/* * sisusb - usb kernel driver for SiS315(E) based USB2VGA dongles * * Main part * * Copyright (C) 2005 by Thomas Winischhofer, Vienna, Austria * * If distributed as part of the Linux kernel, this code is licensed under the * terms of the GPL v2. * * Otherwise, the following license terms apply: * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted provided that the following conditions * * are met: * * 1) Redistributions of source code must retain the above copyright * * notice, this list of conditions and the following disclaimer. * * 2) Redistributions in binary form must reproduce the above copyright * * notice, this list of conditions and the following disclaimer in the * * documentation and/or other materials provided with the distribution. * * 3) The name of the author may not be used to endorse or promote products * * derived from this software without specific psisusbr written permission. * * * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESSED OR * * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Author: Thomas Winischhofer * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "sisusb.h" #include "sisusb_init.h" #ifdef INCL_SISUSB_CON #include #endif #define SISUSB_DONTSYNC /* Forward declarations / clean-up routines */ #ifdef INCL_SISUSB_CON static int sisusb_first_vc; static int sisusb_last_vc; module_param_named(first, sisusb_first_vc, int, 0); module_param_named(last, sisusb_last_vc, int, 0); MODULE_PARM_DESC(first, "Number of first console to take over (1 - MAX_NR_CONSOLES)"); MODULE_PARM_DESC(last, "Number of last console to take over (1 - MAX_NR_CONSOLES)"); #endif static struct usb_driver sisusb_driver; static void sisusb_free_buffers(struct sisusb_usb_data *sisusb) { int i; for (i = 0; i < NUMOBUFS; i++) { kfree(sisusb->obuf[i]); sisusb->obuf[i] = NULL; } kfree(sisusb->ibuf); sisusb->ibuf = NULL; } static void sisusb_free_urbs(struct sisusb_usb_data *sisusb) { int i; for (i = 0; i < NUMOBUFS; i++) { usb_free_urb(sisusb->sisurbout[i]); sisusb->sisurbout[i] = NULL; } usb_free_urb(sisusb->sisurbin); sisusb->sisurbin = NULL; } /* Level 0: USB transport layer */ /* 1. out-bulks */ /* out-urb management */ /* Return 1 if all free, 0 otherwise */ static int sisusb_all_free(struct sisusb_usb_data *sisusb) { int i; for (i = 0; i < sisusb->numobufs; i++) { if (sisusb->urbstatus[i] & SU_URB_BUSY) return 0; } return 1; } /* Kill all busy URBs */ static void sisusb_kill_all_busy(struct sisusb_usb_data *sisusb) { int i; if (sisusb_all_free(sisusb)) return; for (i = 0; i < sisusb->numobufs; i++) { if (sisusb->urbstatus[i] & SU_URB_BUSY) usb_kill_urb(sisusb->sisurbout[i]); } } /* Return 1 if ok, 0 if error (not all complete within timeout) */ static int sisusb_wait_all_out_complete(struct sisusb_usb_data *sisusb) { int timeout = 5 * HZ, i = 1; wait_event_timeout(sisusb->wait_q, (i = sisusb_all_free(sisusb)), timeout); return i; } static int sisusb_outurb_available(struct sisusb_usb_data *sisusb) { int i; for (i = 0; i < sisusb->numobufs; i++) { if ((sisusb->urbstatus[i] & (SU_URB_BUSY|SU_URB_ALLOC)) == 0) return i; } return -1; } static int sisusb_get_free_outbuf(struct sisusb_usb_data *sisusb) { int i, timeout = 5 * HZ; wait_event_timeout(sisusb->wait_q, ((i = sisusb_outurb_available(sisusb)) >= 0), timeout); return i; } static int sisusb_alloc_outbuf(struct sisusb_usb_data *sisusb) { int i; i = sisusb_outurb_available(sisusb); if (i >= 0) sisusb->urbstatus[i] |= SU_URB_ALLOC; return i; } static void sisusb_free_outbuf(struct sisusb_usb_data *sisusb, int index) { if ((index >= 0) && (index < sisusb->numobufs)) sisusb->urbstatus[index] &= ~SU_URB_ALLOC; } /* completion callback */ static void sisusb_bulk_completeout(struct urb *urb) { struct sisusb_urb_context *context = urb->context; struct sisusb_usb_data *sisusb; if (!context) return; sisusb = context->sisusb; if (!sisusb || !sisusb->sisusb_dev || !sisusb->present) return; #ifndef SISUSB_DONTSYNC if (context->actual_length) *(context->actual_length) += urb->actual_length; #endif sisusb->urbstatus[context->urbindex] &= ~SU_URB_BUSY; wake_up(&sisusb->wait_q); } static int sisusb_bulkout_msg(struct sisusb_usb_data *sisusb, int index, unsigned int pipe, void *data, int len, int *actual_length, int timeout, unsigned int tflags) { struct urb *urb = sisusb->sisurbout[index]; int retval, byteswritten = 0; /* Set up URB */ urb->transfer_flags = 0; usb_fill_bulk_urb(urb, sisusb->sisusb_dev, pipe, data, len, sisusb_bulk_completeout, &sisusb->urbout_context[index]); urb->transfer_flags |= tflags; urb->actual_length = 0; /* Set up context */ sisusb->urbout_context[index].actual_length = (timeout) ? NULL : actual_length; /* Declare this urb/buffer in use */ sisusb->urbstatus[index] |= SU_URB_BUSY; /* Submit URB */ retval = usb_submit_urb(urb, GFP_KERNEL); /* If OK, and if timeout > 0, wait for completion */ if ((retval == 0) && timeout) { wait_event_timeout(sisusb->wait_q, (!(sisusb->urbstatus[index] & SU_URB_BUSY)), timeout); if (sisusb->urbstatus[index] & SU_URB_BUSY) { /* URB timed out... kill it and report error */ usb_kill_urb(urb); retval = -ETIMEDOUT; } else { /* Otherwise, report urb status */ retval = urb->status; byteswritten = urb->actual_length; } } if (actual_length) *actual_length = byteswritten; return retval; } /* 2. in-bulks */ /* completion callback */ static void sisusb_bulk_completein(struct urb *urb) { struct sisusb_usb_data *sisusb = urb->context; if (!sisusb || !sisusb->sisusb_dev || !sisusb->present) return; sisusb->completein = 1; wake_up(&sisusb->wait_q); } static int sisusb_bulkin_msg(struct sisusb_usb_data *sisusb, unsigned int pipe, void *data, int len, int *actual_length, int timeout, unsigned int tflags) { struct urb *urb = sisusb->sisurbin; int retval, readbytes = 0; urb->transfer_flags = 0; usb_fill_bulk_urb(urb, sisusb->sisusb_dev, pipe, data, len, sisusb_bulk_completein, sisusb); urb->transfer_flags |= tflags; urb->actual_length = 0; sisusb->completein = 0; retval = usb_submit_urb(urb, GFP_KERNEL); if (retval == 0) { wait_event_timeout(sisusb->wait_q, sisusb->completein, timeout); if (!sisusb->completein) { /* URB timed out... kill it and report error */ usb_kill_urb(urb); retval = -ETIMEDOUT; } else { /* URB completed within timeout */ retval = urb->status; readbytes = urb->actual_length; } } if (actual_length) *actual_length = readbytes; return retval; } /* Level 1: */ /* Send a bulk message of variable size * * To copy the data from userspace, give pointer to "userbuffer", * to copy from (non-DMA) kernel memory, give "kernbuffer". If * both of these are NULL, it is assumed, that the transfer * buffer "sisusb->obuf[index]" is set up with the data to send. * Index is ignored if either kernbuffer or userbuffer is set. * If async is nonzero, URBs will be sent without waiting for * completion of the previous URB. * * (return 0 on success) */ static int sisusb_send_bulk_msg(struct sisusb_usb_data *sisusb, int ep, int len, char *kernbuffer, const char __user *userbuffer, int index, ssize_t *bytes_written, unsigned int tflags, int async) { int result = 0, retry, count = len; int passsize, thispass, transferred_len = 0; int fromuser = (userbuffer != NULL) ? 1 : 0; int fromkern = (kernbuffer != NULL) ? 1 : 0; unsigned int pipe; char *buffer; (*bytes_written) = 0; /* Sanity check */ if (!sisusb || !sisusb->present || !sisusb->sisusb_dev) return -ENODEV; /* If we copy data from kernel or userspace, force the * allocation of a buffer/urb. If we have the data in * the transfer buffer[index] already, reuse the buffer/URB * if the length is > buffer size. (So, transmitting * large data amounts directly from the transfer buffer * treats the buffer as a ring buffer. However, we need * to sync in this case.) */ if (fromuser || fromkern) index = -1; else if (len > sisusb->obufsize) async = 0; pipe = usb_sndbulkpipe(sisusb->sisusb_dev, ep); do { passsize = thispass = (sisusb->obufsize < count) ? sisusb->obufsize : count; if (index < 0) index = sisusb_get_free_outbuf(sisusb); if (index < 0) return -EIO; buffer = sisusb->obuf[index]; if (fromuser) { if (copy_from_user(buffer, userbuffer, passsize)) return -EFAULT; userbuffer += passsize; } else if (fromkern) { memcpy(buffer, kernbuffer, passsize); kernbuffer += passsize; } retry = 5; while (thispass) { if (!sisusb->sisusb_dev) return -ENODEV; result = sisusb_bulkout_msg(sisusb, index, pipe, buffer, thispass, &transferred_len, async ? 0 : 5 * HZ, tflags); if (result == -ETIMEDOUT) { /* Will not happen if async */ if (!retry--) return -ETIME; continue; } if ((result == 0) && !async && transferred_len) { thispass -= transferred_len; buffer += transferred_len; } else break; } if (result) return result; (*bytes_written) += passsize; count -= passsize; /* Force new allocation in next iteration */ if (fromuser || fromkern) index = -1; } while (count > 0); if (async) { #ifdef SISUSB_DONTSYNC (*bytes_written) = len; /* Some URBs/buffers might be busy */ #else sisusb_wait_all_out_complete(sisusb); (*bytes_written) = transferred_len; /* All URBs and all buffers are available */ #endif } return ((*bytes_written) == len) ? 0 : -EIO; } /* Receive a bulk message of variable size * * To copy the data to userspace, give pointer to "userbuffer", * to copy to kernel memory, give "kernbuffer". One of them * MUST be set. (There is no technique for letting the caller * read directly from the ibuf.) * */ static int sisusb_recv_bulk_msg(struct sisusb_usb_data *sisusb, int ep, int len, void *kernbuffer, char __user *userbuffer, ssize_t *bytes_read, unsigned int tflags) { int result = 0, retry, count = len; int bufsize, thispass, transferred_len; unsigned int pipe; char *buffer; (*bytes_read) = 0; /* Sanity check */ if (!sisusb || !sisusb->present || !sisusb->sisusb_dev) return -ENODEV; pipe = usb_rcvbulkpipe(sisusb->sisusb_dev, ep); buffer = sisusb->ibuf; bufsize = sisusb->ibufsize; retry = 5; #ifdef SISUSB_DONTSYNC if (!(sisusb_wait_all_out_complete(sisusb))) return -EIO; #endif while (count > 0) { if (!sisusb->sisusb_dev) return -ENODEV; thispass = (bufsize < count) ? bufsize : count; result = sisusb_bulkin_msg(sisusb, pipe, buffer, thispass, &transferred_len, 5 * HZ, tflags); if (transferred_len) thispass = transferred_len; else if (result == -ETIMEDOUT) { if (!retry--) return -ETIME; continue; } else return -EIO; if (thispass) { (*bytes_read) += thispass; count -= thispass; if (userbuffer) { if (copy_to_user(userbuffer, buffer, thispass)) return -EFAULT; userbuffer += thispass; } else { memcpy(kernbuffer, buffer, thispass); kernbuffer += thispass; } } } return ((*bytes_read) == len) ? 0 : -EIO; } static int sisusb_send_packet(struct sisusb_usb_data *sisusb, int len, struct sisusb_packet *packet) { int ret; ssize_t bytes_transferred = 0; __le32 tmp; if (len == 6) packet->data = 0; #ifdef SISUSB_DONTSYNC if (!(sisusb_wait_all_out_complete(sisusb))) return 1; #endif /* Eventually correct endianness */ SISUSB_CORRECT_ENDIANNESS_PACKET(packet); /* 1. send the packet */ ret = sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_OUT, len, (char *)packet, NULL, 0, &bytes_transferred, 0, 0); if ((ret == 0) && (len == 6)) { /* 2. if packet len == 6, it means we read, so wait for 32bit * return value and write it to packet->data */ ret = sisusb_recv_bulk_msg(sisusb, SISUSB_EP_GFX_IN, 4, (char *)&tmp, NULL, &bytes_transferred, 0); packet->data = le32_to_cpu(tmp); } return ret; } static int sisusb_send_bridge_packet(struct sisusb_usb_data *sisusb, int len, struct sisusb_packet *packet, unsigned int tflags) { int ret; ssize_t bytes_transferred = 0; __le32 tmp; if (len == 6) packet->data = 0; #ifdef SISUSB_DONTSYNC if (!(sisusb_wait_all_out_complete(sisusb))) return 1; #endif /* Eventually correct endianness */ SISUSB_CORRECT_ENDIANNESS_PACKET(packet); /* 1. send the packet */ ret = sisusb_send_bulk_msg(sisusb, SISUSB_EP_BRIDGE_OUT, len, (char *)packet, NULL, 0, &bytes_transferred, tflags, 0); if ((ret == 0) && (len == 6)) { /* 2. if packet len == 6, it means we read, so wait for 32bit * return value and write it to packet->data */ ret = sisusb_recv_bulk_msg(sisusb, SISUSB_EP_BRIDGE_IN, 4, (char *)&tmp, NULL, &bytes_transferred, 0); packet->data = le32_to_cpu(tmp); } return ret; } /* access video memory and mmio (return 0 on success) */ /* Low level */ /* The following routines assume being used to transfer byte, word, * long etc. * This means that * - the write routines expect "data" in machine endianness format. * The data will be converted to leXX in sisusb_xxx_packet. * - the read routines can expect read data in machine-endianess. */ static int sisusb_write_memio_byte(struct sisusb_usb_data *sisusb, int type, u32 addr, u8 data) { struct sisusb_packet packet; packet.header = (1 << (addr & 3)) | (type << 6); packet.address = addr & ~3; packet.data = data << ((addr & 3) << 3); return sisusb_send_packet(sisusb, 10, &packet); } static int sisusb_write_memio_word(struct sisusb_usb_data *sisusb, int type, u32 addr, u16 data) { struct sisusb_packet packet; int ret = 0; packet.address = addr & ~3; switch (addr & 3) { case 0: packet.header = (type << 6) | 0x0003; packet.data = (u32)data; ret = sisusb_send_packet(sisusb, 10, &packet); break; case 1: packet.header = (type << 6) | 0x0006; packet.data = (u32)data << 8; ret = sisusb_send_packet(sisusb, 10, &packet); break; case 2: packet.header = (type << 6) | 0x000c; packet.data = (u32)data << 16; ret = sisusb_send_packet(sisusb, 10, &packet); break; case 3: packet.header = (type << 6) | 0x0008; packet.data = (u32)data << 24; ret = sisusb_send_packet(sisusb, 10, &packet); packet.header = (type << 6) | 0x0001; packet.address = (addr & ~3) + 4; packet.data = (u32)data >> 8; ret |= sisusb_send_packet(sisusb, 10, &packet); } return ret; } static int sisusb_write_memio_24bit(struct sisusb_usb_data *sisusb, int type, u32 addr, u32 data) { struct sisusb_packet packet; int ret = 0; packet.address = addr & ~3; switch (addr & 3) { case 0: packet.header = (type << 6) | 0x0007; packet.data = data & 0x00ffffff; ret = sisusb_send_packet(sisusb, 10, &packet); break; case 1: packet.header = (type << 6) | 0x000e; packet.data = data << 8; ret = sisusb_send_packet(sisusb, 10, &packet); break; case 2: packet.header = (type << 6) | 0x000c; packet.data = data << 16; ret = sisusb_send_packet(sisusb, 10, &packet); packet.header = (type << 6) | 0x0001; packet.address = (addr & ~3) + 4; packet.data = (data >> 16) & 0x00ff; ret |= sisusb_send_packet(sisusb, 10, &packet); break; case 3: packet.header = (type << 6) | 0x0008; packet.data = data << 24; ret = sisusb_send_packet(sisusb, 10, &packet); packet.header = (type << 6) | 0x0003; packet.address = (addr & ~3) + 4; packet.data = (data >> 8) & 0xffff; ret |= sisusb_send_packet(sisusb, 10, &packet); } return ret; } static int sisusb_write_memio_long(struct sisusb_usb_data *sisusb, int type, u32 addr, u32 data) { struct sisusb_packet packet; int ret = 0; packet.address = addr & ~3; switch (addr & 3) { case 0: packet.header = (type << 6) | 0x000f; packet.data = data; ret = sisusb_send_packet(sisusb, 10, &packet); break; case 1: packet.header = (type << 6) | 0x000e; packet.data = data << 8; ret = sisusb_send_packet(sisusb, 10, &packet); packet.header = (type << 6) | 0x0001; packet.address = (addr & ~3) + 4; packet.data = data >> 24; ret |= sisusb_send_packet(sisusb, 10, &packet); break; case 2: packet.header = (type << 6) | 0x000c; packet.data = data << 16; ret = sisusb_send_packet(sisusb, 10, &packet); packet.header = (type << 6) | 0x0003; packet.address = (addr & ~3) + 4; packet.data = data >> 16; ret |= sisusb_send_packet(sisusb, 10, &packet); break; case 3: packet.header = (type << 6) | 0x0008; packet.data = data << 24; ret = sisusb_send_packet(sisusb, 10, &packet); packet.header = (type << 6) | 0x0007; packet.address = (addr & ~3) + 4; packet.data = data >> 8; ret |= sisusb_send_packet(sisusb, 10, &packet); } return ret; } /* The xxx_bulk routines copy a buffer of variable size. They treat the * buffer as chars, therefore lsb/msb has to be corrected if using the * byte/word/long/etc routines for speed-up * * If data is from userland, set "userbuffer" (and clear "kernbuffer"), * if data is in kernel space, set "kernbuffer" (and clear "userbuffer"); * if neither "kernbuffer" nor "userbuffer" are given, it is assumed * that the data already is in the transfer buffer "sisusb->obuf[index]". */ static int sisusb_write_mem_bulk(struct sisusb_usb_data *sisusb, u32 addr, char *kernbuffer, int length, const char __user *userbuffer, int index, ssize_t *bytes_written) { struct sisusb_packet packet; int ret = 0; static int msgcount; u8 swap8, fromkern = kernbuffer ? 1 : 0; u16 swap16; u32 swap32, flag = (length >> 28) & 1; u8 buf[4]; /* if neither kernbuffer not userbuffer are given, assume * data in obuf */ if (!fromkern && !userbuffer) kernbuffer = sisusb->obuf[index]; (*bytes_written = 0); length &= 0x00ffffff; while (length) { switch (length) { case 1: if (userbuffer) { if (get_user(swap8, (u8 __user *)userbuffer)) return -EFAULT; } else swap8 = kernbuffer[0]; ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_MEM, addr, swap8); if (!ret) (*bytes_written)++; return ret; case 2: if (userbuffer) { if (get_user(swap16, (u16 __user *)userbuffer)) return -EFAULT; } else swap16 = *((u16 *)kernbuffer); ret = sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM, addr, swap16); if (!ret) (*bytes_written) += 2; return ret; case 3: if (userbuffer) { if (copy_from_user(&buf, userbuffer, 3)) return -EFAULT; #ifdef __BIG_ENDIAN swap32 = (buf[0] << 16) | (buf[1] << 8) | buf[2]; #else swap32 = (buf[2] << 16) | (buf[1] << 8) | buf[0]; #endif } else #ifdef __BIG_ENDIAN swap32 = (kernbuffer[0] << 16) | (kernbuffer[1] << 8) | kernbuffer[2]; #else swap32 = (kernbuffer[2] << 16) | (kernbuffer[1] << 8) | kernbuffer[0]; #endif ret = sisusb_write_memio_24bit(sisusb, SISUSB_TYPE_MEM, addr, swap32); if (!ret) (*bytes_written) += 3; return ret; case 4: if (userbuffer) { if (get_user(swap32, (u32 __user *)userbuffer)) return -EFAULT; } else swap32 = *((u32 *)kernbuffer); ret = sisusb_write_memio_long(sisusb, SISUSB_TYPE_MEM, addr, swap32); if (!ret) (*bytes_written) += 4; return ret; default: if ((length & ~3) > 0x10000) { packet.header = 0x001f; packet.address = 0x000001d4; packet.data = addr; ret = sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x001f; packet.address = 0x000001d0; packet.data = (length & ~3); ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x001f; packet.address = 0x000001c0; packet.data = flag | 0x16; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); if (userbuffer) { ret |= sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_LBULK_OUT, (length & ~3), NULL, userbuffer, 0, bytes_written, 0, 1); userbuffer += (*bytes_written); } else if (fromkern) { ret |= sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_LBULK_OUT, (length & ~3), kernbuffer, NULL, 0, bytes_written, 0, 1); kernbuffer += (*bytes_written); } else { ret |= sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_LBULK_OUT, (length & ~3), NULL, NULL, index, bytes_written, 0, 1); kernbuffer += ((*bytes_written) & (sisusb->obufsize-1)); } } else { packet.header = 0x001f; packet.address = 0x00000194; packet.data = addr; ret = sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x001f; packet.address = 0x00000190; packet.data = (length & ~3); ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); if (sisusb->flagb0 != 0x16) { packet.header = 0x001f; packet.address = 0x00000180; packet.data = flag | 0x16; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); sisusb->flagb0 = 0x16; } if (userbuffer) { ret |= sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_BULK_OUT, (length & ~3), NULL, userbuffer, 0, bytes_written, 0, 1); userbuffer += (*bytes_written); } else if (fromkern) { ret |= sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_BULK_OUT, (length & ~3), kernbuffer, NULL, 0, bytes_written, 0, 1); kernbuffer += (*bytes_written); } else { ret |= sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_BULK_OUT, (length & ~3), NULL, NULL, index, bytes_written, 0, 1); kernbuffer += ((*bytes_written) & (sisusb->obufsize-1)); } } if (ret) { msgcount++; if (msgcount < 500) dev_err(&sisusb->sisusb_dev->dev, "Wrote %zd of %d bytes, error %d\n", *bytes_written, length, ret); else if (msgcount == 500) dev_err(&sisusb->sisusb_dev->dev, "Too many errors, logging stopped\n"); } addr += (*bytes_written); length -= (*bytes_written); } if (ret) break; } return ret ? -EIO : 0; } /* Remember: Read data in packet is in machine-endianess! So for * byte, word, 24bit, long no endian correction is necessary. */ static int sisusb_read_memio_byte(struct sisusb_usb_data *sisusb, int type, u32 addr, u8 *data) { struct sisusb_packet packet; int ret; CLEARPACKET(&packet); packet.header = (1 << (addr & 3)) | (type << 6); packet.address = addr & ~3; ret = sisusb_send_packet(sisusb, 6, &packet); *data = (u8)(packet.data >> ((addr & 3) << 3)); return ret; } static int sisusb_read_memio_word(struct sisusb_usb_data *sisusb, int type, u32 addr, u16 *data) { struct sisusb_packet packet; int ret = 0; CLEARPACKET(&packet); packet.address = addr & ~3; switch (addr & 3) { case 0: packet.header = (type << 6) | 0x0003; ret = sisusb_send_packet(sisusb, 6, &packet); *data = (u16)(packet.data); break; case 1: packet.header = (type << 6) | 0x0006; ret = sisusb_send_packet(sisusb, 6, &packet); *data = (u16)(packet.data >> 8); break; case 2: packet.header = (type << 6) | 0x000c; ret = sisusb_send_packet(sisusb, 6, &packet); *data = (u16)(packet.data >> 16); break; case 3: packet.header = (type << 6) | 0x0008; ret = sisusb_send_packet(sisusb, 6, &packet); *data = (u16)(packet.data >> 24); packet.header = (type << 6) | 0x0001; packet.address = (addr & ~3) + 4; ret |= sisusb_send_packet(sisusb, 6, &packet); *data |= (u16)(packet.data << 8); } return ret; } static int sisusb_read_memio_24bit(struct sisusb_usb_data *sisusb, int type, u32 addr, u32 *data) { struct sisusb_packet packet; int ret = 0; packet.address = addr & ~3; switch (addr & 3) { case 0: packet.header = (type << 6) | 0x0007; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data & 0x00ffffff; break; case 1: packet.header = (type << 6) | 0x000e; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data >> 8; break; case 2: packet.header = (type << 6) | 0x000c; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data >> 16; packet.header = (type << 6) | 0x0001; packet.address = (addr & ~3) + 4; ret |= sisusb_send_packet(sisusb, 6, &packet); *data |= ((packet.data & 0xff) << 16); break; case 3: packet.header = (type << 6) | 0x0008; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data >> 24; packet.header = (type << 6) | 0x0003; packet.address = (addr & ~3) + 4; ret |= sisusb_send_packet(sisusb, 6, &packet); *data |= ((packet.data & 0xffff) << 8); } return ret; } static int sisusb_read_memio_long(struct sisusb_usb_data *sisusb, int type, u32 addr, u32 *data) { struct sisusb_packet packet; int ret = 0; packet.address = addr & ~3; switch (addr & 3) { case 0: packet.header = (type << 6) | 0x000f; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data; break; case 1: packet.header = (type << 6) | 0x000e; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data >> 8; packet.header = (type << 6) | 0x0001; packet.address = (addr & ~3) + 4; ret |= sisusb_send_packet(sisusb, 6, &packet); *data |= (packet.data << 24); break; case 2: packet.header = (type << 6) | 0x000c; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data >> 16; packet.header = (type << 6) | 0x0003; packet.address = (addr & ~3) + 4; ret |= sisusb_send_packet(sisusb, 6, &packet); *data |= (packet.data << 16); break; case 3: packet.header = (type << 6) | 0x0008; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data >> 24; packet.header = (type << 6) | 0x0007; packet.address = (addr & ~3) + 4; ret |= sisusb_send_packet(sisusb, 6, &packet); *data |= (packet.data << 8); } return ret; } static int sisusb_read_mem_bulk(struct sisusb_usb_data *sisusb, u32 addr, char *kernbuffer, int length, char __user *userbuffer, ssize_t *bytes_read) { int ret = 0; char buf[4]; u16 swap16; u32 swap32; (*bytes_read = 0); length &= 0x00ffffff; while (length) { switch (length) { case 1: ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_MEM, addr, &buf[0]); if (!ret) { (*bytes_read)++; if (userbuffer) { if (put_user(buf[0], (u8 __user *)userbuffer)) return -EFAULT; } else kernbuffer[0] = buf[0]; } return ret; case 2: ret |= sisusb_read_memio_word(sisusb, SISUSB_TYPE_MEM, addr, &swap16); if (!ret) { (*bytes_read) += 2; if (userbuffer) { if (put_user(swap16, (u16 __user *)userbuffer)) return -EFAULT; } else { *((u16 *)kernbuffer) = swap16; } } return ret; case 3: ret |= sisusb_read_memio_24bit(sisusb, SISUSB_TYPE_MEM, addr, &swap32); if (!ret) { (*bytes_read) += 3; #ifdef __BIG_ENDIAN buf[0] = (swap32 >> 16) & 0xff; buf[1] = (swap32 >> 8) & 0xff; buf[2] = swap32 & 0xff; #else buf[2] = (swap32 >> 16) & 0xff; buf[1] = (swap32 >> 8) & 0xff; buf[0] = swap32 & 0xff; #endif if (userbuffer) { if (copy_to_user(userbuffer, &buf[0], 3)) return -EFAULT; } else { kernbuffer[0] = buf[0]; kernbuffer[1] = buf[1]; kernbuffer[2] = buf[2]; } } return ret; default: ret |= sisusb_read_memio_long(sisusb, SISUSB_TYPE_MEM, addr, &swap32); if (!ret) { (*bytes_read) += 4; if (userbuffer) { if (put_user(swap32, (u32 __user *)userbuffer)) return -EFAULT; userbuffer += 4; } else { *((u32 *)kernbuffer) = swap32; kernbuffer += 4; } addr += 4; length -= 4; } } if (ret) break; } return ret; } /* High level: Gfx (indexed) register access */ #ifdef INCL_SISUSB_CON int sisusb_setreg(struct sisusb_usb_data *sisusb, u32 port, u8 data) { return sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, data); } int sisusb_getreg(struct sisusb_usb_data *sisusb, u32 port, u8 *data) { return sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port, data); } #endif int sisusb_setidxreg(struct sisusb_usb_data *sisusb, u32 port, u8 index, u8 data) { int ret; ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, index); ret |= sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, data); return ret; } int sisusb_getidxreg(struct sisusb_usb_data *sisusb, u32 port, u8 index, u8 *data) { int ret; ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, index); ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, data); return ret; } int sisusb_setidxregandor(struct sisusb_usb_data *sisusb, u32 port, u8 idx, u8 myand, u8 myor) { int ret; u8 tmp; ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, idx); ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, &tmp); tmp &= myand; tmp |= myor; ret |= sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, tmp); return ret; } static int sisusb_setidxregmask(struct sisusb_usb_data *sisusb, u32 port, u8 idx, u8 data, u8 mask) { int ret; u8 tmp; ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, idx); ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, &tmp); tmp &= ~(mask); tmp |= (data & mask); ret |= sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, tmp); return ret; } int sisusb_setidxregor(struct sisusb_usb_data *sisusb, u32 port, u8 index, u8 myor) { return sisusb_setidxregandor(sisusb, port, index, 0xff, myor); } int sisusb_setidxregand(struct sisusb_usb_data *sisusb, u32 port, u8 idx, u8 myand) { return sisusb_setidxregandor(sisusb, port, idx, myand, 0x00); } /* Write/read video ram */ #ifdef INCL_SISUSB_CON int sisusb_writeb(struct sisusb_usb_data *sisusb, u32 adr, u8 data) { return sisusb_write_memio_byte(sisusb, SISUSB_TYPE_MEM, adr, data); } int sisusb_readb(struct sisusb_usb_data *sisusb, u32 adr, u8 *data) { return sisusb_read_memio_byte(sisusb, SISUSB_TYPE_MEM, adr, data); } int sisusb_copy_memory(struct sisusb_usb_data *sisusb, char *src, u32 dest, int length) { size_t dummy; return sisusb_write_mem_bulk(sisusb, dest, src, length, NULL, 0, &dummy); } #ifdef SISUSBENDIANTEST static int sisusb_read_memory(struct sisusb_usb_data *sisusb, char *dest, u32 src, int length) { size_t dummy; return sisusb_read_mem_bulk(sisusb, src, dest, length, NULL, &dummy); } #endif #endif #ifdef SISUSBENDIANTEST static void sisusb_testreadwrite(struct sisusb_usb_data *sisusb) { static char srcbuffer[] = { 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 }; char destbuffer[10]; int i, j; sisusb_copy_memory(sisusb, srcbuffer, sisusb->vrambase, 7); for (i = 1; i <= 7; i++) { dev_dbg(&sisusb->sisusb_dev->dev, "sisusb: rwtest %d bytes\n", i); sisusb_read_memory(sisusb, destbuffer, sisusb->vrambase, i); for (j = 0; j < i; j++) { dev_dbg(&sisusb->sisusb_dev->dev, "rwtest read[%d] = %x\n", j, destbuffer[j]); } } } #endif /* access pci config registers (reg numbers 0, 4, 8, etc) */ static int sisusb_write_pci_config(struct sisusb_usb_data *sisusb, int regnum, u32 data) { struct sisusb_packet packet; packet.header = 0x008f; packet.address = regnum | 0x10000; packet.data = data; return sisusb_send_packet(sisusb, 10, &packet); } static int sisusb_read_pci_config(struct sisusb_usb_data *sisusb, int regnum, u32 *data) { struct sisusb_packet packet; int ret; packet.header = 0x008f; packet.address = (u32)regnum | 0x10000; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data; return ret; } /* Clear video RAM */ static int sisusb_clear_vram(struct sisusb_usb_data *sisusb, u32 address, int length) { int ret, i; ssize_t j; if (address < sisusb->vrambase) return 1; if (address >= sisusb->vrambase + sisusb->vramsize) return 1; if (address + length > sisusb->vrambase + sisusb->vramsize) length = sisusb->vrambase + sisusb->vramsize - address; if (length <= 0) return 0; /* allocate free buffer/urb and clear the buffer */ i = sisusb_alloc_outbuf(sisusb); if (i < 0) return -EBUSY; memset(sisusb->obuf[i], 0, sisusb->obufsize); /* We can write a length > buffer size here. The buffer * data will simply be re-used (like a ring-buffer). */ ret = sisusb_write_mem_bulk(sisusb, address, NULL, length, NULL, i, &j); /* Free the buffer/urb */ sisusb_free_outbuf(sisusb, i); return ret; } /* Initialize the graphics core (return 0 on success) * This resets the graphics hardware and puts it into * a defined mode (640x480@60Hz) */ #define GETREG(r, d) sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, r, d) #define SETREG(r, d) sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, r, d) #define SETIREG(r, i, d) sisusb_setidxreg(sisusb, r, i, d) #define GETIREG(r, i, d) sisusb_getidxreg(sisusb, r, i, d) #define SETIREGOR(r, i, o) sisusb_setidxregor(sisusb, r, i, o) #define SETIREGAND(r, i, a) sisusb_setidxregand(sisusb, r, i, a) #define SETIREGANDOR(r, i, a, o) sisusb_setidxregandor(sisusb, r, i, a, o) #define READL(a, d) sisusb_read_memio_long(sisusb, SISUSB_TYPE_MEM, a, d) #define WRITEL(a, d) sisusb_write_memio_long(sisusb, SISUSB_TYPE_MEM, a, d) #define READB(a, d) sisusb_read_memio_byte(sisusb, SISUSB_TYPE_MEM, a, d) #define WRITEB(a, d) sisusb_write_memio_byte(sisusb, SISUSB_TYPE_MEM, a, d) static int sisusb_triggersr16(struct sisusb_usb_data *sisusb, u8 ramtype) { int ret; u8 tmp8; ret = GETIREG(SISSR, 0x16, &tmp8); if (ramtype <= 1) { tmp8 &= 0x3f; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 |= 0x80; ret |= SETIREG(SISSR, 0x16, tmp8); } else { tmp8 |= 0xc0; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 &= 0x0f; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 |= 0x80; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 &= 0x0f; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 |= 0xd0; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 &= 0x0f; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 |= 0xa0; ret |= SETIREG(SISSR, 0x16, tmp8); } return ret; } static int sisusb_getbuswidth(struct sisusb_usb_data *sisusb, int *bw, int *chab) { int ret; u8 ramtype, done = 0; u32 t0, t1, t2, t3; u32 ramptr = SISUSB_PCI_MEMBASE; ret = GETIREG(SISSR, 0x3a, &ramtype); ramtype &= 3; ret |= SETIREG(SISSR, 0x13, 0x00); if (ramtype <= 1) { ret |= SETIREG(SISSR, 0x14, 0x12); ret |= SETIREGAND(SISSR, 0x15, 0xef); } else { ret |= SETIREG(SISSR, 0x14, 0x02); } ret |= sisusb_triggersr16(sisusb, ramtype); ret |= WRITEL(ramptr + 0, 0x01234567); ret |= WRITEL(ramptr + 4, 0x456789ab); ret |= WRITEL(ramptr + 8, 0x89abcdef); ret |= WRITEL(ramptr + 12, 0xcdef0123); ret |= WRITEL(ramptr + 16, 0x55555555); ret |= WRITEL(ramptr + 20, 0x55555555); ret |= WRITEL(ramptr + 24, 0xffffffff); ret |= WRITEL(ramptr + 28, 0xffffffff); ret |= READL(ramptr + 0, &t0); ret |= READL(ramptr + 4, &t1); ret |= READL(ramptr + 8, &t2); ret |= READL(ramptr + 12, &t3); if (ramtype <= 1) { *chab = 0; *bw = 64; if ((t3 != 0xcdef0123) || (t2 != 0x89abcdef)) { if ((t1 == 0x456789ab) && (t0 == 0x01234567)) { *chab = 0; *bw = 64; ret |= SETIREGAND(SISSR, 0x14, 0xfd); } } if ((t1 != 0x456789ab) || (t0 != 0x01234567)) { *chab = 1; *bw = 64; ret |= SETIREGANDOR(SISSR, 0x14, 0xfc, 0x01); ret |= sisusb_triggersr16(sisusb, ramtype); ret |= WRITEL(ramptr + 0, 0x89abcdef); ret |= WRITEL(ramptr + 4, 0xcdef0123); ret |= WRITEL(ramptr + 8, 0x55555555); ret |= WRITEL(ramptr + 12, 0x55555555); ret |= WRITEL(ramptr + 16, 0xaaaaaaaa); ret |= WRITEL(ramptr + 20, 0xaaaaaaaa); ret |= READL(ramptr + 4, &t1); if (t1 != 0xcdef0123) { *bw = 32; ret |= SETIREGOR(SISSR, 0x15, 0x10); } } } else { *chab = 0; *bw = 64; /* default: cha, bw = 64 */ done = 0; if (t1 == 0x456789ab) { if (t0 == 0x01234567) { *chab = 0; *bw = 64; done = 1; } } else { if (t0 == 0x01234567) { *chab = 0; *bw = 32; ret |= SETIREG(SISSR, 0x14, 0x00); done = 1; } } if (!done) { ret |= SETIREG(SISSR, 0x14, 0x03); ret |= sisusb_triggersr16(sisusb, ramtype); ret |= WRITEL(ramptr + 0, 0x01234567); ret |= WRITEL(ramptr + 4, 0x456789ab); ret |= WRITEL(ramptr + 8, 0x89abcdef); ret |= WRITEL(ramptr + 12, 0xcdef0123); ret |= WRITEL(ramptr + 16, 0x55555555); ret |= WRITEL(ramptr + 20, 0x55555555); ret |= WRITEL(ramptr + 24, 0xffffffff); ret |= WRITEL(ramptr + 28, 0xffffffff); ret |= READL(ramptr + 0, &t0); ret |= READL(ramptr + 4, &t1); if (t1 == 0x456789ab) { if (t0 == 0x01234567) { *chab = 1; *bw = 64; return ret; } /* else error */ } else { if (t0 == 0x01234567) { *chab = 1; *bw = 32; ret |= SETIREG(SISSR, 0x14, 0x01); } /* else error */ } } } return ret; } static int sisusb_verify_mclk(struct sisusb_usb_data *sisusb) { int ret = 0; u32 ramptr = SISUSB_PCI_MEMBASE; u8 tmp1, tmp2, i, j; ret |= WRITEB(ramptr, 0xaa); ret |= WRITEB(ramptr + 16, 0x55); ret |= READB(ramptr, &tmp1); ret |= READB(ramptr + 16, &tmp2); if ((tmp1 != 0xaa) || (tmp2 != 0x55)) { for (i = 0, j = 16; i < 2; i++, j += 16) { ret |= GETIREG(SISSR, 0x21, &tmp1); ret |= SETIREGAND(SISSR, 0x21, (tmp1 & 0xfb)); ret |= SETIREGOR(SISSR, 0x3c, 0x01); /* not on 330 */ ret |= SETIREGAND(SISSR, 0x3c, 0xfe); /* not on 330 */ ret |= SETIREG(SISSR, 0x21, tmp1); ret |= WRITEB(ramptr + 16 + j, j); ret |= READB(ramptr + 16 + j, &tmp1); if (tmp1 == j) { ret |= WRITEB(ramptr + j, j); break; } } } return ret; } static int sisusb_set_rank(struct sisusb_usb_data *sisusb, int *iret, int index, u8 rankno, u8 chab, const u8 dramtype[][5], int bw) { int ret = 0, ranksize; u8 tmp; *iret = 0; if ((rankno == 2) && (dramtype[index][0] == 2)) return ret; ranksize = dramtype[index][3] / 2 * bw / 32; if ((ranksize * rankno) > 128) return ret; tmp = 0; while ((ranksize >>= 1) > 0) tmp += 0x10; tmp |= ((rankno - 1) << 2); tmp |= ((bw / 64) & 0x02); tmp |= (chab & 0x01); ret = SETIREG(SISSR, 0x14, tmp); ret |= sisusb_triggersr16(sisusb, 0); /* sic! */ *iret = 1; return ret; } static int sisusb_check_rbc(struct sisusb_usb_data *sisusb, int *iret, u32 inc, int testn) { int ret = 0, i; u32 j, tmp; *iret = 0; for (i = 0, j = 0; i < testn; i++) { ret |= WRITEL(sisusb->vrambase + j, j); j += inc; } for (i = 0, j = 0; i < testn; i++) { ret |= READL(sisusb->vrambase + j, &tmp); if (tmp != j) return ret; j += inc; } *iret = 1; return ret; } static int sisusb_check_ranks(struct sisusb_usb_data *sisusb, int *iret, int rankno, int idx, int bw, const u8 rtype[][5]) { int ret = 0, i, i2ret; u32 inc; *iret = 0; for (i = rankno; i >= 1; i--) { inc = 1 << (rtype[idx][2] + rtype[idx][1] + rtype[idx][0] + bw / 64 + i); ret |= sisusb_check_rbc(sisusb, &i2ret, inc, 2); if (!i2ret) return ret; } inc = 1 << (rtype[idx][2] + bw / 64 + 2); ret |= sisusb_check_rbc(sisusb, &i2ret, inc, 4); if (!i2ret) return ret; inc = 1 << (10 + bw / 64); ret |= sisusb_check_rbc(sisusb, &i2ret, inc, 2); if (!i2ret) return ret; *iret = 1; return ret; } static int sisusb_get_sdram_size(struct sisusb_usb_data *sisusb, int *iret, int bw, int chab) { int ret = 0, i2ret = 0, i, j; static const u8 sdramtype[13][5] = { { 2, 12, 9, 64, 0x35 }, { 1, 13, 9, 64, 0x44 }, { 2, 12, 8, 32, 0x31 }, { 2, 11, 9, 32, 0x25 }, { 1, 12, 9, 32, 0x34 }, { 1, 13, 8, 32, 0x40 }, { 2, 11, 8, 16, 0x21 }, { 1, 12, 8, 16, 0x30 }, { 1, 11, 9, 16, 0x24 }, { 1, 11, 8, 8, 0x20 }, { 2, 9, 8, 4, 0x01 }, { 1, 10, 8, 4, 0x10 }, { 1, 9, 8, 2, 0x00 } }; *iret = 1; /* error */ for (i = 0; i < 13; i++) { ret |= SETIREGANDOR(SISSR, 0x13, 0x80, sdramtype[i][4]); for (j = 2; j > 0; j--) { ret |= sisusb_set_rank(sisusb, &i2ret, i, j, chab, sdramtype, bw); if (!i2ret) continue; ret |= sisusb_check_ranks(sisusb, &i2ret, j, i, bw, sdramtype); if (i2ret) { *iret = 0; /* ram size found */ return ret; } } } return ret; } static int sisusb_setup_screen(struct sisusb_usb_data *sisusb, int clrall, int drwfr) { int ret = 0; u32 address; int i, length, modex, modey, bpp; modex = 640; modey = 480; bpp = 2; address = sisusb->vrambase; /* Clear video ram */ if (clrall) length = sisusb->vramsize; else length = modex * bpp * modey; ret = sisusb_clear_vram(sisusb, address, length); if (!ret && drwfr) { for (i = 0; i < modex; i++) { address = sisusb->vrambase + (i * bpp); ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM, address, 0xf100); address += (modex * (modey-1) * bpp); ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM, address, 0xf100); } for (i = 0; i < modey; i++) { address = sisusb->vrambase + ((i * modex) * bpp); ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM, address, 0xf100); address += ((modex - 1) * bpp); ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM, address, 0xf100); } } return ret; } static int sisusb_set_default_mode(struct sisusb_usb_data *sisusb, int touchengines) { int ret = 0, i, j, modex, modey, bpp, du; u8 sr31, cr63, tmp8; static const char attrdata[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x01, 0x00, 0x00, 0x00 }; static const char crtcrdata[] = { 0x5f, 0x4f, 0x50, 0x82, 0x54, 0x80, 0x0b, 0x3e, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xea, 0x8c, 0xdf, 0x28, 0x40, 0xe7, 0x04, 0xa3, 0xff }; static const char grcdata[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x05, 0x0f, 0xff }; static const char crtcdata[] = { 0x5f, 0x4f, 0x4f, 0x83, 0x55, 0x81, 0x0b, 0x3e, 0xe9, 0x8b, 0xdf, 0xe8, 0x0c, 0x00, 0x00, 0x05, 0x00 }; modex = 640; modey = 480; bpp = 2; GETIREG(SISSR, 0x31, &sr31); GETIREG(SISCR, 0x63, &cr63); SETIREGOR(SISSR, 0x01, 0x20); SETIREG(SISCR, 0x63, cr63 & 0xbf); SETIREGOR(SISCR, 0x17, 0x80); SETIREGOR(SISSR, 0x1f, 0x04); SETIREGAND(SISSR, 0x07, 0xfb); SETIREG(SISSR, 0x00, 0x03); /* seq */ SETIREG(SISSR, 0x01, 0x21); SETIREG(SISSR, 0x02, 0x0f); SETIREG(SISSR, 0x03, 0x00); SETIREG(SISSR, 0x04, 0x0e); SETREG(SISMISCW, 0x23); /* misc */ for (i = 0; i <= 0x18; i++) { /* crtc */ SETIREG(SISCR, i, crtcrdata[i]); } for (i = 0; i <= 0x13; i++) { /* att */ GETREG(SISINPSTAT, &tmp8); SETREG(SISAR, i); SETREG(SISAR, attrdata[i]); } GETREG(SISINPSTAT, &tmp8); SETREG(SISAR, 0x14); SETREG(SISAR, 0x00); GETREG(SISINPSTAT, &tmp8); SETREG(SISAR, 0x20); GETREG(SISINPSTAT, &tmp8); for (i = 0; i <= 0x08; i++) { /* grc */ SETIREG(SISGR, i, grcdata[i]); } SETIREGAND(SISGR, 0x05, 0xbf); for (i = 0x0A; i <= 0x0E; i++) { /* clr ext */ SETIREG(SISSR, i, 0x00); } SETIREGAND(SISSR, 0x37, 0xfe); SETREG(SISMISCW, 0xef); /* sync */ SETIREG(SISCR, 0x11, 0x00); /* crtc */ for (j = 0x00, i = 0; i <= 7; i++, j++) SETIREG(SISCR, j, crtcdata[i]); for (j = 0x10; i <= 10; i++, j++) SETIREG(SISCR, j, crtcdata[i]); for (j = 0x15; i <= 12; i++, j++) SETIREG(SISCR, j, crtcdata[i]); for (j = 0x0A; i <= 15; i++, j++) SETIREG(SISSR, j, crtcdata[i]); SETIREG(SISSR, 0x0E, (crtcdata[16] & 0xE0)); SETIREGANDOR(SISCR, 0x09, 0x5f, ((crtcdata[16] & 0x01) << 5)); SETIREG(SISCR, 0x14, 0x4f); du = (modex / 16) * (bpp * 2); /* offset/pitch */ SETIREGANDOR(SISSR, 0x0e, 0xf0, ((du >> 8) & 0x0f)); SETIREG(SISCR, 0x13, (du & 0xff)); du <<= 5; tmp8 = du >> 8; SETIREG(SISSR, 0x10, tmp8); SETIREG(SISSR, 0x31, 0x00); /* VCLK */ SETIREG(SISSR, 0x2b, 0x1b); SETIREG(SISSR, 0x2c, 0xe1); SETIREG(SISSR, 0x2d, 0x01); SETIREGAND(SISSR, 0x3d, 0xfe); /* FIFO */ SETIREG(SISSR, 0x08, 0xae); SETIREGAND(SISSR, 0x09, 0xf0); SETIREG(SISSR, 0x08, 0x34); SETIREGOR(SISSR, 0x3d, 0x01); SETIREGAND(SISSR, 0x1f, 0x3f); /* mode regs */ SETIREGANDOR(SISSR, 0x06, 0xc0, 0x0a); SETIREG(SISCR, 0x19, 0x00); SETIREGAND(SISCR, 0x1a, 0xfc); SETIREGAND(SISSR, 0x0f, 0xb7); SETIREGAND(SISSR, 0x31, 0xfb); SETIREGANDOR(SISSR, 0x21, 0x1f, 0xa0); SETIREGAND(SISSR, 0x32, 0xf3); SETIREGANDOR(SISSR, 0x07, 0xf8, 0x03); SETIREG(SISCR, 0x52, 0x6c); SETIREG(SISCR, 0x0d, 0x00); /* adjust frame */ SETIREG(SISCR, 0x0c, 0x00); SETIREG(SISSR, 0x0d, 0x00); SETIREGAND(SISSR, 0x37, 0xfe); SETIREG(SISCR, 0x32, 0x20); SETIREGAND(SISSR, 0x01, 0xdf); /* enable display */ SETIREG(SISCR, 0x63, (cr63 & 0xbf)); SETIREG(SISSR, 0x31, (sr31 & 0xfb)); if (touchengines) { SETIREG(SISSR, 0x20, 0xa1); /* enable engines */ SETIREGOR(SISSR, 0x1e, 0x5a); SETIREG(SISSR, 0x26, 0x01); /* disable cmdqueue */ SETIREG(SISSR, 0x27, 0x1f); SETIREG(SISSR, 0x26, 0x00); } SETIREG(SISCR, 0x34, 0x44); /* we just set std mode #44 */ return ret; } static int sisusb_init_gfxcore(struct sisusb_usb_data *sisusb) { int ret = 0, i, j, bw, chab, iret, retry = 3; u8 tmp8, ramtype; u32 tmp32; static const char mclktable[] = { 0x3b, 0x22, 0x01, 143, 0x3b, 0x22, 0x01, 143, 0x3b, 0x22, 0x01, 143, 0x3b, 0x22, 0x01, 143 }; static const char eclktable[] = { 0x3b, 0x22, 0x01, 143, 0x3b, 0x22, 0x01, 143, 0x3b, 0x22, 0x01, 143, 0x3b, 0x22, 0x01, 143 }; static const char ramtypetable1[] = { 0x00, 0x04, 0x60, 0x60, 0x0f, 0x0f, 0x1f, 0x1f, 0xba, 0xba, 0xba, 0xba, 0xa9, 0xa9, 0xac, 0xac, 0xa0, 0xa0, 0xa0, 0xa8, 0x00, 0x00, 0x02, 0x02, 0x30, 0x30, 0x40, 0x40 }; static const char ramtypetable2[] = { 0x77, 0x77, 0x44, 0x44, 0x77, 0x77, 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x5b, 0x5b, 0xab, 0xab, 0x00, 0x00, 0xf0, 0xf8 }; while (retry--) { /* Enable VGA */ ret = GETREG(SISVGAEN, &tmp8); ret |= SETREG(SISVGAEN, (tmp8 | 0x01)); /* Enable GPU access to VRAM */ ret |= GETREG(SISMISCR, &tmp8); ret |= SETREG(SISMISCW, (tmp8 | 0x01)); if (ret) continue; /* Reset registers */ ret |= SETIREGAND(SISCR, 0x5b, 0xdf); ret |= SETIREG(SISSR, 0x05, 0x86); ret |= SETIREGOR(SISSR, 0x20, 0x01); ret |= SETREG(SISMISCW, 0x67); for (i = 0x06; i <= 0x1f; i++) ret |= SETIREG(SISSR, i, 0x00); for (i = 0x21; i <= 0x27; i++) ret |= SETIREG(SISSR, i, 0x00); for (i = 0x31; i <= 0x3d; i++) ret |= SETIREG(SISSR, i, 0x00); for (i = 0x12; i <= 0x1b; i++) ret |= SETIREG(SISSR, i, 0x00); for (i = 0x79; i <= 0x7c; i++) ret |= SETIREG(SISCR, i, 0x00); if (ret) continue; ret |= SETIREG(SISCR, 0x63, 0x80); ret |= GETIREG(SISSR, 0x3a, &ramtype); ramtype &= 0x03; ret |= SETIREG(SISSR, 0x28, mclktable[ramtype * 4]); ret |= SETIREG(SISSR, 0x29, mclktable[(ramtype * 4) + 1]); ret |= SETIREG(SISSR, 0x2a, mclktable[(ramtype * 4) + 2]); ret |= SETIREG(SISSR, 0x2e, eclktable[ramtype * 4]); ret |= SETIREG(SISSR, 0x2f, eclktable[(ramtype * 4) + 1]); ret |= SETIREG(SISSR, 0x30, eclktable[(ramtype * 4) + 2]); ret |= SETIREG(SISSR, 0x07, 0x18); ret |= SETIREG(SISSR, 0x11, 0x0f); if (ret) continue; for (i = 0x15, j = 0; i <= 0x1b; i++, j++) { ret |= SETIREG(SISSR, i, ramtypetable1[(j*4) + ramtype]); } for (i = 0x40, j = 0; i <= 0x44; i++, j++) { ret |= SETIREG(SISCR, i, ramtypetable2[(j*4) + ramtype]); } ret |= SETIREG(SISCR, 0x49, 0xaa); ret |= SETIREG(SISSR, 0x1f, 0x00); ret |= SETIREG(SISSR, 0x20, 0xa0); ret |= SETIREG(SISSR, 0x23, 0xf6); ret |= SETIREG(SISSR, 0x24, 0x0d); ret |= SETIREG(SISSR, 0x25, 0x33); ret |= SETIREG(SISSR, 0x11, 0x0f); ret |= SETIREGOR(SISPART1, 0x2f, 0x01); ret |= SETIREGAND(SISCAP, 0x3f, 0xef); if (ret) continue; ret |= SETIREG(SISPART1, 0x00, 0x00); ret |= GETIREG(SISSR, 0x13, &tmp8); tmp8 >>= 4; ret |= SETIREG(SISPART1, 0x02, 0x00); ret |= SETIREG(SISPART1, 0x2e, 0x08); ret |= sisusb_read_pci_config(sisusb, 0x50, &tmp32); tmp32 &= 0x00f00000; tmp8 = (tmp32 == 0x100000) ? 0x33 : 0x03; ret |= SETIREG(SISSR, 0x25, tmp8); tmp8 = (tmp32 == 0x100000) ? 0xaa : 0x88; ret |= SETIREG(SISCR, 0x49, tmp8); ret |= SETIREG(SISSR, 0x27, 0x1f); ret |= SETIREG(SISSR, 0x31, 0x00); ret |= SETIREG(SISSR, 0x32, 0x11); ret |= SETIREG(SISSR, 0x33, 0x00); if (ret) continue; ret |= SETIREG(SISCR, 0x83, 0x00); ret |= sisusb_set_default_mode(sisusb, 0); ret |= SETIREGAND(SISSR, 0x21, 0xdf); ret |= SETIREGOR(SISSR, 0x01, 0x20); ret |= SETIREGOR(SISSR, 0x16, 0x0f); ret |= sisusb_triggersr16(sisusb, ramtype); /* Disable refresh */ ret |= SETIREGAND(SISSR, 0x17, 0xf8); ret |= SETIREGOR(SISSR, 0x19, 0x03); ret |= sisusb_getbuswidth(sisusb, &bw, &chab); ret |= sisusb_verify_mclk(sisusb); if (ramtype <= 1) { ret |= sisusb_get_sdram_size(sisusb, &iret, bw, chab); if (iret) { dev_err(&sisusb->sisusb_dev->dev, "RAM size detection failed, assuming 8MB video RAM\n"); ret |= SETIREG(SISSR, 0x14, 0x31); /* TODO */ } } else { dev_err(&sisusb->sisusb_dev->dev, "DDR RAM device found, assuming 8MB video RAM\n"); ret |= SETIREG(SISSR, 0x14, 0x31); /* *** TODO *** */ } /* Enable refresh */ ret |= SETIREG(SISSR, 0x16, ramtypetable1[4 + ramtype]); ret |= SETIREG(SISSR, 0x17, ramtypetable1[8 + ramtype]); ret |= SETIREG(SISSR, 0x19, ramtypetable1[16 + ramtype]); ret |= SETIREGOR(SISSR, 0x21, 0x20); ret |= SETIREG(SISSR, 0x22, 0xfb); ret |= SETIREG(SISSR, 0x21, 0xa5); if (ret == 0) break; } return ret; } #undef SETREG #undef GETREG #undef SETIREG #undef GETIREG #undef SETIREGOR #undef SETIREGAND #undef SETIREGANDOR #undef READL #undef WRITEL static void sisusb_get_ramconfig(struct sisusb_usb_data *sisusb) { u8 tmp8, tmp82, ramtype; int bw = 0; char *ramtypetext1 = NULL; static const char ram_datarate[4] = {'S', 'S', 'D', 'D'}; static const char ram_dynamictype[4] = {'D', 'G', 'D', 'G'}; static const int busSDR[4] = {64, 64, 128, 128}; static const int busDDR[4] = {32, 32, 64, 64}; static const int busDDRA[4] = {64+32, 64+32, (64+32)*2, (64+32)*2}; sisusb_getidxreg(sisusb, SISSR, 0x14, &tmp8); sisusb_getidxreg(sisusb, SISSR, 0x15, &tmp82); sisusb_getidxreg(sisusb, SISSR, 0x3a, &ramtype); sisusb->vramsize = (1 << ((tmp8 & 0xf0) >> 4)) * 1024 * 1024; ramtype &= 0x03; switch ((tmp8 >> 2) & 0x03) { case 0: ramtypetext1 = "1 ch/1 r"; if (tmp82 & 0x10) bw = 32; else bw = busSDR[(tmp8 & 0x03)]; break; case 1: ramtypetext1 = "1 ch/2 r"; sisusb->vramsize <<= 1; bw = busSDR[(tmp8 & 0x03)]; break; case 2: ramtypetext1 = "asymmeric"; sisusb->vramsize += sisusb->vramsize/2; bw = busDDRA[(tmp8 & 0x03)]; break; case 3: ramtypetext1 = "2 channel"; sisusb->vramsize <<= 1; bw = busDDR[(tmp8 & 0x03)]; break; } dev_info(&sisusb->sisusb_dev->dev, "%dMB %s %cDR S%cRAM, bus width %d\n", sisusb->vramsize >> 20, ramtypetext1, ram_datarate[ramtype], ram_dynamictype[ramtype], bw); } static int sisusb_do_init_gfxdevice(struct sisusb_usb_data *sisusb) { struct sisusb_packet packet; int ret; u32 tmp32; /* Do some magic */ packet.header = 0x001f; packet.address = 0x00000324; packet.data = 0x00000004; ret = sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x001f; packet.address = 0x00000364; packet.data = 0x00000004; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x001f; packet.address = 0x00000384; packet.data = 0x00000004; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x001f; packet.address = 0x00000100; packet.data = 0x00000700; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x000f; packet.address = 0x00000004; ret |= sisusb_send_bridge_packet(sisusb, 6, &packet, 0); packet.data |= 0x17; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); /* Init BAR 0 (VRAM) */ ret |= sisusb_read_pci_config(sisusb, 0x10, &tmp32); ret |= sisusb_write_pci_config(sisusb, 0x10, 0xfffffff0); ret |= sisusb_read_pci_config(sisusb, 0x10, &tmp32); tmp32 &= 0x0f; tmp32 |= SISUSB_PCI_MEMBASE; ret |= sisusb_write_pci_config(sisusb, 0x10, tmp32); /* Init BAR 1 (MMIO) */ ret |= sisusb_read_pci_config(sisusb, 0x14, &tmp32); ret |= sisusb_write_pci_config(sisusb, 0x14, 0xfffffff0); ret |= sisusb_read_pci_config(sisusb, 0x14, &tmp32); tmp32 &= 0x0f; tmp32 |= SISUSB_PCI_MMIOBASE; ret |= sisusb_write_pci_config(sisusb, 0x14, tmp32); /* Init BAR 2 (i/o ports) */ ret |= sisusb_read_pci_config(sisusb, 0x18, &tmp32); ret |= sisusb_write_pci_config(sisusb, 0x18, 0xfffffff0); ret |= sisusb_read_pci_config(sisusb, 0x18, &tmp32); tmp32 &= 0x0f; tmp32 |= SISUSB_PCI_IOPORTBASE; ret |= sisusb_write_pci_config(sisusb, 0x18, tmp32); /* Enable memory and i/o access */ ret |= sisusb_read_pci_config(sisusb, 0x04, &tmp32); tmp32 |= 0x3; ret |= sisusb_write_pci_config(sisusb, 0x04, tmp32); if (ret == 0) { /* Some further magic */ packet.header = 0x001f; packet.address = 0x00000050; packet.data = 0x000000ff; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); } return ret; } /* Initialize the graphics device (return 0 on success) * This initializes the net2280 as well as the PCI registers * of the graphics board. */ static int sisusb_init_gfxdevice(struct sisusb_usb_data *sisusb, int initscreen) { int ret = 0, test = 0; u32 tmp32; if (sisusb->devinit == 1) { /* Read PCI BARs and see if they have been set up */ ret |= sisusb_read_pci_config(sisusb, 0x10, &tmp32); if (ret) return ret; if ((tmp32 & 0xfffffff0) == SISUSB_PCI_MEMBASE) test++; ret |= sisusb_read_pci_config(sisusb, 0x14, &tmp32); if (ret) return ret; if ((tmp32 & 0xfffffff0) == SISUSB_PCI_MMIOBASE) test++; ret |= sisusb_read_pci_config(sisusb, 0x18, &tmp32); if (ret) return ret; if ((tmp32 & 0xfffffff0) == SISUSB_PCI_IOPORTBASE) test++; } /* No? So reset the device */ if ((sisusb->devinit == 0) || (test != 3)) { ret |= sisusb_do_init_gfxdevice(sisusb); if (ret == 0) sisusb->devinit = 1; } if (sisusb->devinit) { /* Initialize the graphics core */ if (sisusb_init_gfxcore(sisusb) == 0) { sisusb->gfxinit = 1; sisusb_get_ramconfig(sisusb); ret |= sisusb_set_default_mode(sisusb, 1); ret |= sisusb_setup_screen(sisusb, 1, initscreen); } } return ret; } #ifdef INCL_SISUSB_CON /* Set up default text mode: * - Set text mode (0x03) * - Upload default font * - Upload user font (if available) */ int sisusb_reset_text_mode(struct sisusb_usb_data *sisusb, int init) { int ret = 0, slot = sisusb->font_slot, i; const struct font_desc *myfont; u8 *tempbuf; u16 *tempbufb; static const char bootstring[] = "SiSUSB VGA text console, (C) 2005 Thomas Winischhofer."; static const char bootlogo[] = "(o_ //\\ V_/_"; /* sisusb->lock is down */ if (!sisusb->SiS_Pr) return 1; sisusb->SiS_Pr->IOAddress = SISUSB_PCI_IOPORTBASE + 0x30; sisusb->SiS_Pr->sisusb = (void *)sisusb; /* Set mode 0x03 */ SiSUSBSetMode(sisusb->SiS_Pr, 0x03); myfont = find_font("VGA8x16"); if (!myfont) return 1; tempbuf = vmalloc(8192); if (!tempbuf) return 1; for (i = 0; i < 256; i++) memcpy(tempbuf + (i * 32), myfont->data + (i * 16), 16); /* Upload default font */ ret = sisusbcon_do_font_op(sisusb, 1, 0, tempbuf, 8192, 0, 1, NULL, 16, 0); vfree(tempbuf); /* Upload user font (and reset current slot) */ if (sisusb->font_backup) { ret |= sisusbcon_do_font_op(sisusb, 1, 2, sisusb->font_backup, 8192, sisusb->font_backup_512, 1, NULL, sisusb->font_backup_height, 0); if (slot != 2) sisusbcon_do_font_op(sisusb, 1, 0, NULL, 0, 0, 1, NULL, 16, 0); } if (init && !sisusb->scrbuf) { tempbuf = vmalloc(8192); if (tempbuf) { i = 4096; tempbufb = (u16 *)tempbuf; while (i--) *(tempbufb++) = 0x0720; i = 0; tempbufb = (u16 *)tempbuf; while (bootlogo[i]) { *(tempbufb++) = 0x0700 | bootlogo[i++]; if (!(i % 4)) tempbufb += 76; } i = 0; tempbufb = (u16 *)tempbuf + 6; while (bootstring[i]) *(tempbufb++) = 0x0700 | bootstring[i++]; ret |= sisusb_copy_memory(sisusb, tempbuf, sisusb->vrambase, 8192); vfree(tempbuf); } } else if (sisusb->scrbuf) { ret |= sisusb_copy_memory(sisusb, (char *)sisusb->scrbuf, sisusb->vrambase, sisusb->scrbuf_size); } if (sisusb->sisusb_cursor_size_from >= 0 && sisusb->sisusb_cursor_size_to >= 0) { sisusb_setidxreg(sisusb, SISCR, 0x0a, sisusb->sisusb_cursor_size_from); sisusb_setidxregandor(sisusb, SISCR, 0x0b, 0xe0, sisusb->sisusb_cursor_size_to); } else { sisusb_setidxreg(sisusb, SISCR, 0x0a, 0x2d); sisusb_setidxreg(sisusb, SISCR, 0x0b, 0x0e); sisusb->sisusb_cursor_size_to = -1; } slot = sisusb->sisusb_cursor_loc; if (slot < 0) slot = 0; sisusb->sisusb_cursor_loc = -1; sisusb->bad_cursor_pos = 1; sisusb_set_cursor(sisusb, slot); sisusb_setidxreg(sisusb, SISCR, 0x0c, (sisusb->cur_start_addr >> 8)); sisusb_setidxreg(sisusb, SISCR, 0x0d, (sisusb->cur_start_addr & 0xff)); sisusb->textmodedestroyed = 0; /* sisusb->lock is down */ return ret; } #endif /* fops */ static int sisusb_open(struct inode *inode, struct file *file) { struct sisusb_usb_data *sisusb; struct usb_interface *interface; int subminor = iminor(inode); interface = usb_find_interface(&sisusb_driver, subminor); if (!interface) return -ENODEV; sisusb = usb_get_intfdata(interface); if (!sisusb) return -ENODEV; mutex_lock(&sisusb->lock); if (!sisusb->present || !sisusb->ready) { mutex_unlock(&sisusb->lock); return -ENODEV; } if (sisusb->isopen) { mutex_unlock(&sisusb->lock); return -EBUSY; } if (!sisusb->devinit) { if (sisusb->sisusb_dev->speed == USB_SPEED_HIGH || sisusb->sisusb_dev->speed >= USB_SPEED_SUPER) { if (sisusb_init_gfxdevice(sisusb, 0)) { mutex_unlock(&sisusb->lock); dev_err(&sisusb->sisusb_dev->dev, "Failed to initialize device\n"); return -EIO; } } else { mutex_unlock(&sisusb->lock); dev_err(&sisusb->sisusb_dev->dev, "Device not attached to USB 2.0 hub\n"); return -EIO; } } /* Increment usage count for our sisusb */ kref_get(&sisusb->kref); sisusb->isopen = 1; file->private_data = sisusb; mutex_unlock(&sisusb->lock); return 0; } void sisusb_delete(struct kref *kref) { struct sisusb_usb_data *sisusb = to_sisusb_dev(kref); if (!sisusb) return; usb_put_dev(sisusb->sisusb_dev); sisusb->sisusb_dev = NULL; sisusb_free_buffers(sisusb); sisusb_free_urbs(sisusb); #ifdef INCL_SISUSB_CON kfree(sisusb->SiS_Pr); #endif kfree(sisusb); } static int sisusb_release(struct inode *inode, struct file *file) { struct sisusb_usb_data *sisusb; sisusb = file->private_data; if (!sisusb) return -ENODEV; mutex_lock(&sisusb->lock); if (sisusb->present) { /* Wait for all URBs to finish if device still present */ if (!sisusb_wait_all_out_complete(sisusb)) sisusb_kill_all_busy(sisusb); } sisusb->isopen = 0; file->private_data = NULL; mutex_unlock(&sisusb->lock); /* decrement the usage count on our device */ kref_put(&sisusb->kref, sisusb_delete); return 0; } static ssize_t sisusb_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct sisusb_usb_data *sisusb; ssize_t bytes_read = 0; int errno = 0; u8 buf8; u16 buf16; u32 buf32, address; sisusb = file->private_data; if (!sisusb) return -ENODEV; mutex_lock(&sisusb->lock); /* Sanity check */ if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) { mutex_unlock(&sisusb->lock); return -ENODEV; } if ((*ppos) >= SISUSB_PCI_PSEUDO_IOPORTBASE && (*ppos) < SISUSB_PCI_PSEUDO_IOPORTBASE + 128) { address = (*ppos) - SISUSB_PCI_PSEUDO_IOPORTBASE + SISUSB_PCI_IOPORTBASE; /* Read i/o ports * Byte, word and long(32) can be read. As this * emulates inX instructions, the data returned is * in machine-endianness. */ switch (count) { case 1: if (sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, address, &buf8)) errno = -EIO; else if (put_user(buf8, (u8 __user *)buffer)) errno = -EFAULT; else bytes_read = 1; break; case 2: if (sisusb_read_memio_word(sisusb, SISUSB_TYPE_IO, address, &buf16)) errno = -EIO; else if (put_user(buf16, (u16 __user *)buffer)) errno = -EFAULT; else bytes_read = 2; break; case 4: if (sisusb_read_memio_long(sisusb, SISUSB_TYPE_IO, address, &buf32)) errno = -EIO; else if (put_user(buf32, (u32 __user *)buffer)) errno = -EFAULT; else bytes_read = 4; break; default: errno = -EIO; } } else if ((*ppos) >= SISUSB_PCI_PSEUDO_MEMBASE && (*ppos) < SISUSB_PCI_PSEUDO_MEMBASE + sisusb->vramsize) { address = (*ppos) - SISUSB_PCI_PSEUDO_MEMBASE + SISUSB_PCI_MEMBASE; /* Read video ram * Remember: Data delivered is never endian-corrected */ errno = sisusb_read_mem_bulk(sisusb, address, NULL, count, buffer, &bytes_read); if (bytes_read) errno = bytes_read; } else if ((*ppos) >= SISUSB_PCI_PSEUDO_MMIOBASE && (*ppos) < SISUSB_PCI_PSEUDO_MMIOBASE + SISUSB_PCI_MMIOSIZE) { address = (*ppos) - SISUSB_PCI_PSEUDO_MMIOBASE + SISUSB_PCI_MMIOBASE; /* Read MMIO * Remember: Data delivered is never endian-corrected */ errno = sisusb_read_mem_bulk(sisusb, address, NULL, count, buffer, &bytes_read); if (bytes_read) errno = bytes_read; } else if ((*ppos) >= SISUSB_PCI_PSEUDO_PCIBASE && (*ppos) <= SISUSB_PCI_PSEUDO_PCIBASE + 0x5c) { if (count != 4) { mutex_unlock(&sisusb->lock); return -EINVAL; } address = (*ppos) - SISUSB_PCI_PSEUDO_PCIBASE; /* Read PCI config register * Return value delivered in machine endianness. */ if (sisusb_read_pci_config(sisusb, address, &buf32)) errno = -EIO; else if (put_user(buf32, (u32 __user *)buffer)) errno = -EFAULT; else bytes_read = 4; } else { errno = -EBADFD; } (*ppos) += bytes_read; mutex_unlock(&sisusb->lock); return errno ? errno : bytes_read; } static ssize_t sisusb_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { struct sisusb_usb_data *sisusb; int errno = 0; ssize_t bytes_written = 0; u8 buf8; u16 buf16; u32 buf32, address; sisusb = file->private_data; if (!sisusb) return -ENODEV; mutex_lock(&sisusb->lock); /* Sanity check */ if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) { mutex_unlock(&sisusb->lock); return -ENODEV; } if ((*ppos) >= SISUSB_PCI_PSEUDO_IOPORTBASE && (*ppos) < SISUSB_PCI_PSEUDO_IOPORTBASE + 128) { address = (*ppos) - SISUSB_PCI_PSEUDO_IOPORTBASE + SISUSB_PCI_IOPORTBASE; /* Write i/o ports * Byte, word and long(32) can be written. As this * emulates outX instructions, the data is expected * in machine-endianness. */ switch (count) { case 1: if (get_user(buf8, (u8 __user *)buffer)) errno = -EFAULT; else if (sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, address, buf8)) errno = -EIO; else bytes_written = 1; break; case 2: if (get_user(buf16, (u16 __user *)buffer)) errno = -EFAULT; else if (sisusb_write_memio_word(sisusb, SISUSB_TYPE_IO, address, buf16)) errno = -EIO; else bytes_written = 2; break; case 4: if (get_user(buf32, (u32 __user *)buffer)) errno = -EFAULT; else if (sisusb_write_memio_long(sisusb, SISUSB_TYPE_IO, address, buf32)) errno = -EIO; else bytes_written = 4; break; default: errno = -EIO; } } else if ((*ppos) >= SISUSB_PCI_PSEUDO_MEMBASE && (*ppos) < SISUSB_PCI_PSEUDO_MEMBASE + sisusb->vramsize) { address = (*ppos) - SISUSB_PCI_PSEUDO_MEMBASE + SISUSB_PCI_MEMBASE; /* Write video ram. * Buffer is copied 1:1, therefore, on big-endian * machines, the data must be swapped by userland * in advance (if applicable; no swapping in 8bpp * mode or if YUV data is being transferred). */ errno = sisusb_write_mem_bulk(sisusb, address, NULL, count, buffer, 0, &bytes_written); if (bytes_written) errno = bytes_written; } else if ((*ppos) >= SISUSB_PCI_PSEUDO_MMIOBASE && (*ppos) < SISUSB_PCI_PSEUDO_MMIOBASE + SISUSB_PCI_MMIOSIZE) { address = (*ppos) - SISUSB_PCI_PSEUDO_MMIOBASE + SISUSB_PCI_MMIOBASE; /* Write MMIO. * Buffer is copied 1:1, therefore, on big-endian * machines, the data must be swapped by userland * in advance. */ errno = sisusb_write_mem_bulk(sisusb, address, NULL, count, buffer, 0, &bytes_written); if (bytes_written) errno = bytes_written; } else if ((*ppos) >= SISUSB_PCI_PSEUDO_PCIBASE && (*ppos) <= SISUSB_PCI_PSEUDO_PCIBASE + SISUSB_PCI_PCONFSIZE) { if (count != 4) { mutex_unlock(&sisusb->lock); return -EINVAL; } address = (*ppos) - SISUSB_PCI_PSEUDO_PCIBASE; /* Write PCI config register. * Given value expected in machine endianness. */ if (get_user(buf32, (u32 __user *)buffer)) errno = -EFAULT; else if (sisusb_write_pci_config(sisusb, address, buf32)) errno = -EIO; else bytes_written = 4; } else { /* Error */ errno = -EBADFD; } (*ppos) += bytes_written; mutex_unlock(&sisusb->lock); return errno ? errno : bytes_written; } static loff_t sisusb_lseek(struct file *file, loff_t offset, int orig) { struct sisusb_usb_data *sisusb; loff_t ret; sisusb = file->private_data; if (!sisusb) return -ENODEV; mutex_lock(&sisusb->lock); /* Sanity check */ if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) { mutex_unlock(&sisusb->lock); return -ENODEV; } ret = no_seek_end_llseek(file, offset, orig); mutex_unlock(&sisusb->lock); return ret; } static int sisusb_handle_command(struct sisusb_usb_data *sisusb, struct sisusb_command *y, unsigned long arg) { int retval, length; u32 port, address; /* All our commands require the device * to be initialized. */ if (!sisusb->devinit) return -ENODEV; port = y->data3 - SISUSB_PCI_PSEUDO_IOPORTBASE + SISUSB_PCI_IOPORTBASE; switch (y->operation) { case SUCMD_GET: retval = sisusb_getidxreg(sisusb, port, y->data0, &y->data1); if (!retval) { if (copy_to_user((void __user *)arg, y, sizeof(*y))) retval = -EFAULT; } break; case SUCMD_SET: retval = sisusb_setidxreg(sisusb, port, y->data0, y->data1); break; case SUCMD_SETOR: retval = sisusb_setidxregor(sisusb, port, y->data0, y->data1); break; case SUCMD_SETAND: retval = sisusb_setidxregand(sisusb, port, y->data0, y->data1); break; case SUCMD_SETANDOR: retval = sisusb_setidxregandor(sisusb, port, y->data0, y->data1, y->data2); break; case SUCMD_SETMASK: retval = sisusb_setidxregmask(sisusb, port, y->data0, y->data1, y->data2); break; case SUCMD_CLRSCR: /* Gfx core must be initialized */ if (!sisusb->gfxinit) return -ENODEV; length = (y->data0 << 16) | (y->data1 << 8) | y->data2; address = y->data3 - SISUSB_PCI_PSEUDO_MEMBASE + SISUSB_PCI_MEMBASE; retval = sisusb_clear_vram(sisusb, address, length); break; case SUCMD_HANDLETEXTMODE: retval = 0; #ifdef INCL_SISUSB_CON /* Gfx core must be initialized, SiS_Pr must exist */ if (!sisusb->gfxinit || !sisusb->SiS_Pr) return -ENODEV; switch (y->data0) { case 0: retval = sisusb_reset_text_mode(sisusb, 0); break; case 1: sisusb->textmodedestroyed = 1; break; } #endif break; #ifdef INCL_SISUSB_CON case SUCMD_SETMODE: /* Gfx core must be initialized, SiS_Pr must exist */ if (!sisusb->gfxinit || !sisusb->SiS_Pr) return -ENODEV; retval = 0; sisusb->SiS_Pr->IOAddress = SISUSB_PCI_IOPORTBASE + 0x30; sisusb->SiS_Pr->sisusb = (void *)sisusb; if (SiSUSBSetMode(sisusb->SiS_Pr, y->data3)) retval = -EINVAL; break; case SUCMD_SETVESAMODE: /* Gfx core must be initialized, SiS_Pr must exist */ if (!sisusb->gfxinit || !sisusb->SiS_Pr) return -ENODEV; retval = 0; sisusb->SiS_Pr->IOAddress = SISUSB_PCI_IOPORTBASE + 0x30; sisusb->SiS_Pr->sisusb = (void *)sisusb; if (SiSUSBSetVESAMode(sisusb->SiS_Pr, y->data3)) retval = -EINVAL; break; #endif default: retval = -EINVAL; } if (retval > 0) retval = -EIO; return retval; } static long sisusb_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct sisusb_usb_data *sisusb; struct sisusb_info x; struct sisusb_command y; long retval = 0; u32 __user *argp = (u32 __user *)arg; sisusb = file->private_data; if (!sisusb) return -ENODEV; mutex_lock(&sisusb->lock); /* Sanity check */ if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) { retval = -ENODEV; goto err_out; } switch (cmd) { case SISUSB_GET_CONFIG_SIZE: if (put_user(sizeof(x), argp)) retval = -EFAULT; break; case SISUSB_GET_CONFIG: x.sisusb_id = SISUSB_ID; x.sisusb_version = SISUSB_VERSION; x.sisusb_revision = SISUSB_REVISION; x.sisusb_patchlevel = SISUSB_PATCHLEVEL; x.sisusb_gfxinit = sisusb->gfxinit; x.sisusb_vrambase = SISUSB_PCI_PSEUDO_MEMBASE; x.sisusb_mmiobase = SISUSB_PCI_PSEUDO_MMIOBASE; x.sisusb_iobase = SISUSB_PCI_PSEUDO_IOPORTBASE; x.sisusb_pcibase = SISUSB_PCI_PSEUDO_PCIBASE; x.sisusb_vramsize = sisusb->vramsize; x.sisusb_minor = sisusb->minor; x.sisusb_fbdevactive = 0; #ifdef INCL_SISUSB_CON x.sisusb_conactive = sisusb->haveconsole ? 1 : 0; #else x.sisusb_conactive = 0; #endif memset(x.sisusb_reserved, 0, sizeof(x.sisusb_reserved)); if (copy_to_user((void __user *)arg, &x, sizeof(x))) retval = -EFAULT; break; case SISUSB_COMMAND: if (copy_from_user(&y, (void __user *)arg, sizeof(y))) retval = -EFAULT; else retval = sisusb_handle_command(sisusb, &y, arg); break; default: retval = -ENOTTY; break; } err_out: mutex_unlock(&sisusb->lock); return retval; } #ifdef SISUSB_NEW_CONFIG_COMPAT static long sisusb_compat_ioctl(struct file *f, unsigned int cmd, unsigned long arg) { switch (cmd) { case SISUSB_GET_CONFIG_SIZE: case SISUSB_GET_CONFIG: case SISUSB_COMMAND: return sisusb_ioctl(f, cmd, arg); default: return -ENOIOCTLCMD; } } #endif static const struct file_operations usb_sisusb_fops = { .owner = THIS_MODULE, .open = sisusb_open, .release = sisusb_release, .read = sisusb_read, .write = sisusb_write, .llseek = sisusb_lseek, #ifdef SISUSB_NEW_CONFIG_COMPAT .compat_ioctl = sisusb_compat_ioctl, #endif .unlocked_ioctl = sisusb_ioctl }; static struct usb_class_driver usb_sisusb_class = { .name = "sisusbvga%d", .fops = &usb_sisusb_fops, .minor_base = SISUSB_MINOR }; static int sisusb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = interface_to_usbdev(intf); struct sisusb_usb_data *sisusb; int retval = 0, i; dev_info(&dev->dev, "USB2VGA dongle found at address %d\n", dev->devnum); /* Allocate memory for our private */ sisusb = kzalloc(sizeof(*sisusb), GFP_KERNEL); if (!sisusb) return -ENOMEM; kref_init(&sisusb->kref); mutex_init(&(sisusb->lock)); sisusb->sisusb_dev = dev; sisusb->vrambase = SISUSB_PCI_MEMBASE; sisusb->mmiobase = SISUSB_PCI_MMIOBASE; sisusb->mmiosize = SISUSB_PCI_MMIOSIZE; sisusb->ioportbase = SISUSB_PCI_IOPORTBASE; /* Everything else is zero */ /* Register device */ retval = usb_register_dev(intf, &usb_sisusb_class); if (retval) { dev_err(&sisusb->sisusb_dev->dev, "Failed to get a minor for device %d\n", dev->devnum); retval = -ENODEV; goto error_1; } sisusb->minor = intf->minor; /* Allocate buffers */ sisusb->ibufsize = SISUSB_IBUF_SIZE; sisusb->ibuf = kmalloc(SISUSB_IBUF_SIZE, GFP_KERNEL); if (!sisusb->ibuf) { retval = -ENOMEM; goto error_2; } sisusb->numobufs = 0; sisusb->obufsize = SISUSB_OBUF_SIZE; for (i = 0; i < NUMOBUFS; i++) { sisusb->obuf[i] = kmalloc(SISUSB_OBUF_SIZE, GFP_KERNEL); if (!sisusb->obuf[i]) { if (i == 0) { retval = -ENOMEM; goto error_3; } break; } sisusb->numobufs++; } /* Allocate URBs */ sisusb->sisurbin = usb_alloc_urb(0, GFP_KERNEL); if (!sisusb->sisurbin) { retval = -ENOMEM; goto error_3; } sisusb->completein = 1; for (i = 0; i < sisusb->numobufs; i++) { sisusb->sisurbout[i] = usb_alloc_urb(0, GFP_KERNEL); if (!sisusb->sisurbout[i]) { retval = -ENOMEM; goto error_4; } sisusb->urbout_context[i].sisusb = (void *)sisusb; sisusb->urbout_context[i].urbindex = i; sisusb->urbstatus[i] = 0; } dev_info(&sisusb->sisusb_dev->dev, "Allocated %d output buffers\n", sisusb->numobufs); #ifdef INCL_SISUSB_CON /* Allocate our SiS_Pr */ sisusb->SiS_Pr = kmalloc(sizeof(struct SiS_Private), GFP_KERNEL); if (!sisusb->SiS_Pr) { retval = -ENOMEM; goto error_4; } #endif /* Do remaining init stuff */ init_waitqueue_head(&sisusb->wait_q); usb_set_intfdata(intf, sisusb); usb_get_dev(sisusb->sisusb_dev); sisusb->present = 1; if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { int initscreen = 1; #ifdef INCL_SISUSB_CON if (sisusb_first_vc > 0 && sisusb_last_vc > 0 && sisusb_first_vc <= sisusb_last_vc && sisusb_last_vc <= MAX_NR_CONSOLES) initscreen = 0; #endif if (sisusb_init_gfxdevice(sisusb, initscreen)) dev_err(&sisusb->sisusb_dev->dev, "Failed to early initialize device\n"); } else dev_info(&sisusb->sisusb_dev->dev, "Not attached to USB 2.0 hub, deferring init\n"); sisusb->ready = 1; #ifdef SISUSBENDIANTEST dev_dbg(&sisusb->sisusb_dev->dev, "*** RWTEST ***\n"); sisusb_testreadwrite(sisusb); dev_dbg(&sisusb->sisusb_dev->dev, "*** RWTEST END ***\n"); #endif #ifdef INCL_SISUSB_CON sisusb_console_init(sisusb, sisusb_first_vc, sisusb_last_vc); #endif return 0; error_4: sisusb_free_urbs(sisusb); error_3: sisusb_free_buffers(sisusb); error_2: usb_deregister_dev(intf, &usb_sisusb_class); error_1: kfree(sisusb); return retval; } static void sisusb_disconnect(struct usb_interface *intf) { struct sisusb_usb_data *sisusb; /* This should *not* happen */ sisusb = usb_get_intfdata(intf); if (!sisusb) return; #ifdef INCL_SISUSB_CON sisusb_console_exit(sisusb); #endif usb_deregister_dev(intf, &usb_sisusb_class); mutex_lock(&sisusb->lock); /* Wait for all URBs to complete and kill them in case (MUST do) */ if (!sisusb_wait_all_out_complete(sisusb)) sisusb_kill_all_busy(sisusb); usb_set_intfdata(intf, NULL); sisusb->present = 0; sisusb->ready = 0; mutex_unlock(&sisusb->lock); /* decrement our usage count */ kref_put(&sisusb->kref, sisusb_delete); } static const struct usb_device_id sisusb_table[] = { { USB_DEVICE(0x0711, 0x0550) }, { USB_DEVICE(0x0711, 0x0900) }, { USB_DEVICE(0x0711, 0x0901) }, { USB_DEVICE(0x0711, 0x0902) }, { USB_DEVICE(0x0711, 0x0903) }, { USB_DEVICE(0x0711, 0x0918) }, { USB_DEVICE(0x0711, 0x0920) }, { USB_DEVICE(0x0711, 0x0950) }, { USB_DEVICE(0x0711, 0x5200) }, { USB_DEVICE(0x182d, 0x021c) }, { USB_DEVICE(0x182d, 0x0269) }, { } }; MODULE_DEVICE_TABLE(usb, sisusb_table); static struct usb_driver sisusb_driver = { .name = "sisusb", .probe = sisusb_probe, .disconnect = sisusb_disconnect, .id_table = sisusb_table, }; static int __init usb_sisusb_init(void) { #ifdef INCL_SISUSB_CON sisusb_init_concode(); #endif return usb_register(&sisusb_driver); } static void __exit usb_sisusb_exit(void) { usb_deregister(&sisusb_driver); } module_init(usb_sisusb_init); module_exit(usb_sisusb_exit); MODULE_AUTHOR("Thomas Winischhofer "); MODULE_DESCRIPTION("sisusbvga - Driver for Net2280/SiS315-based USB2VGA dongles"); MODULE_LICENSE("GPL");