter_type for a specific map type. // The loop we generate: // var hiter map_iteration_struct // for mapiterinit(type, range, &hiter); hiter.key != nil; mapiternext(&hiter) { // index_temp = *hiter.key // value_temp = *hiter.val // index = index_temp // value = value_temp // original body // } // Set *PINIT to // var hiter map_iteration_struct // runtime.mapiterinit(type, range, &hiter) Block* init = new Block(enclosing, loc); Type* map_iteration_type = map_type->hiter_type(gogo); Temporary_statement* hiter = Statement::make_temporary(map_iteration_type, NULL, loc); init->add_statement(hiter); Expression* p1 = Expression::make_type_descriptor(map_type, loc); Expression* p2 = this->make_range_ref(range_object, range_temp, loc); Expression* ref = Expression::make_temporary_reference(hiter, loc); Expression* p3 = Expression::make_unary(OPERATOR_AND, ref, loc); Expression* call = Runtime::make_call(Runtime::MAPITERINIT, loc, 3, p1, p2, p3); init->add_statement(Statement::make_statement(call, true)); *pinit = init; // Set *PCOND to // hiter.key != nil ref = Expression::make_temporary_reference(hiter, loc); ref = Expression::make_field_reference(ref, 0, loc); Expression* ne = Expression::make_binary(OPERATOR_NOTEQ, ref, Expression::make_nil(loc), loc); *pcond = ne; // Set *PITER_INIT to // index_temp = *hiter.key // value_temp = *hiter.val Block* iter_init = new Block(body_block, loc); Expression* lhs = Expression::make_temporary_reference(index_temp, loc); Expression* rhs = Expression::make_temporary_reference(hiter, loc); rhs = Expression::make_field_reference(ref, 0, loc); rhs = Expression::make_unary(OPERATOR_MULT, ref, loc); Statement* set = Statement::make_assignment(lhs, rhs, loc); iter_init->add_statement(set); if (value_temp != NULL) { lhs = Expression::make_temporary_reference(value_temp, loc); rhs = Expression::make_temporary_reference(hiter, loc); rhs = Expression::make_field_reference(rhs, 1, loc); rhs = Expression::make_unary(OPERATOR_MULT, rhs, loc); set = Statement::make_assignment(lhs, rhs, loc); iter_init->add_statement(set); } *piter_init = iter_init; // Set *PPOST to // mapiternext(&hiter) Block* post = new Block(enclosing, loc); ref = Expression::make_temporary_reference(hiter, loc); p1 = Expression::make_unary(OPERATOR_AND, ref, loc); call = Runtime::make_call(Runtime::MAPITERNEXT, loc, 1, p1); post->add_statement(Statement::make_statement(call, true)); *ppost = post; } // Lower a for range over a channel. void For_range_statement::lower_range_channel(Gogo*, Block*, Block* body_block, Named_object* range_object, Temporary_statement* range_temp, Temporary_statement* index_temp, Temporary_statement* value_temp, Block** pinit, Expression** pcond, Block** piter_init, Block** ppost) { go_assert(value_temp == NULL); Location loc = this->location(); // The loop we generate: // for { // index_temp, ok_temp = <-range // if !ok_temp { // break // } // index = index_temp // original body // } // We have no initialization code, no condition, and no post code. *pinit = NULL; *pcond = NULL; *ppost = NULL; // Set *PITER_INIT to // index_temp, ok_temp = <-range // if !ok_temp { // break // } Block* iter_init = new Block(body_block, loc); Temporary_statement* ok_temp = Statement::make_temporary(Type::lookup_bool_type(), NULL, loc); iter_init->add_statement(ok_temp); Expression* cref = this->make_range_ref(range_object, range_temp, loc); Temporary_reference_expression* iref = Expression::make_temporary_reference(index_temp, loc); iref->set_is_lvalue(); Temporary_reference_expression* oref = Expression::make_temporary_reference(ok_temp, loc); oref->set_is_lvalue(); Statement* s = Statement::make_tuple_receive_assignment(iref, oref, cref, loc); iter_init->add_statement(s); Block* then_block = new Block(iter_init, loc); s = Statement::make_break_statement(this->break_label(), loc); then_block->add_statement(s); oref = Expression::make_temporary_reference(ok_temp, loc); Expression* cond = Expression::make_unary(OPERATOR_NOT, oref, loc); s = Statement::make_if_statement(cond, then_block, NULL, loc); iter_init->add_statement(s); *piter_init = iter_init; } // Return the break LABEL_EXPR. Unnamed_label* For_range_statement::break_label() { if (this->break_label_ == NULL) this->break_label_ = new Unnamed_label(this->location()); return this->break_label_; } // Return the continue LABEL_EXPR. Unnamed_label* For_range_statement::continue_label() { if (this->continue_label_ == NULL) this->continue_label_ = new Unnamed_label(this->location()); return this->continue_label_; } // Dump the AST representation for a for range statement. void For_range_statement::do_dump_statement(Ast_dump_context* ast_dump_context) const { ast_dump_context->print_indent(); ast_dump_context->ostream() << "for "; ast_dump_context->dump_expression(this->index_var_); if (this->value_var_ != NULL) { ast_dump_context->ostream() << ", "; ast_dump_context->dump_expression(this->value_var_); } ast_dump_context->ostream() << " = range "; ast_dump_context->dump_expression(this->range_); if (ast_dump_context->dump_subblocks()) { ast_dump_context->ostream() << " {" << std::endl; ast_dump_context->indent(); ast_dump_context->dump_block(this->statements_); ast_dump_context->unindent(); ast_dump_context->print_indent(); ast_dump_context->ostream() << "}"; } ast_dump_context->ostream() << dsuffix(location()) << std::endl; } // Make a for statement with a range clause. For_range_statement* Statement::make_for_range_statement(Expression* index_var, Expression* value_var, Expression* range, Location location) { return new For_range_statement(index_var, value_var, range, location); }