/* * MAX44000 Ambient and Infrared Proximity Sensor * * Copyright (c) 2016, Intel Corporation. * * This file is subject to the terms and conditions of version 2 of * the GNU General Public License. See the file COPYING in the main * directory of this archive for more details. * * Data sheet: https://datasheets.maximintegrated.com/en/ds/MAX44000.pdf * * 7-bit I2C slave address 0x4a */ #include #include #include #include #include #include #include #include #include #include #include #define MAX44000_DRV_NAME "max44000" /* Registers in datasheet order */ #define MAX44000_REG_STATUS 0x00 #define MAX44000_REG_CFG_MAIN 0x01 #define MAX44000_REG_CFG_RX 0x02 #define MAX44000_REG_CFG_TX 0x03 #define MAX44000_REG_ALS_DATA_HI 0x04 #define MAX44000_REG_ALS_DATA_LO 0x05 #define MAX44000_REG_PRX_DATA 0x16 #define MAX44000_REG_ALS_UPTHR_HI 0x06 #define MAX44000_REG_ALS_UPTHR_LO 0x07 #define MAX44000_REG_ALS_LOTHR_HI 0x08 #define MAX44000_REG_ALS_LOTHR_LO 0x09 #define MAX44000_REG_PST 0x0a #define MAX44000_REG_PRX_IND 0x0b #define MAX44000_REG_PRX_THR 0x0c #define MAX44000_REG_TRIM_GAIN_GREEN 0x0f #define MAX44000_REG_TRIM_GAIN_IR 0x10 /* REG_CFG bits */ #define MAX44000_CFG_ALSINTE 0x01 #define MAX44000_CFG_PRXINTE 0x02 #define MAX44000_CFG_MASK 0x1c #define MAX44000_CFG_MODE_SHUTDOWN 0x00 #define MAX44000_CFG_MODE_ALS_GIR 0x04 #define MAX44000_CFG_MODE_ALS_G 0x08 #define MAX44000_CFG_MODE_ALS_IR 0x0c #define MAX44000_CFG_MODE_ALS_PRX 0x10 #define MAX44000_CFG_MODE_PRX 0x14 #define MAX44000_CFG_TRIM 0x20 /* * Upper 4 bits are not documented but start as 1 on powerup * Setting them to 0 causes proximity to misbehave so set them to 1 */ #define MAX44000_REG_CFG_RX_DEFAULT 0xf0 /* REG_RX bits */ #define MAX44000_CFG_RX_ALSTIM_MASK 0x0c #define MAX44000_CFG_RX_ALSTIM_SHIFT 2 #define MAX44000_CFG_RX_ALSPGA_MASK 0x03 #define MAX44000_CFG_RX_ALSPGA_SHIFT 0 /* REG_TX bits */ #define MAX44000_LED_CURRENT_MASK 0xf #define MAX44000_LED_CURRENT_MAX 11 #define MAX44000_LED_CURRENT_DEFAULT 6 #define MAX44000_ALSDATA_OVERFLOW 0x4000 struct max44000_data { struct mutex lock; struct regmap *regmap; /* Ensure naturally aligned timestamp */ struct { u16 channels[2]; s64 ts __aligned(8); } scan; }; /* Default scale is set to the minimum of 0.03125 or 1 / (1 << 5) lux */ #define MAX44000_ALS_TO_LUX_DEFAULT_FRACTION_LOG2 5 /* Scale can be multiplied by up to 128x via ALSPGA for measurement gain */ static const int max44000_alspga_shift[] = {0, 2, 4, 7}; #define MAX44000_ALSPGA_MAX_SHIFT 7 /* * Scale can be multiplied by up to 64x via ALSTIM because of lost resolution * * This scaling factor is hidden from userspace and instead accounted for when * reading raw values from the device. * * This makes it possible to cleanly expose ALSPGA as IIO_CHAN_INFO_SCALE and * ALSTIM as IIO_CHAN_INFO_INT_TIME without the values affecting each other. * * Handling this internally is also required for buffer support because the * channel's scan_type can't be modified dynamically. */ static const int max44000_alstim_shift[] = {0, 2, 4, 6}; #define MAX44000_ALSTIM_SHIFT(alstim) (2 * (alstim)) /* Available integration times with pretty manual alignment: */ static const int max44000_int_time_avail_ns_array[] = { 100000000, 25000000, 6250000, 1562500, }; static const char max44000_int_time_avail_str[] = "0.100 " "0.025 " "0.00625 " "0.0015625"; /* Available scales (internal to ulux) with pretty manual alignment: */ static const int max44000_scale_avail_ulux_array[] = { 31250, 125000, 500000, 4000000, }; static const char max44000_scale_avail_str[] = "0.03125 " "0.125 " "0.5 " "4"; #define MAX44000_SCAN_INDEX_ALS 0 #define MAX44000_SCAN_INDEX_PRX 1 static const struct iio_chan_spec max44000_channels[] = { { .type = IIO_LIGHT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_INT_TIME), .scan_index = MAX44000_SCAN_INDEX_ALS, .scan_type = { .sign = 'u', .realbits = 14, .storagebits = 16, } }, { .type = IIO_PROXIMITY, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .scan_index = MAX44000_SCAN_INDEX_PRX, .scan_type = { .sign = 'u', .realbits = 8, .storagebits = 16, } }, IIO_CHAN_SOFT_TIMESTAMP(2), { .type = IIO_CURRENT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .extend_name = "led", .output = 1, .scan_index = -1, }, }; static int max44000_read_alstim(struct max44000_data *data) { unsigned int val; int ret; ret = regmap_read(data->regmap, MAX44000_REG_CFG_RX, &val); if (ret < 0) return ret; return (val & MAX44000_CFG_RX_ALSTIM_MASK) >> MAX44000_CFG_RX_ALSTIM_SHIFT; } static int max44000_write_alstim(struct max44000_data *data, int val) { return regmap_write_bits(data->regmap, MAX44000_REG_CFG_RX, MAX44000_CFG_RX_ALSTIM_MASK, val << MAX44000_CFG_RX_ALSTIM_SHIFT); } static int max44000_read_alspga(struct max44000_data *data) { unsigned int val; int ret; ret = regmap_read(data->regmap, MAX44000_REG_CFG_RX, &val); if (ret < 0) return ret; return (val & MAX44000_CFG_RX_ALSPGA_MASK) >> MAX44000_CFG_RX_ALSPGA_SHIFT; } static int max44000_write_alspga(struct max44000_data *data, int val) { return regmap_write_bits(data->regmap, MAX44000_REG_CFG_RX, MAX44000_CFG_RX_ALSPGA_MASK, val << MAX44000_CFG_RX_ALSPGA_SHIFT); } static int max44000_read_alsval(struct max44000_data *data) { u16 regval; __be16 val; int alstim, ret; ret = regmap_bulk_read(data->regmap, MAX44000_REG_ALS_DATA_HI, &val, sizeof(val)); if (ret < 0) return ret; alstim = ret = max44000_read_alstim(data); if (ret < 0) return ret; regval = be16_to_cpu(val); /* * Overflow is explained on datasheet page 17. * * It's a warning that either the G or IR channel has become saturated * and that the value in the register is likely incorrect. * * The recommendation is to change the scale (ALSPGA). * The driver just returns the max representable value. */ if (regval & MAX44000_ALSDATA_OVERFLOW) return 0x3FFF; return regval << MAX44000_ALSTIM_SHIFT(alstim); } static int max44000_write_led_current_raw(struct max44000_data *data, int val) { /* Maybe we should clamp the value instead? */ if (val < 0 || val > MAX44000_LED_CURRENT_MAX) return -ERANGE; if (val >= 8) val += 4; return regmap_write_bits(data->regmap, MAX44000_REG_CFG_TX, MAX44000_LED_CURRENT_MASK, val); } static int max44000_read_led_current_raw(struct max44000_data *data) { unsigned int regval; int ret; ret = regmap_read(data->regmap, MAX44000_REG_CFG_TX, ®val); if (ret < 0) return ret; regval &= MAX44000_LED_CURRENT_MASK; if (regval >= 8) regval -= 4; return regval; } static int max44000_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct max44000_data *data = iio_priv(indio_dev); int alstim, alspga; unsigned int regval; int ret; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_LIGHT: mutex_lock(&data->lock); ret = max44000_read_alsval(data); mutex_unlock(&data->lock); if (ret < 0) return ret; *val = ret; return IIO_VAL_INT; case IIO_PROXIMITY: mutex_lock(&data->lock); ret = regmap_read(data->regmap, MAX44000_REG_PRX_DATA, ®val); mutex_unlock(&data->lock); if (ret < 0) return ret; *val = regval; return IIO_VAL_INT; case IIO_CURRENT: mutex_lock(&data->lock); ret = max44000_read_led_current_raw(data); mutex_unlock(&data->lock); if (ret < 0) return ret; *val = ret; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_CURRENT: /* Output register is in 10s of miliamps */ *val = 10; return IIO_VAL_INT; case IIO_LIGHT: mutex_lock(&data->lock); alspga = ret = max44000_read_alspga(data); mutex_unlock(&data->lock); if (ret < 0) return ret; /* Avoid negative shifts */ *val = (1 << MAX44000_ALSPGA_MAX_SHIFT); *val2 = MAX44000_ALS_TO_LUX_DEFAULT_FRACTION_LOG2 + MAX44000_ALSPGA_MAX_SHIFT - max44000_alspga_shift[alspga]; return IIO_VAL_FRACTIONAL_LOG2; default: return -EINVAL; } case IIO_CHAN_INFO_INT_TIME: mutex_lock(&data->lock); alstim = ret = max44000_read_alstim(data); mutex_unlock(&data->lock); if (ret < 0) return ret; *val = 0; *val2 = max44000_int_time_avail_ns_array[alstim]; return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } } static int max44000_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct max44000_data *data = iio_priv(indio_dev); int ret; if (mask == IIO_CHAN_INFO_RAW && chan->type == IIO_CURRENT) { mutex_lock(&data->lock); ret = max44000_write_led_current_raw(data, val); mutex_unlock(&data->lock); return ret; } else if (mask == IIO_CHAN_INFO_INT_TIME && chan->type == IIO_LIGHT) { s64 valns = val * NSEC_PER_SEC + val2; int alstim = find_closest_descending(valns, max44000_int_time_avail_ns_array, ARRAY_SIZE(max44000_int_time_avail_ns_array)); mutex_lock(&data->lock); ret = max44000_write_alstim(data, alstim); mutex_unlock(&data->lock); return ret; } else if (mask == IIO_CHAN_INFO_SCALE && chan->type == IIO_LIGHT) { s64 valus = val * USEC_PER_SEC + val2; int alspga = find_closest(valus, max44000_scale_avail_ulux_array, ARRAY_SIZE(max44000_scale_avail_ulux_array)); mutex_lock(&data->lock); ret = max44000_write_alspga(data, alspga); mutex_unlock(&data->lock); return ret; } return -EINVAL; } static int max44000_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { if (mask == IIO_CHAN_INFO_INT_TIME && chan->type == IIO_LIGHT) return IIO_VAL_INT_PLUS_NANO; else if (mask == IIO_CHAN_INFO_SCALE && chan->type == IIO_LIGHT) return IIO_VAL_INT_PLUS_MICRO; else return IIO_VAL_INT; } static IIO_CONST_ATTR(illuminance_integration_time_available, max44000_int_time_avail_str); static IIO_CONST_ATTR(illuminance_scale_available, max44000_scale_avail_str); static struct attribute *max44000_attributes[] = { &iio_const_attr_illuminance_integration_time_available.dev_attr.attr, &iio_const_attr_illuminance_scale_available.dev_attr.attr, NULL }; static const struct attribute_group max44000_attribute_group = { .attrs = max44000_attributes, }; static const struct iio_info max44000_info = { .driver_module = THIS_MODULE, .read_raw = max44000_read_raw, .write_raw = max44000_write_raw, .write_raw_get_fmt = max44000_write_raw_get_fmt, .attrs = &max44000_attribute_group, }; static bool max44000_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case MAX44000_REG_STATUS: case MAX44000_REG_CFG_MAIN: case MAX44000_REG_CFG_RX: case MAX44000_REG_CFG_TX: case MAX44000_REG_ALS_DATA_HI: case MAX44000_REG_ALS_DATA_LO: case MAX44000_REG_PRX_DATA: case MAX44000_REG_ALS_UPTHR_HI: case MAX44000_REG_ALS_UPTHR_LO: case MAX44000_REG_ALS_LOTHR_HI: case MAX44000_REG_ALS_LOTHR_LO: case MAX44000_REG_PST: case MAX44000_REG_PRX_IND: case MAX44000_REG_PRX_THR: case MAX44000_REG_TRIM_GAIN_GREEN: case MAX44000_REG_TRIM_GAIN_IR: return true; default: return false; } } static bool max44000_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case MAX44000_REG_CFG_MAIN: case MAX44000_REG_CFG_RX: case MAX44000_REG_CFG_TX: case MAX44000_REG_ALS_UPTHR_HI: case MAX44000_REG_ALS_UPTHR_LO: case MAX44000_REG_ALS_LOTHR_HI: case MAX44000_REG_ALS_LOTHR_LO: case MAX44000_REG_PST: case MAX44000_REG_PRX_IND: case MAX44000_REG_PRX_THR: case MAX44000_REG_TRIM_GAIN_GREEN: case MAX44000_REG_TRIM_GAIN_IR: return true; default: return false; } } static bool max44000_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case MAX44000_REG_STATUS: case MAX44000_REG_ALS_DATA_HI: case MAX44000_REG_ALS_DATA_LO: case MAX44000_REG_PRX_DATA: return true; default: return false; } } static bool max44000_precious_reg(struct device *dev, unsigned int reg) { return reg == MAX44000_REG_STATUS; } static const struct regmap_config max44000_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = MAX44000_REG_PRX_DATA, .readable_reg = max44000_readable_reg, .writeable_reg = max44000_writeable_reg, .volatile_reg = max44000_volatile_reg, .precious_reg = max44000_precious_reg, .use_single_rw = 1, .cache_type = REGCACHE_RBTREE, }; static irqreturn_t max44000_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct max44000_data *data = iio_priv(indio_dev); int index = 0; unsigned int regval; int ret; mutex_lock(&data->lock); if (test_bit(MAX44000_SCAN_INDEX_ALS, indio_dev->active_scan_mask)) { ret = max44000_read_alsval(data); if (ret < 0) goto out_unlock; data->scan.channels[index++] = ret; } if (test_bit(MAX44000_SCAN_INDEX_PRX, indio_dev->active_scan_mask)) { ret = regmap_read(data->regmap, MAX44000_REG_PRX_DATA, ®val); if (ret < 0) goto out_unlock; data->scan.channels[index] = regval; } mutex_unlock(&data->lock); iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, iio_get_time_ns(indio_dev)); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; out_unlock: mutex_unlock(&data->lock); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int max44000_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct max44000_data *data; struct iio_dev *indio_dev; int ret, reg; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); data->regmap = devm_regmap_init_i2c(client, &max44000_regmap_config); if (IS_ERR(data->regmap)) { dev_err(&client->dev, "regmap_init failed!\n"); return PTR_ERR(data->regmap); } i2c_set_clientdata(client, indio_dev); mutex_init(&data->lock); indio_dev->dev.parent = &client->dev; indio_dev->info = &max44000_info; indio_dev->name = MAX44000_DRV_NAME; indio_dev->channels = max44000_channels; indio_dev->num_channels = ARRAY_SIZE(max44000_channels); /* * The device doesn't have a reset function so we just clear some * important bits at probe time to ensure sane operation. * * Since we don't support interrupts/events the threshold values are * not important. We also don't touch trim values. */ /* Reset ALS scaling bits */ ret = regmap_write(data->regmap, MAX44000_REG_CFG_RX, MAX44000_REG_CFG_RX_DEFAULT); if (ret < 0) { dev_err(&client->dev, "failed to write default CFG_RX: %d\n", ret); return ret; } /* * By default the LED pulse used for the proximity sensor is disabled. * Set a middle value so that we get some sort of valid data by default. */ ret = max44000_write_led_current_raw(data, MAX44000_LED_CURRENT_DEFAULT); if (ret < 0) { dev_err(&client->dev, "failed to write init config: %d\n", ret); return ret; } /* Reset CFG bits to ALS_PRX mode which allows easy reading of both values. */ reg = MAX44000_CFG_TRIM | MAX44000_CFG_MODE_ALS_PRX; ret = regmap_write(data->regmap, MAX44000_REG_CFG_MAIN, reg); if (ret < 0) { dev_err(&client->dev, "failed to write init config: %d\n", ret); return ret; } /* Read status at least once to clear any stale interrupt bits. */ ret = regmap_read(data->regmap, MAX44000_REG_STATUS, ®); if (ret < 0) { dev_err(&client->dev, "failed to read init status: %d\n", ret); return ret; } ret = iio_triggered_buffer_setup(indio_dev, NULL, max44000_trigger_handler, NULL); if (ret < 0) { dev_err(&client->dev, "iio triggered buffer setup failed\n"); return ret; } return iio_device_register(indio_dev); } static int max44000_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); return 0; } static const struct i2c_device_id max44000_id[] = { {"max44000", 0}, { } }; MODULE_DEVICE_TABLE(i2c, max44000_id); #ifdef CONFIG_ACPI static const struct acpi_device_id max44000_acpi_match[] = { {"MAX44000", 0}, { } }; MODULE_DEVICE_TABLE(acpi, max44000_acpi_match); #endif static struct i2c_driver max44000_driver = { .driver = { .name = MAX44000_DRV_NAME, .acpi_match_table = ACPI_PTR(max44000_acpi_match), }, .probe = max44000_probe, .remove = max44000_remove, .id_table = max44000_id, }; module_i2c_driver(max44000_driver); MODULE_AUTHOR("Crestez Dan Leonard "); MODULE_DESCRIPTION("MAX44000 Ambient and Infrared Proximity Sensor"); MODULE_LICENSE("GPL v2");