/* Copyright (C) 2009-2017 Free Software Foundation, Inc. Contributed by Thomas Koenig This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include /* Auxiliary functions for bounds checking, mostly to reduce library size. */ /* Bounds checking for the return values of the iforeach functions (such as maxloc and minloc). The extent of ret_array must must match the rank of array. */ void bounds_iforeach_return (array_t *retarray, array_t *array, const char *name) { index_type rank; index_type ret_rank; index_type ret_extent; ret_rank = GFC_DESCRIPTOR_RANK (retarray); if (ret_rank != 1) runtime_error ("Incorrect rank of return array in %s intrinsic:" "is %ld, should be 1", name, (long int) ret_rank); rank = GFC_DESCRIPTOR_RANK (array); ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); if (ret_extent != rank) runtime_error ("Incorrect extent in return value of" " %s intrinsic: is %ld, should be %ld", name, (long int) ret_extent, (long int) rank); } /* Check the return of functions generated from ifunction.m4. We check the array descriptor "a" against the extents precomputed from ifunction.m4, and complain about the argument a_name in the intrinsic function. */ void bounds_ifunction_return (array_t * a, const index_type * extent, const char * a_name, const char * intrinsic) { int empty; int n; int rank; index_type a_size; rank = GFC_DESCRIPTOR_RANK (a); a_size = size0 (a); empty = 0; for (n = 0; n < rank; n++) { if (extent[n] == 0) empty = 1; } if (empty) { if (a_size != 0) runtime_error ("Incorrect size in %s of %s" " intrinsic: should be zero-sized", a_name, intrinsic); } else { if (a_size == 0) runtime_error ("Incorrect size of %s in %s" " intrinsic: should not be zero-sized", a_name, intrinsic); for (n = 0; n < rank; n++) { index_type a_extent; a_extent = GFC_DESCRIPTOR_EXTENT(a, n); if (a_extent != extent[n]) runtime_error("Incorrect extent in %s of %s" " intrinsic in dimension %ld: is %ld," " should be %ld", a_name, intrinsic, (long int) n + 1, (long int) a_extent, (long int) extent[n]); } } } /* Check that two arrays have equal extents, or are both zero-sized. Abort with a runtime error if this is not the case. Complain that a has the wrong size. */ void bounds_equal_extents (array_t *a, array_t *b, const char *a_name, const char *intrinsic) { index_type a_size, b_size, n; assert (GFC_DESCRIPTOR_RANK(a) == GFC_DESCRIPTOR_RANK(b)); a_size = size0 (a); b_size = size0 (b); if (b_size == 0) { if (a_size != 0) runtime_error ("Incorrect size of %s in %s" " intrinsic: should be zero-sized", a_name, intrinsic); } else { if (a_size == 0) runtime_error ("Incorrect size of %s of %s" " intrinsic: Should not be zero-sized", a_name, intrinsic); for (n = 0; n < GFC_DESCRIPTOR_RANK (b); n++) { index_type a_extent, b_extent; a_extent = GFC_DESCRIPTOR_EXTENT(a, n); b_extent = GFC_DESCRIPTOR_EXTENT(b, n); if (a_extent != b_extent) runtime_error("Incorrect extent in %s of %s" " intrinsic in dimension %ld: is %ld," " should be %ld", a_name, intrinsic, (long int) n + 1, (long int) a_extent, (long int) b_extent); } } } /* Check that the extents of a and b agree, except that a has a missing dimension in argument which. Complain about a if anything is wrong. */ void bounds_reduced_extents (array_t *a, array_t *b, int which, const char *a_name, const char *intrinsic) { index_type i, n, a_size, b_size; assert (GFC_DESCRIPTOR_RANK(a) == GFC_DESCRIPTOR_RANK(b) - 1); a_size = size0 (a); b_size = size0 (b); if (b_size == 0) { if (a_size != 0) runtime_error ("Incorrect size in %s of %s" " intrinsic: should not be zero-sized", a_name, intrinsic); } else { if (a_size == 0) runtime_error ("Incorrect size of %s of %s" " intrinsic: should be zero-sized", a_name, intrinsic); i = 0; for (n = 0; n < GFC_DESCRIPTOR_RANK (b); n++) { index_type a_extent, b_extent; if (n != which) { a_extent = GFC_DESCRIPTOR_EXTENT(a, i); b_extent = GFC_DESCRIPTOR_EXTENT(b, n); if (a_extent != b_extent) runtime_error("Incorrect extent in %s of %s" " intrinsic in dimension %ld: is %ld," " should be %ld", a_name, intrinsic, (long int) i + 1, (long int) a_extent, (long int) b_extent); i++; } } } } /* count_0 - count all the true elements in an array. The front end usually inlines this, we need this for bounds checking for unpack. */ index_type count_0 (const gfc_array_l1 * array) { const GFC_LOGICAL_1 * restrict base; index_type rank; int kind; int continue_loop; index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type result; index_type n; rank = GFC_DESCRIPTOR_RANK (array); kind = GFC_DESCRIPTOR_SIZE (array); base = array->base_addr; if (kind == 1 || kind == 2 || kind == 4 || kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || kind == 16 #endif ) { if (base) base = GFOR_POINTER_TO_L1 (base, kind); } else internal_error (NULL, "Funny sized logical array in count_0"); for (n = 0; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); count[n] = 0; if (extent[n] <= 0) return 0; } result = 0; continue_loop = 1; while (continue_loop) { if (*base) result ++; count[0]++; base += sstride[0]; n = 0; while (count[n] == extent[n]) { count[n] = 0; base -= sstride[n] * extent[n]; n++; if (n == rank) { continue_loop = 0; break; } else { count[n]++; base += sstride[n]; } } } return result; }